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Background: Lung adenocarcinoma (LUAD) is the most common type of lung cancer. DNA repair genes 
(DRGs) is important in lung cancer. The relationship between the immune environment and the expression 
levels of DRGs in LUAD remains unclear. The purpose of this study is to assess the relationship between 
DRGs and the immune environment and clinical characteristics of LUAD.
Methods: Data of 169 LUAD cases were obtained from cbioportal. The RNA-seq data came from the 
The Cancer Genome Atlas (TCGA) database. We collected DRGs from the Reactom database (KW0037, 
Reactom.org). The 302 genes expressed in each sample were analyzed by hierarchical clustering and 
grouped using the Gene Cluster 3.0 program. The Java Treeview program was used to generate heat maps 
of cluster indications and tumor staging patterns. GraphPad Prism 8 was used to draw survival curves and 
compare overall survival (OS). For single genes, an OS difference analysis between low and high expression 
populations was performed in GraphPad Prism 8.
Results: Matrix clustering showed no difference in the prognosis of the two clusters. The comparison of 
subgroups showed that Subcluster 1 (SC1) had the best prognosis, and Subcluster 2 (SC2) had the worst. 
There was a significant difference in tumor grades between Cluster 1 and Cluster 2 (P=0.01). There were 
significant differences in smoking status, histological grade and adenocarcinoma subtype among subgroups. 
In Subcluster 3 (SC3), the proportion of poorly differentiated cases was highest. Immunological index 
analysis showed that there were significant differences between Cluster 1 and Cluster 2 in interferon, 
macrophages, monocytes, neutrophils, natural killer (NK) cells, and T cells. Tumor purity, interferon, 
macrophages, monocytes, neutrophils, NK cells, T cells, translation, and proliferation all showed significant 
differences between subgroups. In SC2, the proliferation index increased (0.082 vs. 0.070); the protein 
translation index decreased (0.134 vs. 0.137); and the interferon level increased (0.099 vs. 0.097). In SC3, the 
proliferation index decreased (0.076 vs. 0.071); the protein translation index decreased (0.140 vs. 0.136); and 
the level of neutrophils increased (0.083 vs. 0.086).
Conclusions: The differences of DRGs in LUAD are related to tissue differentiation and immune 
indicators but not to prognosis.
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Introduction

Lung cancer is the cancer with the highest morbidity and 
mortality in the world (1-3). Non-small cell lung carcinoma 
(NSCLC) accounts for about 80% of lung cancers. 
Lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma are the two most common histological types of 
NSCLC (4,5). More than half of patients cannot benefit 
from targeted therapy (6-8). Tumor tissue differentiation 
is closely related to tumor staging, treatment options and 
prognosis (9,10). The differentiation of tumor tissue is 
related to many factors, including various environmental 
factors and genetic factors (11,12). We know that the 
occurrence and development of lung cancer is closely 
related to smoking (13,14). Eighty percent of lung cancers 
are caused by smoking (15). However, amongst all smokers, 
only about 15% will eventually develop lung cancer, and 
a considerable number of people who have never smoked 
will also develop lung cancer, e.g., as a result of inhalation 
of second-hand smoke (16). These observations show 
that the occurrence of lung cancer is related to individual 
susceptibility. DNA repair genes (DRGs) are amongst the 
factors that play an important role in the susceptibility of 
different individuals to lung cancer (17-19).

In recent years, due to the development of big data 
technology, more and more researchers store original data 
in public databases, allowing researchers to further use 
these data for research, which has greatly promoted the 
development of clinical research. Recent immunotherapy 
has provided new ideas for the treatment of lung cancer. 
The immune environment is an important factor in 
determining the treatment effect (20). The relationship 
between the immune environment and the expression levels 
of DEGs in LUAD is still unclear. This study is based on 
the clinical data of the East Asian LUAD RNA-seq data 
published in Nature Genetics in 2020, which analyzed the 
expression and distribution of DNA repair-related genes 
in LUAD and studied the relationship between DEGs and 
LUAD immune environment clinical features. We present 
the following article in accordance with the REMARK 
reporting checklist (available at https://dx.doi.org/10.21037/
jtd-21-949).

Methods

Samples

According to a previously described approach, data from 
169 LUAD cases were obtained, and the relevant data were 

downloaded from The Cancer Genome Atlas (TCGA) 
database platform cbioportal, including RNA sequencing 
data and the corresponding clinical records relating to 
these patients (21,22). All these patients were pathologically 
diagnosed as LUAD. The RNA-seq data came from the 
East Asian LUAD data included in the TCGA database and 
were analyzed using the cbioportal platform. This research 
was conducted in accordance with the “Declaration of 
Helsinki” (as revised in 2013).

Gene set construction

We collected DRGs from the Reactom database (KW0037, 
Reactom.org); the gene set ID was: R-HSA-73894. Three 
hundred and two effective genes with complete sequencing 
and prognostic data were included in the final study sample. 
The corresponding expression level of each gene is shown 
as an mRNA z-score. According to differences in the 
expression of different genes, genes with similar expression 
trends were divided into clusters.

Bioinformatics

Hierarchical cluster analysis was performed on the 
302 genes expressed in each sample, and samples with 
similar gene expression patterns were grouped. The gene 
expression differences related to DNA repair between 
different groups were determined from the entire data 
set, and the hierarchical clustering algorithm was used to 
group them using the Gene Cluster 3.0 program. The Java 
Treeview program was used to generate heat maps of cluster 
indications and tumor staging patterns.

Prognostic implication analysis

In order to evaluate the relationship between DNA repair-
related genes and the clinical outcome of patients with 
LUAD, we used GraphPad Prism 8 (GraphPad Software, 
Inc., California, United States; Version 6.01, 2012) for 
Windows to plot survival curves and overall survival (OS) 
period for comparison. In addition, for single genes, in 
GraphPad Prism 8, OS difference analysis between the 
between low and high expression populations was carried 
out.

Statistical analysis

SPSS version 22.0 (IBM, Inc., USA) was used for statistical 
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processing. A Kaplan-Meier survival curve was drawn and 
tested by log-rank in GraphPad Prism version 8.0. Fisher's 
exact tests and Pearson correlations were used to analyze the 
correlations between clinical features and variables. One-
way analysis of variance (ANOVA) was used to analyze the 
differences in gene expression between different groups. In 
Gene Set Enrichment Analysis (GSEA), gene sets with false 
discovery rates (FDR) <0.25 are regarded as significantly 
enriched gene sets to screen out the most meaningful 
scientific hypotheses and reduce the risk of false positives. 
P<0.05 was considered to indicate statistical significance.

Results

Subgroup analysis of DNA repair gene expression

A matrix was prepared based on the data, and there were 
two clusters and four subclusters after clustering and 
stratification (Figure 1A). There was no difference in the 
prognosis of clusters, and the difference in prognosis 
between clusters was compared. Subcluster 1 had the best 
prognosis and Subcluster 2 had the worst prognosis (SC1, 
SC2) (Figure 1B). When the survival of SC1 and SC2 with 
SC3 and SC4 was compared, although the curves were 
different, the P value was >0.05 (Figure 1C). Comparisons 
of the clinical data of Cluster 1 and Cluster 2 showed that 
there was a significant difference in tumor grade (P=0.01) 
(Table 1). When each subgroup was compared, significant 
differences in smoking status, historical grade and 
WHO2015 adenocarcinoma subtype were found. Amongst 
the subgroups, Subcluster 3 had the highest proportion of 
poorly differentiated cases (Table 2).

Differentially expressed genes (DEGs)

According to the above results, SC2 had the worst 
p r o g n o s i s ,  w h i l e  S C 3  h a d  t h e  w o r s t  d e g r e e  o f 
differentiation. We further analyzed the DRGs in the 
worst prognosis group (SC2) and the worst differentiated 
group (SC3) compared with other patients. Compared with 
other subclusters, SC2 had 149 differentially expressed 
genes (DEGs), and SC3 had 213 DEGs. Figure 2A lists the 
top 50 genes with the most highly significant differences. 
Comparisons of the two groups of specifically expressed 
genes showed that there were 107 overlapping DEGs 
in both groups (Figure 2B). Protein-protein interaction 
(PPI) analysis of these genes indicated that the differential 
genes were functionally related to each other (Figure 2C). 

One hundred and seven genes were functionally enriched. 
Gene Ontology (GO)-biological progress analysis showed 
that these genes were mainly involved in DNA metabolic 
processes, GO-molecule function analysis demonstrated 
that these genes were mainly involved in catalytic activity, 
and GO-cell component analysis showed that these 
genes were mainly distributed in the nucleoplasm. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis showed that these genes were enriched in the 
Fanconi anemia pathway (Figure 2D).

Cellular and molecular expression differences

When comparing the differences in the relative amounts 
of immune cells between the groups, it was found that 
many immune indicators were significantly different. 
Comparisons of Cluster 1 and Cluster 2 showed that there 
were significant differences in interferon, macrophages, 
monocytes, neutrophils, natural killer (NK) cells, T cells, and 
translation (Table 3, Figure 3A); comparisons of subclusters 
showed tumor purity, interferon, macrophages, monocytes, 
neutrophils, NK cells, T cells, translation, and proliferation 
were all significantly different (Table 4, Figure 3B).

In addition, we analyzed the indexes of histological 
differences in the worst-prognosis group (SC2) and the 
worst-differentiated group (SC3) compared with other 
patients (Table 5). It was found that the proliferation indexes 
and the protein translation indexes were significantly 
different (Figure 3C,D). In the worst-prognosis group (SC2), 
the proliferation index increased (0.082 vs. 0.070); the 
protein translation index decreased (0.134 vs. 0.137); and 
the interferon level increased (0.099 vs. 0.097) (Figure 3C). 
In the worst-differentiated group (SC3), the proliferation 
index decreased (0.076 vs. 0.071); the protein translation 
index decreased (0.140 vs. 0.136); and the neutrophil level 
increased (0.083 vs. 0.086) (Figure 3D).

Discussion

This bioinformatics analysis showed that the differences 
in the expression profiles of DNA repair-related genes in 
LUAD were related to tissue differentiation and immune 
indicators but not to prognosis.

Clinical studies have found that different individuals with 
the same clinical characteristics show great heterogeneity 
in clinical manifestations, treatment sensitivity, disease 
recurrence, and survival outcomes. We have previously 
reported on individual differences in genetic susceptibility, 
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Figure 1 Clusters analysis and subclusters analysis of DRGs. (A) In total, 169 patients were primarily divided into two clusters with two 
subclusters respectively. The expression values of 302 effective genes corresponding to the individual patient were arrayed in the columns 
according to the expression affinity. Patients with similar gene expression patterns were clustered and grouped using a hierarchical clustering 
algorithm and arrayed in rows. (B) For overall survival, there were no significant differences between Cluster 1 and 2, but such differences 
existed between subclusters. (C) Subcluster 1 had the best prognosis, while Subcluster 2 had the worst prognosis. DRGs, DNA repair genes. 
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Table 1 Clinical characteristics of each primary cluster

Characteristic Subgroup Cluster 1 (n=90) Cluster 2 (n=79) P value

Age (years) Mean 63.32 64.77 0.32

SD 9.89 8.97

Sex (n) Female 51 43 0.45

Male 39 36

Smoking status (n) No 53 55 0.10

Yes 37 24

Stage (n) I 58 44 0.47

II 17 13

III 13 18

IV 1 3

NA 1 1

Histological grade (n) Well differentiated 10 4 0.01

Well to moderately differentiated 2 2

Moderately differentiated 53 56

Moderately to poorly differentiated 2 2

Poorly differentiated 7 13

NA 16 2

Adenocarcinoma subtype WHO 2015 (n) Acinar adenocarcinoma (85513) 42 45 0.16

Acinar adenocarcinoma with mucin production 1 0

Adenocarcinoma, mixed subtypes 4 1

Adenocarcinoma, NOS (81403) 17 5

Invasive mucinous adenocarcinoma 1 0

Invasive mucinous adenocarcinoma (82533) 2 1

Lepidic adenocarcinoma (82503) 3 5

Micropapillary adenocarcinoma (82653) 2 1

Minimally invasive adenocarcinoma, non-
mucinous (82502)

0 1

Papillary adenocarcinoma (82603) 11 8

Solid adenocarcinoma (82303) 6 12

NA 1 0

Tyrosine kinase inhibitor treatment (n) No 69 59 0.45

Yes 21 20

Chemotherapy (n) No 64 52 0.28

Yes 26 27

Smoking pack years (n) N 37 24 0.40

Mean 33.30 41.53

SD 38.59 34.97
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Table 2 Clinical characteristics of each secondary cluster

Characteristic Subgroup
Subcluster 1 

(n=58)
Subcluster 2 

(n=32)
Subcluster 3 

(n=42)
Subcluster 4 

(n=37)
P value

Age (years) Mean 63.98 62.13 64.74 64.81 0.62

SD 8.85 11.61 10.16 7.54

Sex (n) Female 35 16 18` 25 0.12

Male 23 16 24 12

Smoking status (n) No 38 15 25 30 0.03

Yes 20 17 17 7

Stage (n) I 37 21 21 23 0.70

II 12 5 9 4

III 8 5 9 9

IV 1 0 2 1

NA 0 1 1 0

Histological grade (n) Well differentiated 8 2 2 2 0.00

Well to moderately differentiated 2 0 1 1

Moderately differentiated 32 21 26 30

Moderately to poorly differentiated 0 2 1 1

Poorly differentiated 3 4 11 2

NA 13 3 1 1

Adenocarcinoma 
subtype WHO 2015 (n)

Acinar adenocarcinoma (85513) 29 13 23 22 0.05

Acinar adenocarcinoma with mucin production 0 1 0 0

Adenocarcinoma, mixed subtypes 4 0 1 0

Adenocarcinoma, NOS (81403) 8 9 4 1

Invasive mucinous adenocarcinoma 0 1 0 0

Invasive mucinous adenocarcinoma (82533) 2 0 0 1

Lepidic adenocarcinoma (82503) 2 1 2 3

Micropapillary adenocarcinoma (82653) 0 2 0 1

Minimally invasive adenocarcinoma, non-
mucinous (82502)

0 0 0 1

Papillary adenocarcinoma (82603) 9 2 3 5

Solid adenocarcinoma (82303) 3 3 9 3

NA 1 0 0 0

Tyrosine kinase inhibitor 
treatment (n)

No 45 24 29 30 0.63

Yes 13 8 13 7

Chemotherapy (n) No 41 23 24 28 0.30

Yes 17 9 18 9

Smoking pack years (n) N 20 17 17 7 0.80

Mean 33.74 32.77 44.32 34.75

SD 49.60 20.71 36.65 32.10
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Figure 2 Analysis of DEGs. (A) The top 50 genes with the most significant differences. (B) There were 107 overlapping genes between the 
two groups. (C) PPI indicates differential gene interaction. (D) The functional enrichment of 107 genes, upper left: biological progress, 
upper right: molecular function, lower left: cell component, lower right: KEGG pathway. DRGs, DNA repair genes; PPI, protein-protein 
interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes .
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Table 3 Immune related features of each primary cluster

Variable
Cluster 1 (n=90) Cluster 2 (n=79)

P value
Mean SD Mean SD

Purity 0.3133 0.17 0.3622 0.19 0.080

Imsig B cells 0.0620 0.01 0.0607 0.02 0.572

Imsig interferon 0.0989 0.01 0.0959 0.01 0.000

Imsig macrophages 0.0993 0.01 0.0938 0.01 0.000

Imsig monocytes 0.0962 0.01 0.0920 0.01 0.001

Imsig neutrophils 0.0890 0.01 0.0816 0.01 0.000

Imsig NK cells 0.0371 0.01 0.0322 0.01 0.003

Imsig plasma cells 0.0893 0.01 0.0862 0.02 0.202

Imsig proliferation 0.0723 0.01 0.0725 0.01 0.849

Imsig T cells 0.0833 0.01 0.0797 0.01 0.016

Imsig translation 0.1338 0.00 0.1403 0.01 0.000

Figure 3 Comparison of indicators of tissue and cells between clusters and subclusters (A,B). Patients in the worst-prognosis group (SC2, 
A) and the worst-differentiated group (SC3, B) showed significant differences in the proliferation index and protein translation index (C,D). 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Table 4 Histiocytic features of each secondary cluster

Variable
Subcluster 1 (n=58) Subcluster 2 (n=32) Subcluster 3 (n=42) Subcluster 4 (n=37)

P value
Mean SD Mean SD Mean SD Mean SD

Purity 0.326034 0.19612 0.290313 0.119393 0.312857 0.151163 0.418108 0.20899 0.013

Imsig B cells 0.061532 0.012517 0.062726 0.011672 0.064767 0.01686 0.056101 0.014777 0.051

Imsig interferon 0.098493 0.005062 0.099522 0.004944 0.097137 0.005234 0.094556 0.006515 0.001

Imsig macrophages 0.099593 0.007961 0.098798 0.006909 0.095012 0.011305 0.092458 0.007962 0.001

Imsig monocytes 0.09687 0.007711 0.094981 0.005941 0.093905 0.010367 0.089917 0.007385 0.001

Imsig neutrophils 0.089694 0.006995 0.087872 0.005179 0.083368 0.009114 0.079589 0.00559 0.000

Imsig NK cells 0.038136 0.010567 0.03517 0.00763 0.035036 0.013462 0.028897 0.006977 0.001

Imsig plasma cells 0.088463 0.013168 0.090685 0.013425 0.089689 0.01921 0.082299 0.014289 0.083

Imsig proliferation 0.066816 0.007723 0.082105 0.007643 0.076295 0.008699 0.068281 0.00703 0.000

Imsig T cells 0.083916 0.007961 0.082072 0.007845 0.081547 0.012608 0.077567 0.008866 0.019

Imsig translation 0.133648 0.003655 0.134081 0.003654 0.140297 0.006607 0.140246 0.004049 0.000

Table 5 Histiocytic features in subcluster 2 and subcluster 3

Variable

Subcluster 2 specific Subcluster 3 specific

Subcluster 2 (n=32) Others (n=137)
P value

Subcluster 3 (n=42) Others (n=127)
P value

Mean SD Mean SD Mean SD Mean SD

Purity 0.290313 0.119393 0.346861 0.191033 0.111 0.312857 0.151163 0.343858 0.189419 0.337

Imsig B cells 0.062726 0.011672 0.061057 0.014839 0.553 0.064767 0.01686 0.060251 0.013196 0.075

Imsig interferon 0.099522 0.004944 0.097014 0.005728 0.024 0.097137 0.005234 0.097605 0.00581 0.644

Imsig macrophages 0.098798 0.006909 0.096262 0.009541 0.158 0.095012 0.011305 0.097314 0.008271 0.158

Imsig monocytes 0.094981 0.005941 0.094083 0.008934 0.590 0.093905 0.010367 0.094368 0.007744 0.759

Imsig neutrophils 0.087872 0.005179 0.085026 0.008486 0.071 0.083368 0.009114 0.086291 0.007538 0.040

Imsig NK cells 0.03517 0.00763 0.03469 0.011338 0.821 0.035036 0.013462 0.034697 0.009702 0.859

Imsig plasma cells 0.090685 0.013425 0.087174 0.01572 0.245 0.089689 0.01921 0.087227 0.013856 0.369

Imsig proliferation 0.082105 0.007643 0.070118 0.008845 0.000 0.076295 0.008699 0.071095 0.009849 0.003

Imsig T cells 0.082072 0.007845 0.081475 0.010099 0.755 0.081547 0.012608 0.081602 0.008578 0.975

Imsig translation 0.134081 0.003654 0.137468 0.005822 0.002 0.140297 0.006607 0.135679 0.004763 0.000

NK, natural killer.

especially DNA repair ability (23-25). DNA repair genes 
play a vital role in keeping cells and organisms alive (26-28).  
DNA repair mainly includes nucleotide excision repair 
(NER), base excision repair (BER), DNA double strand 
break repair (DSBR) and mismatch repair (MMR) pathways. 
It can repair DNA damage caused by ultraviolet rays and 
drugs and use complementary strands as templates to 

replicate and repair damaged DNA to maintain the integrity 
of the genome (29,30). DNA repair gene single nucleotide 
polymorphisms (SNPs) are related to DNA repair ability. 
The functional SNPs of DNA repair genes affect the 
natural progression of lung cancer (pathological stage and 
grade, disease progression rate, metastatic tendency) and 
sensitivity to platinum drugs, thereby affecting the survival 
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outcome of patients (31-33). However, a large number of 
research results are inconsistent, and there is no consensus 
on whether differences in DNA repair gene expression can 
be used as prognostic indicators. The reason may be that in 
current clinical practice, the treatment of tumors based on 
genetic testing is not widespread, especially the selection of 
treatments based on the precise expression of specific DNA 
repair genes in different patients and different tumors. In 
short, the translation of this approach from research results 
into clinical practice still has a long way to go. A number 
of studies have found that some biomarkers are related 
to DNA damage, which provides support for choosing 
treatments that protect against DNA damage (34-36).

Our results did not show a correlation between DNA 
repair genes and the prognosis of patients with LUAD, 
but the prognosis of patients was indeed related to the 
differentiation and immune indicators of LUAD. The 
difference in the immune environment is the influencing 
factor that causes the difference in the prognosis of lung 
cancer and the sensitivity to treatment (37). The incidence 
of LUAD is increasing year by year, with a tendency of 
patients to be younger, with few early symptoms, rapid 
onset, high mortality and poor prognosis. Therefore, the 
diagnosis and prognosis of LUAD is very important (1,4,5). 
At present, because the underlying molecular mechanism 
of LUAD cannot be determined, its early diagnosis and 
prognostic treatment are relatively difficult, and most 
patients are already at an advanced stage when they are 
diagnosed (38,39). With the rapid development of medical 
technology and molecular biology technology, the treatment 
of LUAD has gradually transitioned to molecular targeted 
therapy (39). Identifying targets that are closely related to 
the biological behavior of tumors and that play an important 
role in the prognosis of tumor patients is the key to targeted 
therapy (6,40). We believe that different expressions of 
DNA repair genes will lead to differences in tumor biology, 
which is manifested in different differentiation of tumor 
tissues. Due to varying histological differentiation, the 
immune system's response to tumors also varies, which 
in turn leads to differences in related immune indicators. 
However, there are currently several problems. First, the 
biological processes of tumors are relatively complicated. 
Whether the treatment of DNA repair gene defects can 
play a key role or not is still unclear. Second, there are 
many types of DNA repair genes. Different tumors and 
types have different DNA repair genes. There are not many 
drugs that specifically target different DNA repair genes. 
Third, currently very few patients are actually treated based 

on DNA repair gene expression, and there are not many 
clinical data on targeted treatments. Fourth, most of the 
previous research results are based on excised tumor tissue 
specimens, with limited applicability to patients in early 
and late disease stages. Simpler methods and indicators are 
needed to detect changes in tumor-related DNA repair 
genes, which are beneficial to clinical practice.

The limitations of this study are its small sample size, 
and that it included only patients whose tumors had 
been partially surgically removed. Study findings are 
not generalizable to the broader population of patients 
with LUAD, especially patients who were diagnosed 
at a later stage and patients who were not treated with 
surgery. Secondly, this study did not screen out specific 
DNA repair genes and related biomarkers. This requires 
further exploration and prospective observation and large 
sample follow-up studies as the next step in this line of 
research. 
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