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A link between airway smooth muscle (ASM) and airway hyperresponsiveness (AHR) in asthma was first postulated in the
midnineteenth century, and the suspected link has garnered ever increasing interest over the years. AHR is characterized by
excessive narrowing of airways in response to nonspecific stimuli, and it is the ASM that drives this narrowing. The stimuli
that can be used to demonstrate AHR vary widely, as do the potential mechanisms by which phenotypic changes in ASM or
nonmuscle factors can contribute to AHR. In this paper, we review the history of research on airway smooth muscle’s role in
airway hyperresponsiveness. This research has ranged from analyzing the quantity of ASM in the airways to testing for alterations
in the plastic behavior of smooth muscle, which distinguishes it from skeletal and cardiac muscles. This long history of research
and the continued interest in this topic mean that the precise role of ASM in airway responsiveness remains elusive, which makes
it a pertinent topic for this collection of articles.

1. Introduction

In this paper we review the history of the link between airway
smooth muscle (ASM) and the phenomenon of bronchial
hyperreactivity or hyperresponsiveness (BHR) which is a
defining feature of asthma. Figure 1 shows the number of
PubMed citations generated by a search for “airway smooth
muscle + airway hyperresponsiveness + asthma.” These
results suggest that there is an increasing interest in the role of
ASM in AHR, but what is the history of evidence to support
a link?

It has long been recognized that muscular constriction
of the bronchi contributes to airway narrowing in asthma.
In his 1698 treatise on asthma Floyer wrote, “the Bronchia
are contracted . . . and that produces the Wheezing noise
in Expiration, and that this Symptom does not depend
on Phlegm is plain, because the Hysteric, who have no
Phlegm, Wheeze very much” [1]. In mid-nineteenth century,
Salter [2] wished that it could be “shown beyond cavil that
spasmodic stricture of the bronchial tubes is the only possible
cause of asthma, that it is adequate to the production of all
the phenomena.” He was referring to the “spastic contraction

of the fiber-cells of organic muscle,” which we now refer to as
the airway smooth muscle (ASM).

In a landmark study of the pathology of asthma Huber,
and Koessler [3] described and quantified the increased mass
of ASM. The accumulated evidence for an increase in muscle
mass and the relative contributions of hypertrophy and
hyperplasia to this process has been recently summarized [4].
Thus there is little doubt that ASM is increased in asthma.
The questions that remain are whether this increase is the
cause of airway hyperresponsiveness (AHR) or whether there
are additional fundamental changes in the phenotype of the
muscle which contribute to AHR.

Bronchial responsiveness in asthmatics was first reported
by Alexander and Paddock in 1921 [5] when they noted that
an attack could be precipitated by subcutaneous injections of
pilocarpine. Similarly Weiss et al. [6] found that asthmatics
became more breathless and had a greater fall in vital
capacity in response to intravenous histamine than did
non-asthmatic subjects. Subsequent early studies confirmed
that asthmatics responded excessively to a wide variety of
stimuli including acetyl-beta-methylcholine [7], carbachol
[8], histamine [9], slow reacting substance of anaphylaxis
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Figure 1: PuMed search for (ASM + AHR + asthma).

[10], prostaglandin F2α [11], propranolol [12], cold air [13],
sulphur dioxide [14], dust [15], and exercise [16]. Most of
these act directly on smooth muscle but others act to cause
secondary release of contractile agonists (e.g. cold air) or
inhibition of bronchodilating factors (e.g. propanolol). In
more recent literature these methods of eliciting an airway
response have been termed direct (via ASM) and indirect
(via release of inflammatory mediators and subsequent ASM
activation) measures of airway responsiveness.

These studies illustrated a key feature of AHR, that it is
nonspecific. If a subject is hyperesponsive to one stimulus
they are hyperrresponsive to all agents that act by stimulating
smooth muscle contraction. This observation was important
since it suggested that the phenomenon was primarily
postjunctional (i.e., on the muscle side of the neuromuscular
junction) and not related to specific abnormalities of any
specific agonist receptors on smooth muscle cells). This
supports the hypothesis that a change in ASM phenotype is
responsible for the phenomenon of AHR in asthma but an
additional important early observation was that AHR was
not limited to asthmatics. Patients with a variety of diseases
characterized by airway obstruction show AHR and the
degree of airway responsiveness is related to the degree of
baseline airway obstruction [17–19]. These results suggest
that the responsiveness may be consequence of the airway
narrowing rather than a predisposing factor. However in
asthma, AHR is relatively independent of baseline lung
function [20] suggesting that the underlying mechanisms
may be distinct from the AHR seen in COPD and other
airway diseases.

A final seminal early observation was that there were
variations in airway responsiveness over time. De Vries et al.
showed that there was diurnal variation in responsiveness
[21] with the greatest responsiveness occurring at night
when the baseline airway narrowing tends to be greatest.
Kerrebijin (1970) showed that AHR increases after an acute
spontaneous attack of asthma and then improves over time as
the attack subsides [22], again suggesting that AHR is a con-
sequence of asthma, or at least that a portion of the AHR was
variable and unlikely to represent a fundamental phenotypic

change in the muscle. Parker et al. showed that AHR occurred
during or after a respiratory tract infection in normal
subjects supporting the concept of acquired, reversible AHR
[18]. Additional important observations were that AHR
increased after the late, but not the early, asthmatic response
[23] to inhaled allergen and that AHR could be attenuated by
prolonged anti-inflammatory therapy [24].

2. Airway Smooth Muscle and
Airway Responsiveness

Despite the increasing interest in AHR during the 60s and
70s, there were few attempts to study the mechanism. As
early as 1951, Schild et al. [25] found that lung tissue
and bronchial muscle obtained from an asthmatic patient
released more histamine and responded with contraction to
challenge with house dust or pollen compared to a non-
asthmatic, but it was not until the early 1980s that there was
speculation that AHR was caused by an intrinsic alteration
in ASM structure or function. The prevalent theories prior
to that where related to pre-existing airway narrowing [26,
27], increased sensitivity of airway irritant receptors [28]
or a relative deficiency of beta adrenergic bronchodilation
[29]. Freedman [30] and Benson [26] were among the
first to systematically consider the potential link between
the structural and functional changes in the airways and
AHR. They pointed out that airway wall thickening and/or
baseline airway smooth muscle tone could amplify the airway
narrowing caused by a subsequent stimulus supporting the
concept that AHR was a manifestation of airway disease not
a root cause.

A pivotal study by Woolcock et al. [31] published in
1984 showed that an important feature of AHR in asthma
was an increase in maximal achievable airway narrowing
in response to histamine; most nonasthmatic subjects can
inhale high concentrations without much airway narrowing.
They showed that asthmatics not only show a response at
a much lower dose or concentration than nonasthmatics
(increased sensitivity) but that the amount of airway nar-
rowing measured by a decline in forced expiratory flow is
much greater. This was attributed to a lack in asthmatics of
a normal mechanism that inhibits severe airway narrowing
in nonasthmatics and they hinted at a link to maximal ASM
contraction.

Studies of excised human airway smooth muscle began
in the 1980s and for the most part failed to incriminate
ASM, although most of the initial studies examined only
isometric force. Although some studies suggested that ASM
from asthmatics was stronger [32, 33] the bulk of the data
[34–38] show that the maximal force that ASM can generate
does not differ in asthmatic and nonasthmatic individuals.
These studies spawned a number of different avenues of
investigation in an attempt to explain AHR. Generally these
studies focused on additional properties of ASM that could
be important in generating AHR or on additional explana-
tions for AHR that did not involve a fundamental change
in ASM phenotype. In 1986, Moreno et al. [39] presented
an extensive theoretical analysis of the geometric factors
which could link ASM activation and excessive airway
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narrowing, amplifying the earlier work of Freedman [30].
James et al. [40] and Wiggs et al. [41] quantified the potential
contribution of airway wall remodeling to increased maximal
airway narrowing. Lambert et al. [42] concluded that the
increase in smooth muscle mass was potentially the most
important structural change to explain AHR (provided
that the increased muscle mass retained its contractile
phenotype). This conclusion has been supported by recent
work from Oliver et al. [43] who added cyclical stress to the
model to simulate breathing. Their analyses confirmed the
importance of increased muscle mass and also suggested that
increased muscle could explain the failure of asthmatics to
respond to deep inspirations.

The other mechanical properties of ASM that have
been explored as potential contributors to AHR include an
increased maximal amount of shortening, increased velocity
of shortening, reduced relaxation, and a reduced effect of
strain on the reduction of force that occurs with breathing
and deep inspiration. Ma et al. [44] examined the maximal
shortening and the shortening velocity of primary isolated
ASM cells from asthmatic and normal subjects and found
both greater maximal shortening and faster shortening
associated with an increased expression of myosin light chain
kinase. Léguillette et al. [45] studied the relative expression of
two isoforms of human myosin in the ASM of asthmatic and
nonasthmatic subjects. They found that there was increased
mRNA for the SM-B isoform in asthmatic tissue. SM-B
contains a 7 amino acid insert and can be shown to propel
actin faster than the SM-A isoform. These data suggest
that a change in the relative proportion of the two myosin
isoforms could increase ASM shorting velocity and could
increase AHR in asthmatics. They did not measure the
relative abundance of the protein for the two isoforms.

3. Airway Smooth Muscle Adaptability

A whole new area of investigation was heralded in 1995 by
the publication by Pratusevich et al. [46] showing that unlike
skeletal muscle the length tension relationship of smooth
muscle is plastic; the length at which maximal force and
shortening occur can change dependent on the length history
of the smooth muscle. This observation coupled with an
important paper by Skloot et al. [47], also published in 1995,
showing that in asthmatics deep inspiration (DI) fails to
prevent airway narrowing, suggested a whole new paradigm,
the possibility that there might be a fundamental difference
in the ASM’s response to stress or strain in asthma. A large
number of in vitro and in vivo studies designed to establish
the mechanism of this difference followed these publications.
Although the physiological processes responsible for the
beneficial effects of deep inspiration (DI) are unknown,
they are thought to involve mechanical stretch of the ASM
during lung inflation [48]. However other factors may also
be involved including neural and humoral pathways [49].

3.1. Acute Length Perturbations. In vitro studies showed that
the contractile capability of an isolated ASM strip is atten-
uated by subjecting it to length oscillations [50, 51].
Fredberg et al. [52] developed a model to demonstrate that

mechanical strains in ASM caused by tidal breathing or
DI causes detachment of myosin heads from actin sooner
than it would during isometric contraction, leading to a
steady-state equilibrium. They suggested that in asthma,
disruption of this equilibrium leads to the “frozen” con-
tractile state where the muscle is not stretched enough to
allow enough mechanical perturbation to disrupt the cross-
bridges.

DI is an inhalation that expands the lung volume toward
total lung capacity. There are considerable data showing
that DIs are effective in reversing bronchoconstriction in
healthy subjects using measurements of resistance (Raw) and
forced expiratory volume in one second (FEV1). By contrast,
DI is not effective or even further exaggerates existing
bronchoconstriction in some asthmatic subjects, especially
when the airway narrowing occurs during spontaneous or
antigen-induced asthmatic attacks [53]. This paradoxical
response to DI was recognized as early as the 1960s and
70s [28, 54]. There is a spectrum between the normal
response (DI-induced bronchodilation) and severe asthma
(DI-induced bronchoconstriction); mild and well controlled
asthmatics behave more like nonasthmatics. However it was
the observation that DI taken prior to a bronchoconstricting
stimulus attenuates the subsequent airway narrowing that
has rekindled major interest in this phenomenon [47, 55–
61] which has been termed DI-induced bronchoprotection
as opposed to bronchodilation. It has been suggested that
asthmatics uniquely lack the bronchoprotective effect of DIs
[60]. It has long been accepted that stretching contracted
ASM by DI reduces bronchospasm by disrupting actin-
myosin cross-bridges [52, 62]. However, when DI is taken
prior to stimulation, there should be few or no cross-
bridges. Hence bronchoprotection could not be explained
by a physical detachment of cross-bridges. Wang et al.
postulated that the bronchoprotective effect of DI can be
explained by the adaptive behavior of ASM in response to
DI [48, 51].

Length adaptation (also called plasticity) refers to the
ability of the muscle to adapt its contractile capacity to
length changes as mentioned above. Pratusevich et al. [46]
showed that ASM is able to rapidly adapt to different lengths
and maintain optimal force generation over a large length
range. They observed that the adaptive process consists
of two stages, an immediate reduction in force generation
following the length change followed by a gradual recovery
of the force toward that achieved before the length change.
When length oscillation (to simulate DIs) was applied to un-
stimulated ASM, a similar two-staged adaptive process were
observed [51]. A reduction in active force in response to
stimulation was observed immediately after the oscillation
and the magnitude of active force reduction was linearly
related to the amplitude of the oscillation. After this initial
reduction, the muscle undergoes the adaptation process by
which active force increases gradually with each stimulation
until stabilizing at the level prior to length oscillation. The
adaptation process takes about 30 to 40 min to complete
depending on animal species and how frequently the muscle
is stimulated. McParland et al. [63] showed that ASM from
pigs could adapt to a shortened state induced by carbachol
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within 30 min, resulting in increased force, shortening and
shortening velocity.

The two-staged phenomenon in ASM strips after length
oscillation resembles the sequence of events during DI-
induced bronchoprotection in normal subjects. When DIs
are immediately followed by administration of a stimulant,
airway luminal narrowing is less than it would be without a
DI [64] and the airway resistance is reduced [65]. DI protects
the airways from excessive bronchospasm. This is similar
to the initial reduced contraction observed in ASM when
a length oscillation is applied. However, bronchoprotection
by DI is temporary. The stimulant-induced bronchospasm
gradually returns to what it would be without a DI. This
recovery process is paralleled by the in vitro finding that
the active force of ASM gradually returns to the same level
as prior to length oscillation. These similarities between the
bronchoprotection of DI in vivo and ASM adaptation in vitro
suggest that the dynamics of ASM length tension behavior
and pathologic alterations in this behavior have the potential
to play an important role in airway hyperresponsiveness.

The first evidence for a relationship between length adap-
tation in ASM and AHR was obtained in guinea pig model of
maturation. The recovery of active forcein adult guinea pig
ASM is gradual, complete, and follows a time course similar
to that observed in the ASM from adults of other species.
On the other hand, when length oscillation was applied to
ASM obtained from airways of 1-wk old guinea pigs, the
subsequent active force increased to about 110%Fmax (Fmax:
the stable maximal active force generated before mechanical
oscillation) and was maintained throughout the adaptation
process [66]. This increase of force after the initial reduction
was termed force potentiation. These data suggest there
is a lack of ASM adaptation in response to mechanical
perturbations in immature ASM and is consistent with the
clinical observation that airway responsiveness is greater
in infants and that DI is ineffective in attenuating airway
narrowing in infants as it is in asthmatics [67].

More recently Raqeeb et al. [68] studied ASM in vitro
using dynamic scenarios which more closely resemble in vivo
airway mechanics where ASM is constantly subjected to low
level length oscillations due to tidal breathing interspersed
with occasional DI. In their study design they tested the
effect of “tidal breathing” with or without “DI” on force
development as well as length oscillation in between stim-
ulations during force recovery. They found that adaptation
is interrupted by length oscillations, which suggests that in
healthy normal lung where ASM is constantly stretched by
breathing motions the force could not reach its maximal
level, that is, the second stage of adaptation could not be
completed. This would be beneficial to maintain airway
patency.

Most recently, Chin et al. [37] directly compared the
effect of length oscillation on tracheal ASM strips from
nonasthmatic and asthmatic subjects. Immediately after
length oscillation ASM from asthmatics showed less force
reduction (∼half of that in non-asthmatic ASM) and during
subsequent recovery the ASM from asthmatics recovered
more rapidly and completely. These results suggest that there
is a fundamental difference in ASM response to strain: a

reduced response in asthmatics to length oscillations; the
difference is intrinsic and not because the strain is reduced by
stiffer airways. A reduced initial force reduction is consistent
with loss of bronchoprotection in asthmatics.

3.2. Subacute/Chronic Length Changes. The effects of sub-
acute and chronic (hours to days) length changes on
contractile and structural features have been examined in
various skeletal muscle preparations. In the diaphragm,
as an example, chronic shortening is clinically relevant in
emphysema because the hyperinflation caused by emphy-
sema results in persistent shortening of the muscle. When
emphysema is induced in experimental animals by lung
elastolysis, the muscle recovers its ability to generate force at
short lengths because sarcomeres are subtracted in series over
a period of days to weeks [69, 70]. Addition of sarcomeres in
series occurs during chronic muscle lengthening [71].

Structural remodeling occurs in asthmatic airways over
a long time period and includes increased mucus secretion,
excessive deposition of extracellular matrix, thickening of
the airway wall, smooth muscle cell hypertrophy/hyperplasia
and angiogenesis. These structural alterations could influ-
ence airway function by causing ASM adaptation to short
lengths. Smooth muscle adaptation to prolonged length
changes is much faster than skeletal muscle. It was observed
that when ASM strips are passively lengthened or shortened
in vitro over a period of 24 hr, length-tension (L-T) curves
shifted compared to the control curve, allowing maintenance
of maximal isometric force at the new length [72]. The result
was that smooth muscle adapted to short length was now
able to generate the same maximal force as at longer length.
Compounding this effect there was a shift of the passive
length tension curve to the left, indicating stiffening of the
smooth muscle and making reversal of the shortened state
more difficult. Naghshin et al. [73] showed that adaptation
to passive shortening is reversible after 3 days but not
after 7 days. These results suggest that ASM adaptation
to shortening can not only occur quickly but also if the
shortening conditions persist, more permanent changes can
occur.

Despite the general concordance between in vitro and in
vivo studies and modeling some recent work suggests that
simple mechanical explanations for the effects of DI may be
simplistic. Transmural pressure changes comparable to those
produced by tidal breathing do not affect the response of
airway segments to a contractile agonist and with amplitudes
greater than 10 cm H2O the airways only respond with a
transient dilation [74–77]. Noble and colleagues [75] using
isolated airway segments also demonstrated that the capacity
of simulated deep inspirations to reduce bronchoconstric-
tion is markedly restricted by stiffening of the airway wall
in response to contractile stimulation. Furthermore, the
transient airway dilation observed in airway segments is
smaller, compared to the relatively larger effect seen in intact
airways in vivo [78, 79].

Additionally some in vivo studies are not completely
concordant with simple mechanical explanations. Although
prior DI has reproducibly been shown to differentially mod-
ify the methacholine-induced decline in FEV1 in asthmatics
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and nonasthmatics, other studies have shown that there is
no differential effect on the changes in FEV1/FVC ratio [80],
partial expiratory flow [81] or airway resistance assessed
using the forced oscillation technique (FOT) [82]. One
interpretation of this discrepancy is that prior DI may not
alter the initial airway narrowing produced by a constrictor
but instead make the ASM more responsive to subsequent
strain during the DI required to perform an FEV1 maneuver.
This potential mechanism is supported by a recent study of
the effect of DI in mice [83].

Together, these data support the idea that the reduced
airway response following deep inspiration is likely more
complicated than a simple stretch of ASM. One plausible
explanation for the ASM response to length oscillation is a
corresponding reduction in myosin filament density which
has been demonstrated in swine ASM [84]. A similar change
in ASM ultrastructure following a DI may explain its bron-
choprotective effect. Alterations in myosin filament density
in the ASM of asthmatic subjects may make it less prone
to disruption following strain, although this has yet to be
demonstrated in humans.

Another potential mechanism which could contribute to
AHR which involves ASM is the effect of tone on smooth
muscle contractility. As mentioned earlier this is an old idea
[25] but has received recent attention due to the studies of
Bossé and associates [85–88] who used sheep trachealis to
model the effect of basal tone on airway smooth muscle’s
ability to contract [85]. They have shown that tone induced
with cholinergic agonists, prostanoids or histamine results in
a more than additive effect on subsequent force production
in response to electric field stimulation. They have termed
this phenomenon force adaptation and have modeled the
increased airway narrowing that could come about because
of force adaptation [87]. For example, they calculated that
force adaptation occurring in an airway of the 9th generation
could increase airway narrowing by 48% and airway resis-
tance by 274%. Force adaption is a very plausible contributor
to exaggerated airway narrowing in asthmatics given the
abundance of inflammatory mediators and spasmogens that
the ASM of asthmatics is exposed to. In addition the loss
of this tone when the ASM is examined in vitro may be
one explanation for the failure of excised asthmatic ASM to
show altered contractile function in most studies. A recent
study by Pascoe et. al. has tested whether force adaptation
could influence ASM function in a setting that is more in line
with the in vivo environment [86]. In this experiment, ASM
strips were subjected to force oscillations that mimicked
the forces experienced by the ASM in vivo during tidal
breathing maneuvers with or without deep inspiration. It
was shown that even with force oscillations that mimicked in
vivo breathing patterns, force adaptation still occurred to the
same level as in static conditions. This finding opens the door
for future in vivo work to explore the role of force adaptation
in AHR. It is unlikely that force adaptation is the sole cause
of AHR but instead is one of a number of components that
leads to AHR in asthmatic subjects.

In summary, there is a long history of investigation of the
role of ASM in airway responsiveness. Despite this extensive
research it remains unclear whether a fundamental change

in ASM phenotype is the root cause of hyperresponsiveness
[88]. Thus, this series of paper in the Journal of Allergy
is pertinent and timely. Since airway, hyperresponsiveness
is such a fundamental and clinically relevant characteristic
of asthmatic airways it is incumbent on us to definitively
incriminate or exonerate ASM.
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