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Abstract: Mitochondria are complex organelles that provide energy for the cell in the form of
adenosine triphosphate (ATP) and have very specific structures. For most organisms, this is a reticular
or tubular mitochondrial network, while others have singular oval-shaped organelles. Nonetheless,
maintenance of this structure is dependent on the mitochondrial dynamics, fission, fusion, and
motility. Recently, studies have shown that the cytoskeleton has a significant role in the regulation
of mitochondrial dynamics. In this review, we focus on microtubules and actin filaments and look
at what is currently known about the cytoskeleton’s role in mitochondrial dynamics in complex
models like mammals and yeast, as well as what is known in the simple model system, Dictyostelium
discoideum. Understanding how the cytoskeleton is involved in mitochondrial dynamics increases our
understanding of mitochondrial disease, especially neurodegenerative diseases. Increases in fission,
loss of fusion, and fragmented mitochondria are seen in several neurodegenerative diseases such as
Parkinson’s, Alzheimer’s, and Huntington’s disease. There is no known cure for these diseases, but
new therapeutic strategies using drugs to alter mitochondrial fusion and fission activity are being
considered. The future of these therapeutic studies is dependent on an in-depth understanding of
the mechanisms of mitochondrial dynamics. Understanding the cytoskeleton’s role in dynamics in
multiple model organisms will further our understanding of these mechanisms and could potentially
uncover new therapeutic targets for these neurodegenerative diseases.
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1. Introduction

Mitochondria are complex organelles that provide energy for the cell in the form of
adenosine triphosphate (ATP) and play an important role in many other cellular processes
such as apoptosis, calcium homeostasis, and cellular differentiation [1–4]. In order to carry
out these functions, the mitochondria must regulate their structure [5,6]. For most organ-
isms, this means maintaining a reticular or tubular mitochondrial network (Figure 1) [6,7].
In other organisms, mitochondria exist as singular oval-shaped organelles (Figure 1) [8–11].
Nonetheless, maintenance of this structure is dependent on the mitochondrial dynamics,
fission, fusion, and motility [12,13]. Fission refers to the division of one mitochondrion
into two, and fusion refers to two mitochondria mixing their contents and becoming
one [14]. Fission and fusion are balanced events [10,12,15], though there are specific cellular
conditions that induce one process over the other. For example, increases in fission and
mitochondrial fragmentation are induced by cellular stress, aging, and changes in metabolic
state, such as high levels of glucose [16–18]. Fission increases are also seen with increased
levels of Reactive Oxygen Species (ROS) [19], though in some organisms, such as the social
amoeba Dictyostelium discoideum, the form of ROS determines the effect on both fission
and fusion rates [20]. Fusion increases in response to cellular starvation in an effort to
increase mitochondrial respiration and to mediate mitochondrial DNA damage [21–24]. It
is clear that mitochondrial function and structure are intertwined and that both function
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and structure regulate cellular processes such as migration, cell division, embryogenesis,
and disease [25]. To add to this complexity, these same cellular processes also regulate
mitochondria structure and thus function [25].
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Figure 1. Drawing of mitochondrial networks seen in different types of cells. (A) The dynamic
reticular network of tubular mitochondria seen in most yeast (budding and fission) and mammalian
cells. (B) Network of individual mitochondria seen in some organisms, such as D. discoideum.

Mitochondrial dynamics are essential cellular processes, and the mechanisms of these
dynamics have been studied in organisms with both a reticular network, such as yeast
and mammals, as well as in organisms whose mitochondria exist as individual organelles,
such as the amoeba, D. discoideum. Recently, studies have shown that the cytoskeleton
has a significant role in the regulation of mitochondrial fission and fusion in addition
to motility [26]. The cytoskeleton is composed of microtubules, actin, and intermediate
filaments, but for this review we will focus on microtubules and actin filaments. Actin
filaments, often found near the leading edge of moving cells, play a major role in creating the
force necessary for the cell to move and change its shape [27]. Microtubules are more rigid
than actin and are known to form tracks that are utilized for forming the mitotic spindle
during cell division, and they are necessary for organelle transport and positioning [27].
Here, we will look at what is currently known about the cytoskeleton’s role in mitochondrial
dynamics in complex models like mammals and yeast, as well as what is known in the
simple model system, D. discoideum. It is important to also understand dynamics in this
simple organism, as it serves as an easy model to study neurodegenerative diseases [28].
Many neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s,
are characterized by dysfunctional mitochondrial dynamics [29–31]; therefore, we will also
discuss how mitochondrial dynamics contributes to neurodegeneration.

2. Mitochondrial Dynamics and the Cytoskeleton

Mitochondria have an integral role in many processes, the most important being cellu-
lar respiration and production of ATP through oxidative phosphorylation [1]. Mitochondria
also play a role in regulating cell death, or apoptosis and autophagy [3,32]. Along with these
functions, mitochondria are responsible for maintaining cellular calcium levels and serve
as the main source of ROS [2,33]. All of these processes are dependent on the mitochondria
continuously maintaining its structure [5,6,34,35]. In most metabolically active cells of yeast
and mammals, mitochondria are tubular shaped and maintain dynamic reticular networks,
while other organisms, such as D. discoideum, have networks of individual mitochondria
(Figure 1) [6,7].

Mitochondrial networks are maintained through mitochondrial dynamics, which
consists of motility, fission, and fusion [12,13]. There are multiple types of mitochondrial
motility seen in cells. Movements include Brownian motion, or small random passive
movements, as well as directed motion, both short-range and long-range [36]. Motility
is primarily necessary for mitochondria to reposition around the cell based on the cell’s
energy demands [36]. Fusion, or the process of two mitochondria merging, allows for mito-
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chondria to mix their contents and for the network to grow [37]. Fission, or the process of a
mitochondrion splitting in two, allows for the network to isolate any damaged mitochon-
dria and subsequently dispose of them through mitophagy [38]. Removing these damaged
organelles regularly ensures that the network is full of only healthy mitochondria [38]. The
cell also uses fission and fusion to regulate mitochondrial length [39]. Larger or longer
mitochondria are more likely to go through fission, and shorter or smaller mitochondria
are more likely to fuse [39]. These dynamics are connected; for example, most fusion events
are followed by a fission event, rather than a subsequent fusion event, suggesting that
fission and fusion occur cyclically and regulate each other [39]. When fission and fusion
are not balanced, the morphology of the network changes [35]. If more fission than fusion
is occurring, the network will consist of a higher number of smaller mitochondria [35].
Fusion events generally occur between one motile and one relatively stationary mitochon-
drion, indicating that fusion is dependent on mitochondrial motility [39]. These events
require mitochondria to come into close contact with each other and can occur tip to tip
or tip to a side of a tubule [39,40]. Conversely, motility is also dependent on fusion, as
fusion-inhibited mammalian cells have limited mitochondrial movement, with most move-
ments resembling Brownian motion (Figure 2B) [33]. In addition, motility is connected
to mitochondrial fission [30]. Without fission, the mitochondrial network becomes too
large, impeding its ability to move (Figure 2C) [41]. In conclusion, fission, fusion, and
motility are interconnected, interdependent, and necessary for maintaining morphology.
Defects in these dynamics lead to reduced clearance of damaged organelles and contribute
to neurodegeneration [42,43].
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Figure 2. Changes in mitochondrial dynamics when fission or fusion is inhibited. (A) Dynamics in
normal healthy cells shows how the mitochondrial network changes. (B) In the absence of fusion,
motility is inhibited, thus, over time, mitochondrial distribution undergoes little change. (C) In the
absence of fission, the mitochondrial network becomes too large and motility is inhibited. This again
results in a similar distribution of the mitochondria over time.

Mitochondrial dynamics are essential to the health of the organelle and the cell. The
molecular mechanisms that regulate these processes are complex but fairly well understood.
Recently, it has become established that the cytoskeleton, well known for its role in organelle
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motility, also plays a significant role in mitochondrial fission and fusion. Much research
has been carried out to determine if the cytoskeleton is directly involved in fission and
fusion or if the disruption of motility indirectly alters the interconnected processes of
fission and fusion. Here, we review the role of the cytoskeleton, microtubules and actin, in
mitochondria motility, fission, and fusion, in neurons, other mammalian cells, yeast, and
the social amoeba D. discoideum. We include this variety of organisms because it is clear that
different mechanisms are responsible for mitochondrial dynamics in different organisms.
Understanding the differences of these mechanisms helps us to understand the evolution
of the machines that carry out these processes, but more importantly, using simple model
systems, such as D. discoideum, allows us to explore dynamics without being overwhelmed
by the complexity of model systems such as neurons and mammalian cells.

3. Microtubules and Mitochondrial Dynamics in Neurons and Mammalian Cells

The role of microtubules in mitochondrial dynamics, specifically motility, has been
widely studied in mammals. Most mammalian studies on mitochondrial motility have been
conducted in neurons. In mammalian neurons, mitochondria use microtubules as tracks
for long-distance movement [44–46]. The mitochondria on these tracks have a significantly
higher velocity than those moving along actin filaments [44]. For long-distance travel along
axons, mitochondria move with the help of microtubule-based motors: kinesin-1, kinesin-3,
and cytoplasmic dynein [46–49]. Long-distance anterograde travel (away from the cell
body) is mediated by kinesin-1, as it is a highly processive motor, and its processivity can
be increased by interacting with adaptor proteins. The adaptors TRAK1 and TRAK2 link
microtubule motors directly to the mitochondria, or indirectly via Miro, or Mitochondrial
Rho GTPase [46,50]. In cultured monkey kidney cells, defects in mitochondrial distribution
are seen when the activity of Miro is inhibited [50,51]. An additional adaptor that plays a
role in connecting kinesin-1 and mitochondria is syntabulin [52]. In neurons, syntabulin
mediates anterograde transport of mitochondria and knockdown of this adaptor results in
decreased distribution along axons [53]. Finally, loss of kinesin-3 adaptor, KIFBP (kinesin
binding protein), has also been shown to alter mitochondrial distribution, though this may
be by altering microtubule dynamics rather than directly affecting motility [50]. Table 1
summarizes these proteins and functions. In summary, loss of function in these adaptors
that interact with microtubule motors is further support that microtubules are necessary
for mitochondrial trafficking in these cells.

Table 1. Summary of mammalian proteins involved in microtubule-regulated fission, fusion, and
motility described in this review.

Protein Function

Kinesin-1 Microtubule motor protein

Kinesin-3 Microtubule motor protein

Cytoplasmic dynein Microtubule motor protein

TRAK1/TRAK2 Adaptors linking microtubule motors to mitochondria

Miro
(Mitochondrial Rho GTPase) Adaptor that connects some TRAK1/2 adaptors to the mitochondria

Syntabulin Adaptor between microtubules and kinesin-1

KIFBP
(Kinesin Binding Protein) Kinesin-3 adaptor linking motor to microtubules

Mitofusins (Mfn1/2) GTPase responsible for mitochondrial fusion

Mtus1
(Microtubule-associated tumor suppressor 1) Interacts with mitofusins to mediate fusion

Drp1
(Dynamin related protein 1) GTPase responsible for mitochondrial fission
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Along with motility, microtubules have a role in mammalian mitochondrial fission and
fusion. Mitochondria must be moving to fuse, so when motility is inhibited, a decrease in
fusion also occurs; this has been clearly demonstrated in mammalian neurons [54]. In mice
neurons, disrupting microtubules with vincristine decreases both mitochondrial fission and
fusion [55]; this may be due to a lack of motility or may be due to a more direct requirement
of microtubules for the fission and fusion process. Apart from neurons, studies in other
mammalian cells have linked microtubules to fission, specifically through microtubule-
associated proteins (MAPs). For example, in mammalian endothelial cells, microtubule-
associated tumor suppressor 1 (Mtus1) binds to mitofusins, fusion-regulating proteins on
the outer mitochondrial membrane, and helps mediate fusion [56]. Knocking out Mtus1
results in decreased fusion and shorter mitochondria [56]. Studies have also suggested
that the microtubule-based motor protein, kinesin-1, and the associated adaptor protein,
Miro, regulate morphology, but it is unclear if this is due to their role in motility, which
would indirectly affect fission and fusion [50]. Kinesin-1, along with other motor proteins,
kinesin-3 and dynein, do recruit Drp1, a fission-initiating protein, to the mitochondria [50],
suggesting a direct regulatory role for mitochondrial fission. A summary of the function of
these proteins can be found in Table 1. While these studies suggest that microtubules are
necessary for regulating mitochondrial fission and fusion in mammals, another mammalian
study has shown that fusion can occur without microtubule assistance. In cultured Madin–
Darby canine kidney cells (MDCK), disruption of microtubules with nocodazole does not
prevent mitochondrial fusion, as measured by mitochondrial morphology [57], though it
is possible that with a direct quantification assay, fusion rates (or maybe both fission and
fusion) may decrease in these cells. In conclusion, microtubules do regulate motility, fission,
and fusion, though many studies are still needed to determine the degree and exact method
of this regulation.

4. Microtubules and Mitochondrial Dynamics in Yeast

Another model system used to study mitochondrial dynamics is yeast. Similar to mam-
mals, microtubules regulate mitochondrial distribution [58]. Mitochondria appear to move
along microtubule tracks by attachments at the tip or sides of growing microtubules [59].
Most mitochondrial motility in fission yeast is short range, so microtubule motors are not
utilized; instead, motility is dependent on microtubule dynamics [58,60,61]. Though, one
study shows that treatment of fission yeast with thiabendazole, a microtubule inhibitor,
does not appear to affect mitochondrial motility [62]. Budding yeast, on the other hand,
do not use microtubules for mitochondrial motility, indicating that they have a different
mechanism for mitochondrial motility than fission yeast [63]. Interestingly, though it is
thought that they do not use microtubules for movement, budding yeast do contain a ho-
molog for the microtubule-based motor adaptor protein, Miro, called Gem1 [64]. Knocking
out this protein results in an increase in globular mitochondria which subsequently have
inheritance defects [64]. This suggests that Gem1 has a role in mitochondrial distribution,
though its molecular mechanism, which is currently poorly understood, is different from
that of Miro [64,65].

In fission yeast, microtubules have a clear role in mitochondrial fission. When micro-
tubules are associated with mitochondria, the yeast fission regulatory protein, dynamin-
related protein (Dnm1), is prohibited from interacting with the mitochondria; thus, interac-
tions between mitochondria and microtubules effectively block fission [66]. Knocking out
the microtubule-mitochondria binding protein, Mmb1, prohibits the microtubules from
physically associating with the mitochondria and results in uncontrolled fission [66]. Desta-
bilization of microtubules with thiabendazole induces Dnm1-dependent mitochondrial
fragmentation [62]. Therefore, microtubules in fission yeast appear to downregulate fission,
ensuring that a reticular mitochondrial structure is maintained. A role for microtubules
for fusion in fission yeast, nor in mitochondrial fission or fusion in budding yeast, has not
been established. In summary, microtubules are involved in mitochondrial motility and
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fission in both mammals and fission yeast. A role for microtubules in fusion, though, has
only been established in mammals (Table 2).

Table 2. Summary of what is currently known about the cytoskeleton’s involvement in mitochondrial
dynamics in mammals, fission yeast, and budding yeast.

Model Motility Fission Fusion Citations

Mammals

Microtubules used as
tracks primarily, but actin
is also sometimes used as
tracks in neurons for short
distances. Actin may also
anchor mitochondria in

place. Unclear if
actin-based motility is

based on motors or
actin dynamics.

Microtubules also affect
rate of fission,

mechanism unclear.
Actin directly involved in
fission initiation at sites of
ER-mitochondria contact.
Actin polymerization via

INF2 but not ring
formation drives

mitochondrial constriction
and then recruits Drp1 to

complete scission of
the organelle.

Microtubules affect rate of
fusion, mechanism unclear;

Actin attachment to
mitochondria prohibits fusion.

[44–46,50,54–56,61,67–73]

Fission yeast

Microtubules used as
tracks, Microtubule

dynamics move
mitochondria.

No actin-based motility.

Microtubules block
Dnm1-mediated fission;

unclear if actin
is involved.

Currently unknown [58–62,66]

Budding yeast

No microtubule-
based motility.

Actin used as tracks,
dynamics are the

predominant motility
mechanism.

Actin likely plays a role as
evidenced by pro-fission

actin regulatory
protein-Srv2.

Currently unknown [65,74–78]

5. Actin and Mitochondrial Dynamics in Mammals

In mammals, along with microtubules, actin also has an important role in mitochon-
drial motility. In neurons, when microtubules are scarce, mitochondria will use bundles
of F-actin, known as actin cables, to travel short distances [44]. The mitochondria mov-
ing along actin cables travel at a slower velocity than those on microtubules [44]. It is
unclear if these mitochondria travel using actin-based motors such as myosin [79]. Though
these studies suggest that actin may assist microtubules in motility, other recent studies
in neurons show that actin attachment to the mitochondria is necessary for mitochondrial
anchoring [67,68]. Destabilization of actin results in a small increase in the number of
moving mitochondria, suggesting that actin attachment might actually play a role in in-
hibiting mitochondrial motility [67]. Outside of neurons, in mice embryonic fibroblasts,
Miro functions to recruit myosin motors (Myo19) to the mitochondria, allowing for actin
motor-based mitochondria transport [69].

In mammals, an extensive amount of research has provided evidence for actin’s
vital role in mammalian fission. Most mammalian fission is initiated at endoplasmic
reticulum (ER) contact sites on the mitochondria [70]. Fission that is initiated at these
sites is dependent on actin polymerization by the actin nucleator, inverted formin 2 (INF2),
localized on the ER [71,72]. Activation of INF2 is in response to increased calcium levels [80],
which simultaneously stops mitochondrial motility [81,82]. Following actin polymerization,
actin will recruit myosin, to begin mitochondrial constriction [83]. Recent work by Yang
and Svitkina show that neither myosin nor actin are forming a constriction ring, but
instead myosin likely induces tension on the actin network at sites of future fission events,
squeezing the mitochondria and promoting constriction [84]. After the actin-myosin
complex begins the constriction, actin also has a role in recruiting dynamin-related protein-
1 (Drp1) to the mitochondria to initiate fission [73]. Disruptions in the levels of F-actin
result in a decrease in the amount of Drp1 that is recruited to the mitochondria, and thus
decreases fission [73]. Live-cell imaging has shown that F-actin will cyclically bind to



Int. J. Mol. Sci. 2022, 23, 9402 7 of 14

different subpopulations of mitochondria in the cell to regulate fission [72]. While actin
is associated with the mitochondria, fusion is prohibited [72]. Once actin disassociates,
fusion is then allowed to balance fission and recover the morphology of the mitochondrial
network [72]. This indicates that actin has a role in regulating mammalian fusion in addition
to fission. Additionally, other actin regulatory proteins, apart from IFN2, such as Arp2/3,
cortactin, and cofilin also affect mitochondrial fission [61]. Knocking out these proteins
results in decreased fission and an abundance of elongated mitochondria [61,81]. The
mechanism behind how Arp2/3 and cortactin affect fission is currently poorly understood,
though it is clear that branched actin regulators are involved, and they interact with
Drp1 [61]. A bit more is known about cofilin, an actin destabilizer. It is involved in some
forms of mitochondrial-dependent apoptosis, which requires mitochondrial fission to
take place [85] and deletion of cofilin increases recruitment of Drp1 and fragmentation of
mitochondria [86]. In conclusion, while it is clear in mammalian cells that actin plays a
role in mitochondrial motility and is essential for many fission events, there is little known
about the relationship between actin and mitochondrial fusion (Table 2).

6. Actin and Mitochondrial Dynamics in Yeast

In budding yeast, studies demonstrate that actin is essential for mitochondrial motility.
Live-cell imaging shows mitochondria using actin cables as tracks during movement [74,75],
similar to microtubules in mammalian cells or fission yeast. The mitochondria will bind
to actin cables for anterograde movement, or movement from the mother cell to daugh-
ter bud tips, as well as for retrograde movement, or movement from the daughter bud
towards the mother cell (Figure 3) [63,74,75]. Destabilizing these actin cables results in
loss of mitochondrial motility [75]. It is unclear if actin-based motors are used to move
mitochondria along actin tracks in budding yeast, some studies clearly suggest they are
not used [76], but others suggest they are [65]. It is clear that the majority of movement
is generated from actin nucleation by Arp 2/3 complexes localized on the mitochondria
(Figure 3) [76,77]. Following nucleation, Arp 2/3 will bind to existing actin filaments and
create a branched network that is used for movement [76]. Mutations in Arp 2/3 subunits
results in decreased mitochondrial movement [75]. Therefore, motility in budding yeast is
dependent on actin dynamics [77]. In fact, retrograde transport of the mitochondria appears
to be dependent on actin dynamics only, as retrograde mitochondrial velocity is equivalent
to the retrograde disassembly of actin filaments [52]. Anterograde mitochondrial motility
is dependent upon interactions with the mitochore, a protein complex made up of Mmm1,
Mdm10, and Mdm12 which mediates interactions with actin filaments (Figure 3) [52].

Little is known about actin’s role in fission and fusion in yeast, whether this is because
it has no role or because it has not been studied is unclear. Recently, a protein, Srv2
(suppressor of ras val-2), was identified as an inducer of fission. In budding yeast, this
regulator of actin assembly interacts with Dnm1 at the mitochondria [78]. Deletion of this
protein results in loss of fission due to the loss of the actin network [78]. In summary, actin
regulates mitochondrial motility in both mammals and budding yeast, and it has a vital
role in mammalian and most likely budding yeast fission. The role of actin in mitochondrial
fusion is not known. Table 2 provides a summary of the cytoskeleton’s involvement in
mitochondrial dynamics in these model systems.
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Figure 3. Model of two potential mechanisms of motility in budding yeast. It is thought that antero-
grade moving mitochondria travel along actin by attaching via the mitochore (top). It is also thought
that motor proteins may be the point of attachment for mitochondria to actin filaments (bottom).

7. Dictyostelium discoideum as a Model

A role for the cytoskeleton in the mitochondrial dynamics of yeast and mammals
has been established, but our lab studies dynamics in the lower eukaryote, D. discoideum.
D. discoideum is a eukaryotic soil-dwelling amoeba that has a unique lifestyle consisting
of both unicellular and multicellular stages, making it an ideal model to study numerous
diseases and signaling pathways, including mitochondrial diseases [87]. The haploid
genome of D. discoideum was the first amoebozoan genome that was fully sequenced and is
readily available on a public domain [88–90]. Most D. discoideum cells have oval-shaped
mitochondria, contrary to the tubular branched mitochondria seen in other models [9,10].
Previous work in our lab has shown that D. discoideum carry out balanced fission and fusion
to maintain mitochondrial morphology, similar to the previously studied models [10], but
this process does not use the dynamin related proteins (Drp1 or dnm1) as used by yeast
and mammalian cells [10,91,92].

D. discoideum is thought to be the link between single-cell organisms and multicel-
lular organisms [93]. In support of this, these organisms express the prokaryotic cell
division machinery, FtsZ proteins, which have been lost in many other higher eukaryotes
(Figure 4) [9,94]. Work by Gilson et al. demonstrates that the FtsZs encoded by D. discoideum
may be the master regulators of fission and fusion, suggesting that D. discoideum mitochon-
dria may be more evolutionarily related to prokaryotes than to other eukaryotes like yeast
(Figure 4) [9]. Mitochondria evolved from an internalized ancestor prokaryote [95], thus is
it logical that as mitochondria evolved their dynamics would have as well. It is possible
that D. discoideum mitochondrial fission is more similar to prokaryotic cell division and
that as organisms evolved their mitochondria evolved different mechanisms to mediate
mitochondrial dynamics. Therefore, understanding how dynamics works in D. discoideum
will allow us to learn how mitochondrial dynamics evolved from prokaryotes to eukaryotes
and provide insight into an alternative mechanism of mitochondrial dynamics.
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8. The Cytoskeleton and Mitochondrial Dynamics in Dictyostelium discoideum

While we do not know as much about the cytoskeleton’s involvement in D. discoideum
as we do in other models like mammals and yeast, a functional role in dynamics has
been established. Microtubules do regulate mitochondrial motility. Rapid movement both
toward and away from the microtubule organizing center (MTOC), near the nucleus, has
been seen, suggesting that the mitochondria might track along microtubules [96]. Velocity of
the mitochondria is significantly decreased in strains with altered microtubules, implying
that microtubules are necessary for quick travel in D. discoideum [97,98]. Interestingly,
Vlahou et al. suggest that D. discoideum do not use their ortholog to Miro, GemA, for
mitochondrial attachment to motor proteins [99]. Kinesin-3 has been identified as the
predominant plus-end orientated motor in D. discoideum [97], while dynein has been shown
to move cargo towards either the plus or minus ends of microtubules [100], thus it is logical
that these motors will prove to be required for mitochondrial motility in D. discoideum.

Few have studied actin’s role in motility in D. discoideum. Our previous work found
that inhibiting actin results in fewer motile mitochondria, suggesting that they may play a
role in mitochondrial motility [98]. In addition D. discoideum contain 13 different myosins,
and a few of these have been implicated in organelle motility [101,102].

Currently, the role the cytoskeleton plays in D. discoideum fission and fusion is un-
known. Previous work in our lab has shown that microtubules are required for fission
and fusion and inhibiting them significantly reduces their rates [98]. We also deduced
that actin has a smaller role in fission and fusion compared to microtubules, as disruption
of actin only slows fission and fusion [98]. Microtubules having a significant role in D.
discoideum fission is contrary to the mechanism established in mammals, which is reliant on
actin [72,73]. This again supports the fact that D. discoideum uses an alternative mechanism
for mitochondrial dynamics than budding yeast or mammalian cells.

9. The Cytoskeleton and Mitochondrial Dynamics in Neurodegenerative Diseases

The proper maintenance of mitochondrial dynamics is crucial to the proper function
of the cell and the health of the organism. For example, as reviewed by Madan et al., loss of
fission is thought to maintain the undifferentiated state of a cell, while an increase in fusion
increases ATP potential and the polarization of hepatocytes [25]. Cells under starvation
conditions will increase fusion and decrease fission to increase their ATP potential [24]. This
is supported by the fact that diabetic and obese patient pancreatic cells have fragmented
mitochondria [24]. Additionally, there is extensive remodeling of mitochondria during
embryogenesis and mutations within fission and fusion proteins result in developmental
defects, some of which are lethal [25]. Finally, it is clear that dynamics are altered to
ensure that ROS levels are regulated. Excessive ROS induces recruitment of Drp1 to
the mitochondria driving fission events. This decreases membrane potential and ATP
production [24].

In terms of neurodegeneration, fission is required for autophagy (removal of damaged
organelles) [37,38]. If mitochondrial dynamics are disrupted in such a way that autophagy
cannot be carried out, then these cells not only have nonfunctional mitochondria, but they
will also have an increase in ROS, a hallmark of neurodegenerative diseases [24].
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On the other hand, mitochondrial fusion is used to repair mitochondria [37,38], thus
loss of fusion has also been shown to cause neurodegeneration [103]. This alteration of
fission and fusion has been noted in Alzheimer’s disease with an increase in fission and
decrease in fusion [24,29,103]. An increase in fission events has also been noted in Parkin-
son’s disease [24,29,103] and Huntington’s disease [31], while a decrease in fusion has been
noted in both Charcot Marie Tooth and Dominant Optic Atrophy [24]. The connection with
motility is not as clear. Some Alzheimer’s disease patients show a hyperphosphorylation
of the tau protein. This decreases the stability of the microtubules and thus decreases
mitochondrial motility, and subsequently alters the balance of fission and fusion [103].

10. Conclusions

Currently, the role microtubules and actin play in mitochondrial dynamics is not fully
understood in any model organism, and next to nothing is known about the function of
these filaments in the alternative mitochondrial dynamics found in D. discoideum. Numer-
ous questions remain, such as how do mitochondria move on their respective cytoskeletal
tracks outside of mammalian models? Are motor proteins involved in all systems? In
systems that clearly use motors and cytoskeletal dynamics, how does the cell decide which
method is used? In mammals, how do microtubules regulate fission and fusion? In bud-
ding yeast, is actin used to regulate fusion? In fission yeast, do microtubules help regulate
fusion? What about simple model systems like D. discoideum? In D. discoideum, we know
that microtubules are more involved than actin but how do they regulate fission and fusion,
what is the molecular mechanism? Finally, the big picture: How are motility, fission, and
fusion interconnected? Does one process drive the other? What proteins mediate the
communication between these processes?

The answers to these questions will not only provide us with a better understanding
of the evolution of mitochondrial dynamics, but more importantly, they will help us to
understand how the cytoskeleton regulates mitochondrial dynamics. This will provide
valuable insight into mitochondrial disease and neurodegeneration [87,104]. In the brain,
neuron function is dependent on the dynamics of the mitochondria [105]. Disruptions in
dynamics lead to fragmented mitochondria that have transport defects [30]. This leads to
poor distribution of mitochondria in neurons, and therefore, less energy production in some
areas [30]. Increases in fission, loss of fusion, and fragmented mitochondria are side effects
in several neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s
disease [29–31]. There is no known cure for these diseases, but new therapeutic strategies
using drugs to alter mitochondrial fusion and fission activity are being considered [31,106].
Tactics for recovering microtubule-dependent motility and axonal transport have also
been considered [107]. The future of these therapeutic studies is dependent on an in-
depth understanding of the mechanisms of mitochondrial dynamics. Understanding the
cytoskeleton’s role in dynamics in the model organism D. discoideum and additional insight
into yeast and mammals will further our understanding of these mechanisms and could
potentially uncover new therapeutic targets for these neurodegenerative diseases.
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