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Abstract. Long non‑coding RNAs (lncRNAs) are functional 
components of the human genome. Recent studies have demon-
strated that lncRNAs play essential roles in tumorigenesis, 
and are involved in cell proliferation, apoptosis, migration 
and invasion in several types of tumor, including lung cancer. 
However, the clinical relevance of lncRNA expression in 
lung cancer remains unknown. The aim of the present study 
was to investigate the expression pattern of RFPL3 antisense 
(RFPL3S) and its associations with clinicopathological char-
acteristics in patients with lung cancer. Whether RFPL3S can 
act as a potential prognostic biomarker for lung cancer was also 
investigated. RFPL3S expression in tumor samples and cells 
was assessed using the Oncomine database and the Cancer 
Cell Line Encyclopedia, respectively. Based on Kaplan‑Meier 
Plotter analyses, the prognostic values of RFPL3S were further 
evaluated. It was revealed that RFPL3S was highly expressed in 
lung cancer tissues when compared with normal tissues and was 
significantly associated with pN factor, pTNM stage and Ki‑67 
labeling index. In the survival analyses, increased RFPL3S 
expression was associated with poor survival and was inversely 
associated with first progression in all patients. These results 

indicate that RFPL3S may be of clinical significance and may 
act as a prognostic biomarker in lung cancer.

Introduction

Lung cancer is the most common cause of cancer‑associated 
mortalities worldwide, accounting for one in four mortalities 
and the incidence rate was 96.8 per 100,000 in 2008 in the 
United States (1). It is estimated that ~2,093,876 new cases are 
diagnosed annually around the world and the 5‑year survival 
rate for patients with lung cancer is 18%, which is the lowest 
among the major types of cancer, including breast, colon and 
liver cancer (1). Non‑small cell lung cancer (NSCLC) and small 
cell lung cancer (SCLC) account for 85 and 15% of all lung 
cancer cases (2), respectively. The former subgroup is typically 
comprised of two common subtypes, adenocarcinoma (~70%) 
and squamous cell lung cancer (~30%) (2). The mechanisms 
underlying lung carcinogenesis are complex and poorly under-
stood. Numerous cellular phenomena, including hypoxia, 
inflammation, the tumor microenvironment and oxidative 
stress, coupled with various molecular events, promote lung 
cancer initiation and progression  (3‑6). The majority of 
patients with lung cancer have a poor prognosis due to recur-
rence and distant metastasis (7,8). Despite the advancements in 
chemotherapy, radiotherapy and surgical techniques for lung 
cancer in recent years, the long‑time survival rate has failed to 
improve (9). The lack of appropriate molecular biomarkers is 
one of the main reasons for this failure as it results in patients 
being diagnosed at an advanced or distant metastatic stage, at 
which point curative treatments are no longer available (10,11). 
For patients with lung cancer, diagnosis and treatment at an 
early stage of disease can prolong survival (12). At present, 
the clinical diagnosis of lung cancer depends on chest X‑ray 
and low dose computed tomography scans (13); however, the 
high false positive rates (14), side‑effects of radiation and the 
high costs may influence diagnostic accuracy and limit utility 
in lung cancer screening. In addition, approaches such as 
bronchoscopy and biopsy can be used, but they are painful, 
invasive and laborious (15). As a result, it is imperative to 
identify novel, sensitive and reliable biomarkers, as well as 
more efficient therapeutic targets to improve the diagnosis and 
treatment of patients with lung cancer.
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The whole human genome consists of 20,000‑25,000 genes; 
however, only 2% of genome sequences encode proteins (16) and 
at least 90% of human genes are transcribed into non‑coding 
RNAs (ncRNAs) (17). Currently, several ncRNAs have been 
discovered, including ribosomal RNAs, transfer RNAs, 
piwi‑interacting RNAs, microRNAs and long non‑coding 
RNAs (lncRNAs), which were previously regarded as useless, 
but they are now known to have crucial biological func-
tions (18). According to transcript size, the remaining ncRNAs 
are classified into small ncRNAs (<200  nt) and lncRNAs 
(>200 nt) (13). lncRNAs can be classified into the following 6 
categories: Sense, antisense, divergent, bidirectional, intronic 
and intergenic (19). lncRNAs have attracted the most attention 
and an increasing number of studies have demonstrated that 
many lncRNAs play crucial regulatory roles in a wide variety of 
physiological processes, including development, differentiation 
and metabolism at the transcriptional, post‑transcriptional and 
epigenetic levels (20,21). At the transcriptional level, lncRNAs 
regulate gene expression depending upon the sequence and rela-
tive position; for example, by combining with the promoters of 
target genes and forming stable DNA‑RNA triplex complexes 
to inhibit transcription initiation (22). At the post‑transcriptional 
level, a number of lncRNAs may competitively bind to the target 
mRNA and prevent the binding of transcription factors, resulting 
in aberrant mRNA translation, splicing and degradation (23). 
At the epigenetic level, lncRNAs promote chromatin repro-
gramming genome‑wide and regulate DNA methylation (24) 
and histone modification (25,26). Genome‑scale approaches 
revealed that several lncRNAs have a significant secondary 
structure (24), which is critical to specific binding and func-
tion  (27), and shares certain common sequence features, 
including paucity of introns, low GC content, weak start codon 
and open reading frame contexts (28). Aberrantly expressed 
lncRNAs in various types of cancer are thought to contribute to 
tumorigenesis by influencing tumor cell proliferation, resisting 
cell death, enabling distant metastasis and replicative immor-
tality, and inducing angiogenesis (20,29‑32). However, the roles 
of lncRNAs in lung cancer and their association with clinico-
pathological parameters remain largely unknown and therefore 
require further study.

The RFPL3 antisense (RFPL3S) gene is located on 
chr22:32,359,906‑32,382,052 (GRCh38/hg38) and has been 
suggested to regulate the sense RFPL genes at the post‑tran-
scriptional level (33). RFPL3S consists of eight transcripts 
with a length range between 334 and 1,295  bp  (33). The 
present study further investigated the expression of RFPL3S 
in lung cancer based on tissue samples and databases, with 
the purpose of investigating the prognostic implications and 
expression pattern of RFPL3S, as well as the associations with 
clinicopathological characteristics in patients with lung cancer.

Materials and methods

Tissue specimens. Human lung cancer tissue samples and 
adjacent non‑cancerous tissues (within 3 cm of cancer tissue) 
were obtained from 205 patients who underwent surgical 
resection of lung cancer between January 2009 and October 
2011 at The First People's Hospital of Wujiang District 
(Suzhou, China). Written informed consent was obtained from 
all patients and the present study was approved by the Ethics 

Committee of the First People's Hospital of Wujiang District. 
The collected tissue samples were frozen in liquid nitrogen 
until subsequent analysis. None of the patients had received 
any therapy, including chemotherapy and radiotherapy, prior 
to surgery. The histological grades were classified according to 
the World Health Organization guidelines (34) and the tumors 
were staged using the 7th edition of the tumor‑node‑metastasis 
(TNM) staging system (35).

Reverse transcription‑quantitative (RT‑q) PCR analysis. 
Total RNA was extracted from tissues using TRIzol® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.), according to the 
manufacturer's protocol. cDNA was synthesized with 1 µg total 
RNA using the Primer Script RT mix (Takara Biotechnology 
Co., Ltd.). qPCR analysis was subsequently performed with the 
SYBR Green Real‑time PCR Master Mix (Takara Biotechnology 
Co., Ltd.) in a 20  µl reaction volume. The thermocycling 
conditions were as follows: 95˚C for 20 sec (pre‑denaturation), 
followed by 40 cycles of 95˚C for 10 sec (denaturation) and 60˚C 
for 45 sec (extension). The primers were designed using Primer 
Premier software (version 5.0; Premier Biosoft International) 
and the sequences were as follows: RFPL3S forward 5'‑GTC​
GTC​AGA​AAT​GAG​GAG​GAA​GT‑3' and reverse, 5'‑TTG​AAG​
TAG​AAG​AGA​GGC​ATG​GG‑3' and GAPDH forward, 5'‑CAA​
GGT​CAT​CCA​TGA​CAA​CTT​TG‑3' and reverse, 5'‑GTC​CAC​
CAC​CCT​GTT​GCT​GTA​G‑3'. The relative gene expression 
levels were calculated using the 2‑ΔΔCq method (36) and normal-
ized to the internal reference gene GAPDH. Each sample was 
run in triplicate and independently repeated three times.

Immunohistochemistry. Tissue blocks were cut into 5‑µm thick 
sections and prepared for immunohistochemical staining. The 
sections were deparaffinized and rehydrated using a graded 
series of alcohol solutions, according to standard protocols. 
Endogenous peroxidase activity was blocked by incubating the 
sections with 3% hydrogen peroxide in methanol for 30 min at 
room temperature. For antigen retrieval, the sections were placed 
in 10 mM citrate buffer (pH 6.0) for 20 min at 95˚C. Sections 
were blocked with 5% BSA (Dako; Agilent Technologies, Inc.) 
for 30 min at room temperature, in order to inhibit non‑specific 
binding. Subsequently, the sections were incubated in a humidi-
fied chamber for 1 h at room temperature with primary antibody 
directed against Ki‑67 (1:50; cat. no. MA5‑14520; Thermo Fisher 
Scientific, Inc.). After washing three times with ice‑cold PBS, 
the sections were incubated with a biotinylated goat anti‑rabbit 
antibody secondary antibody (1:1,000; cat. no. RS0002; Dako; 
Agilent Technologies, Inc.) for 30 min at room temperature. The 
DAB Elite kit (Dako; Agilent Technologies, Inc.) was employed 
to visualize peroxidase activity and the sections were counter-
stained with Mayer hematoxylin for 1 min at room temperature, 
followed by dehydration and mounting. The expression of Ki‑67 
was evaluated using the labeling index, which was determined 
by counting 500‑1,000 tumor cells under a light microscope 
(magnification, x400). Tumor cells with ≥31% Ki‑67 staining 
were defined as high Ki‑67, based on the median value of 
positive staining. All sections were independently and blindly 
evaluated by three pathologists, one from the Department 
of Oncology, Suzhou Ninth People's Hospital and two from 
the Department of Oncology, The First Affiliated Hospital of 
Soochow University (both Suzhou, China). The average of the 
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scores from the three independent pathologists was the final 
immunohistochemical score.

Oncomine analysis. RFPL3S mRNA levels in different types 
of cancer were determined using the Oncomine database 
(www.oncomine.org), which is a publicly accessible online 
cancer microarray database that facilitates genome‑wide 
expression analyses (37). In the present study, the unpaired 
student's t‑test was used to generate a P‑value for comparison 
between the tumor and adjacent non‑cancerous tissues. The 
fold change was defined as 2 and the P‑value was set at 0.01.

Cancer Cell Line Encyclopedia (CCLE) analysis. RFPL3S 
mRNA levels in lung cancer were analyzed using the CCLE 
database (portals.broadinstitute.org/ccle/home), which is 
an online encyclopedia that facilitates the identification of 
genetic, lineage and predictors of drug sensitivity (37).

Kaplan‑Meier plotter survival analysis. The prognostic 
values of lung cancer samples with high RFPL3S expression 
were further assessed using the Kaplan‑Meier plotter (kmplot.
com/analysis).

Statistical analysis. Statistical analyses were performed using 
SPSS software (version 18.0; IBM Corp.) and GraphPad Prism 
(version 6; GraphPad Software, Inc.). The prognostic impacts 
of RFPL3S were estimated using the Kaplan‑Meier method 
and survival curves were compared using the log‑rank test. 
The associations between clinicopathological characteristics 
and RFPL3S expression were analyzed by the χ2 test. The data 
on RFPL3S expression in paired tumor tissue samples and 
adjacent non‑cancerous tissues were analyzed via the paired 
Student's t‑test. P<0.05 was considered to indicate a statisti-
cally significant difference and the data are presented as the 
mean ± standard deviation.

Results

Association between RFPL3S expression levels and 
clinicopathological characteristics. The present study 
investigated the association between RFPL3S expression 
levels and clinicopathological characteristics, including 
sex, age, smoking history, differentiation, histological type, 
pT factor, pN factor, pTNM stage and Ki‑67 labeling index 
in patients with lung cancer (Table I). A total of 42 female 
and 163 male patients with a median age of 64 years (range, 
30‑86 years) were subdivided into the following two groups 
based on their RFPL3S expression levels, high expression 
(n=149 patients) and low expression (n=56 patients). For the 
lung cancer samples, increased RFPL3S expression was more 
frequently observed in well‑ and moderately‑differentiated 
tumors than in poorly‑differentiated tumors (P=0.0229). In 
addition, it was noted that RFPL3S expression was signifi-
cantly associated with pN factor (P=0.0267), pTNM stage 
(P=0.0117) and Ki‑67 labeling index (P<0.0001); however, no 
significant associations were demonstrated between RFPL3S 
expression and sex (P=0.5672), age (P=0.2603), smoking 
history (P=0.3432), histological type (P=0.3995) or pT factor 
(P=0.0513) (Table I). These results demonstrate that increased 
RFPL3S expression levels tend to be associated with poorer 

differentiation, lymph node metastasis, TNM stage and Ki‑67 
labeling index.

RFPL3S is upregulated in lung cancer. Based on the 
Oncomine analysis, no significant differences were demon-
strated in the 56 total unique analysis when cancer tissues 
were compared with normal tissues (Fig. 1A). The outlier 
analysis, used to determine significant RFPL3S expression 
in a subset of the patient samples, suggested that there were 
eight cases with a significant increase and three with a 
significant decrease in RFPL3S expression. Patients with a 
significant increase included two patients with breast cancer 
and one patient with brain and CNS cancer (Fig. 1A). In the 
present study, RFPL3S was found in several types of human 
cancers including sarcoma, leukemia, breast, head and neck, 
lung and prostate cancer based on the Oncomine analysis, 
and significantly increased RFPL3S levels were detected 

Table I. Associations between RFPL3S expression levels and 
clinicopathological characteristics in patients with lung cancer.

	 RFPL3S
	 expression
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristics	 Patient, n	 High	 Low	 P‑value

Sex				    0.5672
  Male	 163	 117	 46	
  Female	 42	 32	 10	
Age, years				    0.2603
  <60	 101	 77	 24	
  ≥60	 104	 72	 32	
Smoking history				    0.3432
  Smoker	 142	 106	 36	
  Non‑smoker	 63	 43	 20	
Differentiation				    0.0229
  Well + Moderate	 140	 95	 45	
  Poor	 65	 54	 11	
Histological type				    0.3995
  Squamous	 111	 78	 33	
  Adenocarcinoma	 94	 71	 23	
pT factor				    0.0513
  T1‑2	 148	 102	 46	
  T3‑4	 57	 47	 10	
pN factor				    0.0267
  N0	 95	 62	 33	
  N1‑2	 110	 87	 23	
pTNM stage				    0.0117
  I‑II	 137	 92	 45	
  III‑IV	 68	 57	 11	
Ki‑67 labeling index				    <0.0001
  <31	 98	 54	 44	
  ≥31	 107	 95	 12	

RFPL3S, RFPL3 antisense; TNM, tumor‑node‑metastasis.
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in leukemia and head and neck cancer. Furthermore, the 
present study determined the levels of RFPL3S expression 
in 20 pairs of lung cancer tissues and adjacent non‑cancerous 
tissues and revealed that RFPL3S transcripts were 2.683‑fold 
higher in lung cancer samples compared with normal tissues 
(P=0.0013; Fig. 1B).

In addition, the mRNA expression of RFPL3S in 
different cancer cell lines was obtained via CCLE analysis 

(Fig. 2). In line with the results of the Oncomine analysis, 
the expression levels of RFPL3S were demonstrated to be 
upregulated in lung cancer cell lines compared with normal 
cell lines, including SCLC and NSCLC cell lines, and ranked 
the fourth highest in SCLC cell lines among the different 
types of cancer. Notably, RFPL3S mRNA expression levels 
ranked the third highest in leukemia cell lines, behind that 
of lymphoma and multiple myeloma, and are also observed 

Figure 1. Expression of RFPL3S both in Oncomine and lung cancer tissues. (A) The Oncomine database revealed statistically significant RFPL3S expression 
levels. Red and blue represent RFPL3S upregulation and downregulation, respectively. The threshold was P=0.01 and the fold‑change was 2. The gene rank was 
analyzed based on the percentile of target lncRNAs. The outlier analysis, which was used to determine significant RFPL3S expression, represents a small subset 
of samples within the datasets. (B) Expression levels of RFPL3S in lung cancer tissues and their adjacent non‑cancerous tissues. RFPL3S, RFPL3 antisense.

Figure 2. Level of RFPL3S mRNA expression on a logarithmic scale in various cancer types as determined by Cancer Cell Line Encyclopedia analysis. 
RFPL3S in lung cancer ranked the fourth highest in a variety of different cancer cell lines RFPL3S, RFPL3 antisense.
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Figure 3. Kaplan‑Meier survival curves of patients with lung cancer stratified by expression levels of RPFL3S. Black and red lines indicate patients with low or 
high RFPL3S expression, respectively. Overall survival analysis of RFPL3S expression in lung cancer in (A) all patients, (B) adenocarcinoma, (C) squamous 
cell carcinoma, (D) smokers, (E) non‑smokers, (F) tumor‑negative surgical margins, (G) females, (H) males, (I) stage I and (J) stage II. Statistical significance 
was calculated using the log‑rank test. RFPL3S, RFPL3 antisense.
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in breast and prostate cancer, which was consistent with the 
results of the Oncomine analysis. These results indicate that 
RFPL3S may play unique roles in the development of several 
types of cancer.

Association between RFPL3S expression and survival in 
patients with lung cancer. Since RFPL3S was revealed to 
be highly expressed in lung cancer, the present study further 
investigated the potential prognostic roles of RFPL3S in lung 

Figure 4. Kaplan‑Meier survival curves of patients with lung cancer stratified by expression levels of RPFL3S. Black and red lines indicate patients with low or 
high RFPL3S expression, respectively. Post‑progression survival analysis of RFPL3S in lung cancer in (A) all patients, (B) adenocarcinoma, (C) tumor‑negative 
surgical margins, (D) females, (E) males, (F) patients who received radiotherapy and (G) patients who did not receive radiotherapy. Statistical significance was 
calculated using the log‑rank test. RFPL3S, RFPL3 antisense.
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Figure 5. Kaplan‑Meier survival curves of patients with lung cancer stratified by expression levels of RPFL3S. Black and red lines indicate patients with low 
or high RFPL3S expression, respectively. First‑progression survival analysis of RFPL3S in lung cancer in (A) all patients, (B) adenocarcinoma, (C) squamous 
cell carcinoma, (D) smokers, (E) non‑smokers, (F) tumor‑negative surgical margins, (G) females, (H) males, (I) N0 and (J) N1.
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cancer. The association between patient survival and RFPL3S 
expression status was analyzed using KM‑plotter, according 
to the expression of RFPL3S. A total of 1,926 patients with 
lung cancer were used for survival analysis. According to the 
expression of RFPL3S, the samples were divided into two 
groups (the low and high expression groups). Kaplan‑Meier 
analysis demonstrated that high RFPL3S expression was asso-
ciated with poorer overall survival (OS) compared with low 
RFPL3S expression in all patients with lung cancer [hazard 
ratio (HR)=1.38; P=5.1x10‑7; Fig. 3A]. In particular, sub‑anal-
ysis revealed that higher RFPL3S expression was significantly 
associated with survival in adenocarcinoma (HR=1.37; P=7.9 
x10‑3 Fig. 3B), but not in squamous cell carcinoma (HR=1.14; 
P=0.28; Fig.  3C), and associated with stage 1 (HR=1.77; 
P=3.1x10‑5 Fig.  3I), but not in stage 2 (HR=1.12; P=0.54; 
Fig. 3J). High RFPL3S mRNA expression was associated with 
poorer OS in patients with lung cancer who smoked (HR=1.6; 
P=9.1x10‑6; Fig.  3D), non‑smokers (HR=2.32; P=0.0052; 
Fig. 3E), male patients (HR=1.22; P=0.013; Fig. 3H), female 
patients (HR=1.71; P=6.7x10‑6; Fig. 3G) and patients with 
tumor‑negative surgical margins (HR=2.04; P=2.1x10‑9; 
Fig. 3F). Subsequently, post‑progression survival (PPS) in 
patients with lung cancer was analyzed (Fig.  4). Notably, 
patients with increased RFPL3S expression exhibited a shorter 
PPS than patients with lower RFPL3S expression (HR=1.36; 
P=0.016; Fig. 4A), which was consistent with OS. Furthermore, 
increased RFPL3S levels were significantly associated with 
PPS in patients with tumor‑negative surgical margins (HR=1.61; 
P=0.0015; Fig.  4C), female patients (HR=1.76; P=0.0034; 
Fig. 4D) and patients not receiving radiotherapy (HR=1.72; 
P=0.018; Fig. 4F). However, no significant differences were 
demonstrated among patients with adenocarcinoma (HR=1.42; 
P=0.14; Fig. 4B), male patients (HR=1.2; P=0.3; Fig. 4E) and 
patients receiving radiotherapy (HR=0.71; P=0.25; Fig. 4G). 
The association between RFPL3S expression levels and first 
progression (FP) was analyzed (Fig. 5). The results revealed 
that FP of all patients with NSCLC, with increased RFPL3S 
expression was worse than patients with lower RFPL3S 
expression (HR=1.85; P=4.1x10‑10; Fig. 5A), which was in line 
with the results of OS and PPS. In addition, the Kaplan‑Meier 
analysis revealed that FP of patients with high RFPL3S expres-
sion levels was significantly associated with squamous cell 
carcinoma (HR=1.62 P=0.035; Fig. 5C), smoking (HR=2.22; 
P=1.91x10‑10; Fig.  5D), not smoking (HR=1.5; P=0.097; 
Fig. 5E), male gender (HR=1.73; P=3.3x10‑5; Fig. 5H), female 

gender (HR=1.99; P=2.9x10‑6; Fig.  5G), tumor‑negative 
surgical margins (HR=2.11; P=5.7x10‑9; Fig. 5F), N0 (HR=1.76; 
P=5.7x10‑4; Fig. 5I), N1 (HR=2.19; P=8.4x10‑4; Fig. 5J) and T2 
stage (HR=1.72; P=3.8x10‑4; Fig. 5L). However, no statistically 
significant differences were observed for adenocarcinoma 
(HR=1.23; P=0.2; Fig. 5B) or T1 stage (HR=1.46; P=0.14; 
Fig.  5K). Notably, the results demonstrated that higher 
RFPL3S mRNA expression was significantly associated with 
shorter survival, including OS, PPS and FP in patients who 
had tumor‑negative surgical margins.

Discussion

Lung cancer is a heterogeneous disease that consists of a variety 
of subtypes with distinct biological and clinical features, 
and presents the highest prevalence and mortality among all 
malignancies, primarily due to the development of resistance 
to targeted therapy and distant metastasis (38‑41). It is chal-
lenging but rewarding to illustrate the pathogenesis of lung 
cancer, as well as to develop novel biomarkers and discover 
effective therapeutic approaches for individual patients.

lncRNAs have been widely recognized as pivotal regula-
tors in a several types of human cancer, and their aberrant 
expression has also been observed in different tumor 
tissues (42‑44). Furthermore, lncRNAs have been demon-
strated to serve as a novel class of diagnostic biomarkers 
and therapeutic targets in cancer (45‑47). Several lncRNAs 
have been reported to play a critical role in the development 
of  different human tumors  (18,48‑52), thereby providing 
a logical framework for understanding the complexities of 
neoplastic disease  (53) and regulated gene expression at 
different levels. However, the role of lncRNA expression in 
lung cancer remains unclear. To the best of our knowledge, 
the present study was the first to investigate the association 
between RFPL3S expression and the clinicopathological 
characteristics and prognosis of patients with lung cancer. In 
the present study, according to the results of the associations 
between RFPL3S expression levels and clinicopathological 
characteristics, RFPL3S expression levels may be associated 
with poorer differentiation, lymph node metastasis, TNM 
stage and Ki‑67 labeling index. A number of previous studies 
have indicated that all of the above were associated with a 
worse prognosis when compared with other features (54‑56), 
such as the patients with well differentiation and absence 
of lymph node metastasis. Although statistically significant 

Figure 5. Continued. First‑progression survival analysis of RFPL3S in lung cancer in (K) T1 and (L) T2. Statistical significance was calculated using the 
log‑rank test. RFPL3S, RFPL3 antisense.
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differences were not observed for the factors associated with 
the size of the primary tumor, a tendency towards a poorer 
prognosis was observed in patients with increased RFPL3S 
expression levels. Oncomine analysis demonstrated increased 
RFPL3S expression levels in lung cancer compared with a 
variety of other types of cancer; the results were consistent 
with data obtained when comparing cancerous and normal 
tissues. Statistically significant differences were observed 
in the survival analyses, which demonstrated that increased 
RFPL3S expression was associated with shorter OS in all 
patients with lung cancer. Patients with increased RFPL3S 
expression levels had shorter survival times, which is in line 
with the results regarding PPS and FP. Notably, patients 
with a smoking history, which has been thought to be the 
predominant cause of multiple types of cancer and increases 
the incidence of lung cancer in the general population, 
demonstrated the potential of RFPL3S in the poor prognosis 
of lung cancer (57‑61).

RFPL3S is the antisense transcript of the gene RFPL3 
that is comprised of four exons and is formed by transcrip-
tion in the opposite direction to the sense RFPL3 transcript, 
depending on the structure and position of the splicing sites for 
RFPL3S (34). A previous study identified 1.2 kB non‑coding 
antisense mRNAs of RFPL3S genes, which cover substantial 
portions of their sense counterparts, suggesting that RFPL3S 
is involved in the post‑transcriptional regulation of the sense 
RFPL genes at different spatial and temporal windows, and no 
apparent Open Reading Frame or repetitive elements could be 
detected (33). RFPL3, belonging to the RFPL protein family 
(including RFPL1, RFPL2 and RFPL3) (33), can increase telom-
erase activity and length (62), and promote the proliferation of 
tumor cells by regulating the expression of the human telom-
erase reverse transcriptase (hTERT) gene in NSCLC cells and 
driving hTERT promoter transcription (63). Epidermal growth 
factor significantly increased the levels of RFPL3 and hTERT 
proteins in NSCLC cells via activation of the MEK signaling 
pathway, resulting in promoting proliferation (63). In addition, 
CREB binding protein has been identified to coordinate with 
RFPL3 to regulate hTERT promoter activity through acetyla-
tion to promote lung cancer cell growth (64). However, further 
research is required to identify the molecular mechanisms that 
participate in RFPL3S upregulation in lung cancer.

Overall, the present study demonstrated that RFPL3S 
expression was upregulated and significantly associated with 
poor prognosis in lung cancer. Therefore, it may act as a poten-
tial prognostic biomarker in lung cancer. However, further 
studies are required to determine the underlying molecular 
mechanisms that are associated with RFPL3S expression in 
lung cancer.
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