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Abstract: Ca2+ signaling is ubiquitous in eukaryotic cells and modulates many cellular events
including cell migration. Directional cell migration requires the polarization of both signaling
and structural elements. This polarization is reflected in various Ca2+ signaling pathways that
impinge on cell movement. In particular, store-operated Ca2+ entry (SOCE) plays important roles in
regulating cell movement at both the front and rear of migrating cells. SOCE represents a predominant
Ca2+ influx pathway in non-excitable cells, which are the primary migrating cells in multicellular
organisms. In this review, we summarize the role of Ca2+ signaling in cell migration with a focus on
SOCE and its diverse functions in migrating cells and cancer metastasis. SOCE has been implicated in
regulating focal adhesion turnover in a polarized fashion and the mechanisms involved are beginning
to be elucidated. However, SOCE is also involved is other aspects of cell migration with a less well-
defined mechanistic understanding. Therefore, much remains to be learned regarding the role and
regulation of SOCE in migrating cells.

Keywords: cell migration; STIM1; orai1; store-operated Ca2+ entry; Ca2+ signaling; focal adhesions;
polarization; cancer; metastasis

1. Introduction

Cell migration is essential for the development of multicellular organisms and is
critical for many physiological processes, including organ development, morphogenesis,
tissue repair and homeostasis, immune response and wound healing [1]. It is also essential
for tumor metastasis to colonize remote sites, which is the main cause of death from can-
cers [2]. For adherent cells to move in a directional fashion multiple coordinated processes
need to occur, including extension of lamellipodia at the front of the cell, disassembly of
focal adhesions at the rear of the migrating cell and force generation through cytoskele-
ton attachments to the extracellular matrix (ECM) to pull the cell forward. These events
require a complex coordinated machinery that involves environmental cues, signaling and
cytoskeleton components, as well as focal adhesion remodeling among other mechanisms.
Interestingly, many of these aspects are Ca2+ dependent, highlighting the critical role of
Ca2+ signaling in regulating cell movement. In this review, we briefly outline the involve-
ment of Ca2+ signaling in cell migration while focusing on the role of store-operated Ca2+

entry (SOCE).

2. Cell Migration

Cell migration is a complex coordinated process that incorporates many cellular com-
ponents and responds to a plethora of environmental cues. Typically, those environmental
signals guide the directional migration of cells [1]. For a cell to move in a directional fashion
it needs to polarize, with membrane extensions (lamellipodia) at the front end that are later
stabilized by nascent focal adhesions. Lamellipodia are driven by actin polymerization
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followed by attachment to the extracellular matrix (ECM) to allow for force generation.
Attachment is mediated by nascent adhesions, which further mature through interaction
with the actin cytoskeleton and myosin mediated force generation (Figure 1). At the rear of
the cell, mature focal adhesions disassemble to allow the cell body to be pulled forward
thus mediating directional cell movement [3]. Focal adhesions are large dynamic plasma
membrane-associated macromolecular assemblies that are rich in integrins, and connect the
actin cytoskeleton to the extracellular matrix [4]. The dynamic regulation of focal adhesions
is essential for successful cell migration and is mediated by Ca2+ dependent assembly and
disassembly cycles [5,6], as will be further discussed below.
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Figure 1. Model summarizing the polarization of various cytoskeletal and Ca2+ signaling components in a migrating cell.
Mature focal adhesions (FA), L-type voltage-gated Ca2+ channels (VGCC), ERM (Ezrin, Radixin and Moesin) proteins, as
well as cortical actin (Membrane Proximal Actin (MPA) are enriched at the rear end of the cell. TRPM7 and the plasma
membrane Ca2+-ATPase (PMCA) are enriched at the leading edge of the migrating cell. Store-operated Ca2+ entry (SOCE),
which is mediated by STIM1 and Orai1 have been functionally implicated in disassembly of FA at the rear end, as well as in
refilling Ca2+ stores at the leading edge. See text for further details. The figure was created using BioRender.com.

The actin cytoskeleton is vital in the regulation of focal adhesions as well as in generating
the forces required for cell migration. In that context, actin dynamics are regulated by small
GTPases, including Rac1, Cdc42 and RhoA [7]. Rac regulates protrusive forces in lamellipodia
through modulating actin formation via actin nucleation complexes such as SCAR/WAVE
and Arp2/3 [7,8]. Rho, Rho-kinase and Ca2+/calmodulin-activated myosin-light chain kinase
regulate actomyosin fibers contraction that cause the retraction of the trailing end of the cell
and its net forward movement [7,9]. Cdc42 regulates cell polarity in migrating cells through
interactions with the PAR complex and the actin cytoskeleton [10,11].

Therefore, the actin cytoskeleton through spatially controlled cycles of polymerization
and depolymerization supports membrane deformation and force generation that are
required for cell movement. In addition to the actin fibers that crisscross the cell, cells form
a shell of cortical actin bundles around their periphery. Cortical actin directly interacts
with the PM through the ERM proteins (ezrin, radixin and moesin), that associate with
PtdIns (4,5) P2 at the cell membrane through their FERM domain at one end and with actin
at the other end, thus linking the PM to the actin cytoskeleton [12]. In addition, cortical
actin counters the internal cellular pressure to regulate membrane tension, thus preventing
non-specific membrane deformation (blebbing), which impinges on cell migration [13].
The distribution of ERM proteins in migrating cells is polarized with enrichment in the rear
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of the cell [14] (Figure 1). In contrast, at the front of migrating cells actin is dynamically
remodeled through actin severing, nucleation and contraction [15]. Recently, Bisaria
et al. developed novel reporters to visualize cortical actin dynamics and more specifically
the outer most layer of cortical actin that links directly to the PM, to which they refer
as membrane proximal actin (MPA). They found a gradient of MPA density across the
migrating cell with high MPA at the trailing edge and membrane protrusions generated
from areas with low MPA density [16] (Figure 1). This low density of MPA is maintained
by high cofilin activity in the front of the cell, which provides free G-actin monomers to
initiate protrusions and decrease MPA density to allow for lamellipodia extension [16,17].

3. Ca2+ Signaling

Cytoplasmic Ca2+ transients that underlie cellular responses can be mediated either
by Ca2+ release from intracellular Ca2+ stores (primarily the ER), or Ca2+ entry from the
extracellular environment [18]. Physiologically Ca2+ transients are typically generated
in response to activation of cell surface receptors (G-protein or tyrosine-kinase coupled
receptors) leading to stimulation of PLCs that hydrolyze PI (4,5) P2 at the cell membrane
producing the second messengers IP3 and DAG. IP3 diffuses readily and binds IP3 receptors
(IP3R) on the ER membrane, which are ligand gated cation channels, thus releasing Ca2+

from ER stores. DAG is a lipid second messenger that diffuses within the plasma membrane
(PM) and activate PKC, thus expanding the signaling modalities. DAG and Ca2+ combine
to activate PKC and by extension its downstream targets to code for specific cellular
responses. Interestingly, many receptors activate this signal transduction cascade with
disparate cellular responses ranging from cell migration to division. Therefore, somehow
Ca2+ signals produced through the PLC-IP3 pathway must encode specificity to direct a
particular cellular response. Much of the specificity is encoded in the spatial and temporal
properties of the Ca2+ signals produced [19]. Such specificity arises from the combination
of Ca2+ release from stores in response to agonists, but also, a subsequent Ca2+ influx from
the extracellular space. Ca2+ influx can be mediated through receptor-operated cation
channels of the TRP family, which can be activated by DAG or its metabolites among other
diverse stimuli [20]. Alternatively, Ca2+ release from stores results in Ca2+ store depletion
leading to activation of store-operated calcium entry (SOCE) [21]. SOCE plays important
roles in cell migration as will be discussed in detail in the following sections.

4. Polarized Ca2+ Signals in Migrating Cells

As is the case with the actin cytoskeleton and its modulators, Ca2+ signaling in
migrating cells is polarized. This was first reported three decades ago as an ascending front
to rear Ca2+ gradient across the cell (higher Ca2+ at the rear compared to the front) [22,23]
(see Figure 1). This gradient appears to be mediated at least in part by localization of
the plasma membrane Ca2+ ATPase (PMCA) to the front of migrating cells resulting in
enhanced Ca2+ extrusion out of the cell [24]. In addition, migrating cells exhibit polarized
Ca2+ influx through voltage-gated L-type Ca2+channels at the trailing edge, thus supporting
increased Ca2+ concentration at the back of migrating cells [9,25]. However, the molecular
mechanisms controlling polarized PMCA and L-type Ca2+ channel activities are not fully
understood.

Furthermore, localized Ca2+ pulses are detected preferentially at the front of the
migrating cell and interestingly they require Ca2+ influx through the stretch activated
TRPM7 channel [26,27] (Figure 1). The amplitude and frequency of these TRPM7-mediated
Ca2+ transients are also regulated by Ca2+ release through IP3 receptors as well as the
actin cytoskeleton [26]. Ca2+ influx through TRPM7 induces Ca2+-induced Ca2+ release
through IP3 receptors to further enhance the Ca2+ transient and regulate actin dynamics
(Figure 1). Furthermore, Ca2+ pulses at the front of migrating cells have been implicated
in stimulating myosin activity to support the formation of nascent adhesions, which
presumably provide the anchor for the traction generated by actino-myosin to support
cell movement [28,29]. TRPM7 has been implicated in regulating myosin II-based cellular
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tension and focal adhesions in cancer cells in a polarized fashion as well [30], arguing
that the polarized TRPM7-mediated Ca2+ pulses at the front of the cell are responsible for
regulating cellular tension. These findings are consistent with the increased PMCA activity
at the front of migrating cells resulting in lower basal Ca2+ levels that would be expected to
inhibit persistent myosin light chain kinase (MLCK) activation and allow small local Ca2+

pulses to effectively stimulate actino-myosin contraction [24,31].
Furthermore, Ca2+ signaling modulates actin polymerization at the leading edge of

migrating cells resulting in the formation of protrusive structures such as lamellipodia,
filopodia and invadopodia/podosomes that help cell movement [32]. During forward
movement, local Ca2+ signals at the leading edge play a major role in activating actin-based
contraction that regulate lamellipodia retraction and adhesion cycles [29,33]. Ca2+ influx
at the leading edge is required for actin polarization and PI3K activation [33], as well
as regulating translocation and activation of the small GTPase Rac1 [34]. In addition,
in migrating neuronal cells Ca2+ -through the Ca2+ sensitive GTPase scaffolding protein
IQGAP1- regulates the Rho-family GTPase CDC42 [35]. Rho GTPases regulate actin dy-
namics and they are augmented in specific structures during cell migration, such as RhoA
around focal adhesion complexes, Rac1 in lamellipodia, and Cdc42 adjacent to filopo-
dia [7,36,37]. Furthermore, Ca2+-dependent kinases, such as protein kinase C and Ca2+

calmodulin-dependent kinase, modulate actin dynamics [36–38]. Finally, Ca2+ signaling
can also modulate the activity of the F-actin severing protein cofilin and myosin, thus
affecting cell migration [29,37,39].

Collectively these studies show that polarized Ca2+ signaling in migrating cells is impor-
tant to support cell migration by spatially and temporally regulating the actin cytoskeleton.

5. Store-Operated Ca2+ Entry (SOCE)

SOCE represents a primary Ca2+ influx pathway in non-excitable cells, which are typi-
cally the mobile cells in multicellular organisms. SOCE is activated in response to depletion
of intracellular Ca2+ stores and is mediated by the STIM and Orai protein families [21]
(Figure 2). Interestingly, before being implicated in SOCE, STIM1 was initially cloned as a
candidate tumor suppressor gene on chromosome 11 region p15.5 and named GOK [40,41].
Deletions in the 11p15.5 region are associated with childhood cancers, including rhabdoid
and Wilms’ tumor [39,40,42,43]. Independently, STIM1 was isolated as a pre-B cell interact-
ing clone in the bone marrow stroma and named SIM [44]. Initially, STIM1 was thought to
localize to the PM but later studies show that although a small percent localizes to the PM,
STIM1 is primarily an ER protein and acts as a Ca2+ sensor that reports the state of filling
of ER Ca2+ stores and underlies the first step in SOCE activation [41,45–47].
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release. This leads to a conformational change in STIM1 and its translocation to ER-PM junctions where it recruits and
gates Orai1 allowing Ca2+ influx into the SOCE microdomain. During Ca2+ signaling in response to agonist with open IP3

receptors, Ca2+ flowing through Orai1 is taken up by SERCA at ER-PM junctions and diffuses to open IP3 receptors that are
distant from the SOCE microdomain thus allowing Ca2+ release to activate distal effectors.

Structurally, STIM1 is an ER transmembrane protein with an ER luminal region encom-
passing a canonical EF-hand motif that senses ER Ca2+ concentration (Kd: 200–600 µM);
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and a sterile α-motif (SAM) that is essential for STIM dimerization [45,46,48–50]. The cytoso-
lic portion of STIM1 is composed of three putative coiled-coils (CC1, CC2 and CC3), with
CC2 and CC3 forming the domain that binds to and activates Orai1 (SOAR/CAD) [51–55].

Vertebrate genomes code for two STIM isoforms: STIM1 and STIM2, both of which are
enriched in the ER membrane. Despite the high sequence conservation and the structural
homology between STIM1 and STIM2, they differentially sense ER Ca2+ store levels with
STIM2 sensing mild store depletion to maintain basal Ca2+ homeostasis, whereas STIM1
senses significant store depletion to activate SOCE [56–58]. This is mediated by a higher
affinity of the EF-hand motif of STIM1 compared to STIM2 [58,59]. Furthermore, STIM1 ag-
gregates with faster kinetics and interacts with Orai proteins more efficaciously than STIM2,
resulting in more robust Ca2+ entry [60,61]. Hence, STIM2 is thought to play a housekeep-
ing role contributing to maintaining ER Ca2+ concentration upon minimal to moderate
store depletion, while STIM1 is considered the major ER Ca2+ sensor for strong store deple-
tion [58,62]. Overexpression of STIM2 results in inhibition of SOCE [57] and interestingly
loss of only STIM2 in lymphocytes leads to decreased cytokine production, arguing for an
important role for the basal Ca2+ influx mediated by STIM2 in NFAT activation [63]. These
effects appear to be mediated by two STIM2 splice variants that alternatively splice exon 9,
resulting in differential effects on SOCE. STIM2.1 or STIM2β (754 aa) has an additional
sequence inserted in its SOAR/CAD domain and does not by itself bind Orai1 and, as
such, functions as a negative regulator of SOCE. In contrast, STIM2.2 or STIM2α (746 aa)
functions as a positive modulator of SOCE and when overexpressed leads to constitutive
activation of SOCE [64,65].

STIM1 which exists as a dimer at rest adopts an open activated confirmation after store
depletion that exposes the SOAR/CAD domain, which binds to the Orai1 channel and gates
it open (Figure 2). Orai1 is a highly Ca2+ selective channel at the PM with 4 transmembrane
domains and cytosolic N- and C-termini [66]. Vertebrate genomes express 3 ORAI isoforms
Orai1, Orai2 and Orai3, with Orai1 being the best characterized [67–69]. The ORAI channel
is a hexamer with the pore lined by six TM1 domains [70]. Typically, SOCE activity is
mediated by the interaction of STIM1 and Orai1; however, some studies reported STIM1
interaction with other partners including TRP channels and Orai1 with the secretory
pathway Ca2+ ATPase SPCA2 to elicit constitutive SOCE and enhance the carcinogenesis
process in human breast cancer [71,72].

6. SOCE Regulates Cell Migration by Modulating Focal Adhesion Dynamics

There is significant interest in the literature in the role of SOCE in cancer progression
and metastasis with implication on the role of STIM1 and Orai1 in cell migration. This
was first assessed in the context of breast cancer where STIM1 and Orai1 were shown to
be important for breast cancer cell migration and metastasis to the lung using xenograft
mouse models [73]. This study also documented for the first time the involvement of focal
adhesion turnover as a molecular mechanism by which SOCE modulates cell migration.
Knockdown of either STIM1 or Orai1 was associated with decreased cell migration and
increased focal adhesion size and intensity, which would be expected to slow down cell
migration [73]. Consistently, overexpression of STIM1 and STIM2 in the less aggressive
MCF-7 breast cancer cells enhances cell migration and invasiveness [74].

In the context of cell migration STIM1 knockdown was shown to accelerate sheet
cell migration in human umbilical vein endothelial cells (HUVEC) and its overexpression
results in decreased migration [24]. In contrast, in the weakly adherent H1299 metastatic
lung cancer cells STIM1 knockdown slightly inhibited cell migration [24]. This is consistent
with other reports that show a reduction in cell migration potential following STIM1
knockdown [75–77] (see Tables 1 and 2 for a comprehensive list). Tsai et al. elegantly
teased out these differential effects by studying the role of SOCE on focal adhesions
(FA) using either low or high fibronectin concentration to modulate extracellular matrix
adhesion strength. They showed that SOCE enhances FA and, thus, adhesion to the ECM
at the leading edge of migrating cells. SOCE inhibition resulted in inhibition of migration
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when H1299 cells were plated on low fibronectin but enhancement of migration on high
fibronectin. They conclude that when adhesion to the ECM is weak, SOCE enhances cell
migration by increasing FA. In contrast, when adhesion to the EMC is strong SOCE slows
down migration by strengthening FA [24]. Consistently, in MDA-MB-231 breast cancer
cells knockdown of either STIM1 or Orai1 slows down cell migration, which is due to
impairment in the focal adhesion turnover [73]. These results are consistent with the
important role of focal adhesion turnover at both the leading and lagging ends of the cell
to modulate cell migration [78].

Table 1. Effect of modulation of the expression of STIM and Orai isoforms on the migration of different cancer cells.

Cancerous Cells Cell Lines Perturbation Result Ref.

Non-small-cell lung cancer
(NSCLC)

A549
SK-MES-1 STIM1 knockdown Reduced proliferation [75]

A549 STIM1 knockdown Reduced migration
& metastasis [79]

H1299 STIM1 knockdown Slightly decreased migration [24]

Melanoma

SK-Mel-2
SK-Mel-24 STIM1/Orai1 knockdown Reduced migration

& metastasis [76]

B16F0 cells STIM1 knockdown Enhanced migration [77]

non-commercial
WM3734 melanoma

cell lines
non-commercial

WM3734 melanoma
cell lines

non-commercial
WM3734 melanoma

cell lines
WM3734 non-commercial

STIM2/Orai1 knockdown Reduced migration
& invasiveness [80]

Colorectal Cancer

Primary liver metastasis STIM1/Orai1/Orai3 knockdown No effect on migration [81]

SW620 STIM1 knockdown Reduced migration
& invasiveness

[82]
SW480 STIM1 overexpression Enhanced migration

& invasiveness

Breast Cancer

MDA-MB-231 STIM1/Orai1 knockdown Reduced migration [73]

MDA-MB-231 STIM2 knockdown Reduced migration [83]

MCF-7 STIM1/STIM2 overexpression Enhanced migration
& invasiveness [74]

Prostate Cancer

PC-3
DU-145 STIM1 knockdown Reduced migration

and invasion [84]

DU145
PC3 STIM1/Orai1 overexpression Enhance migration

& cell growth [85]

Osteosarcoma

U2OS STIM1/Orai1 knockdown Reduced migration [86]

143B
U2OS STIM1 knockout Reduced migration [87]

Gastric Cancer

MKN-45
SGC-7901 STIM1knockdown Reduce migration

& invasiveness [88]

MKN-45
BGC-803 STIM1/Orai1 knockdown Reduce migration

& invasiveness [89]

Cervical Cancer SiHa
CaSki

STIM1 knockdown and
overexpression

KD reduced migration
Overexpression increased

migration & invasion
[90]

Human oesophageal cancer (KYSE-30) Orai1 knockdown Reduced migration [91]
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Table 2. Effect of modulation of the expression of STIM and Orai isoforms on the migration of different cell lines.

Cell Lines Method Result Ref.

Human embryonic kidney cells
(HEK293) STIM1/Orai1 knockdown Reduced migration [92]

Vascular smooth muscle cells
(VSMCs)

STIM1/STIM2/Orai1/Orai2/Orai3
knockdown

STIM1/Orai1 reduced migration
No effect for STIM2/Orai2/Orai3 [93,94]

Mouse embryonic fibroblasts
(MEF)

STIM1 knockout Enhanced migration [95]

STIM1 knockdown Reduced invasion [96]

Human umbilical vein
endothelial cells (HUVEC)

STIM1 knockdown Enhanced migration
[24]

STIM1 overexpression Decreased migration

Primary human bronchial smooth
muscle cells STIM1/STIM2/Orai1 knockdown STIM1/Orai1 reduced migration

STIM2 no effect [97]

The above studies show a role for SOCE in modulating FA turnover. This was recently
extended in a study focused on the role of the Arf family of small GTPases in cell migration.
The GTPase activity of Arfs is modulated by guanine nucleotide exchange factors (GEF) and
GTPase activating proteins (GAP), which increase nucleotide exchange or GTP hydrolysis,
respectively. One of these Arf GEFs is IQSec1, which contains a Ca2+-calmodulin binding
IQ motif [98]. IQSec1 binds to Arf5 and modulates its activity [98]. Knockdown of either
IQSec1 or Arf5 enhanced focal adhesions and inhibited migration of the aggressive breast
cancer cell line MDA-MB-231. The modulation of FA by Arf5/IQSec1 was through the
Oxysterol-binding protein (OSBP)-related proteins ORP3, which localizes to ER-plasma
membrane junctions in a SOCE-dependent fashion. Therefore, the disassembly of FA at
the rear of migrating cells requires SOCE, which activates ORP3 recruitment to ER-PM
junctions resulting in IQSec1/Arf5 activation.

These studies argue that the modulation of FA by SOCE is polarized and diagonally
opposed at the front and rear of migrating cells, but functionally culminates in supporting
cell migration. At the leading edge of migrating cells SOCE strengthens FA and enhances
cell migration, whereas at the trailing end SOCE results in FA disassembly, which is also
required for cell migration (Figure 1). Interestingly and despite the role of SOCE at the
rear of migrating cells, STIM1 and Orai1 are enriched at the leading edge of moving
cells [24,82,83]. This finding is puzzling especially given the Ca2+ gradient in migrating
cells with low Ca2+ at the front and the role of SOCE in FA disassembly at the rear. It
was proposed that the SOCE machinery at the front of migrating cells is important to
replenish Ca2+ stores depleted following Ca2+ transients mediated by TRPM7 with the
associated Ca2+-induced Ca2+ release through IP3 receptors [99]. This is an interesting
hypothesis that would imply that SOCE is capable of refilling Ca2+ stores in the front
of a migrating cell without inducing a broad cytoplasmic Ca2+ rise. This argues for the
involvement of Ca2+ tunneling, which allows for Ca2+ flowing through SOCE channels
to fuel IP3-dependent Ca2+ release without inducing a cytoplasmic Ca2+ rise [19,100–102].
Ca2+ tunneling is a tightly coupled Ca2+ signaling modality that allows for Ca2+ flowing
through SOCE channels to be taken up into the ER through the activity of the sarcoplas-
mic endoplasmic reticulum Ca2+ ATPase (SERCA) and then released through open IP3
receptors [19] (Figure 2). Tunneling amplifies and extends the SOCE signal throughout
the cell cortex. There is indeed direct evidence for this model from a study on migrating
pancreatic acinar cells [103]. Both STIM1 and IP3 receptors localize to the leading edge of
migrating acinar cells. Intriguingly, IP3 receptors surround individual focal adhesions and
IP3-dependent Ca2+ release enhances FA size. Furthermore, inhibition of either SOCE or
IP3-dependent Ca2+ release inhibits migration [103]. These findings support a model where
Ca2+ flowing through Orai channels at the leading edge of migrating cells is tunneled
through IP3 receptors to FA to strengthen nascent adhesion.
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Another explanation for refilling ER stores at the leading edge without affecting the
Ca2+ gradient is if SOCE-dependent Ca2+ influx was limited to the SOCE microdomain
through SERCA-dependent uptake into the ER (Figure 2). This would depend on the
stoichiometry of SERCA versus SOCE at the site of Ca2+ entry at the front of the cell and
would require enough SERCA pumps to localize to the SOCE microdomain to take up the
Ca2+ flowing through Orai channels into the ER, thus preventing spillover out of the SOCE
microdomain [19,85,88].

Furthermore, given that the tight coupling between SOCE and FA at the rear end of
migrating cells results in FA disassembly, one may postulate that the SOCE-dependent
enhancement of FA at the front of the cell is indirect through intermediate effectors. There-
fore, much remains to be learned about the mechanisms controlling SOCE activity in a
polarized fashion in migrating cells. However, it is clear that tight modulation of SOCE
spatially is important to support cell migration.

7. Additional Mechanisms Involving SOCE in Cell Migration

Alteration of calpain activity and spectrin processes could be another mechanism by
which STIM1-specific siRNA decreased cell migration [90]. In fact, cytosolic Ca2+ transients
stimulate the Ca2+ regulated protease calpain, which increases the disassembly rates via
cleaving talin at the focal adhesion sites along with other focal adhesion protein such as
paxillin, vinculin and zyxin [104]. In cervical cancer cells, STIM1 knockdown inhibited
cell migration and significantly inhibited EGF-induced calpain activation [90]. This was
also associated with inhibition of the ability of EGF to induce the phosphorylation of
protein-rich tyrosine kinase 2 beta (PTK2B or PYK2) and the focal adhesion kinase (FAK),
which are important regulators of focal adhesion dynamic [86,90].

Finally, a role for STIM1 phosphorylation has been proposed in regulating cell migra-
tion. Overexpression of a STIM1 mutant where the ERK1/2 phosphorylation sites (Ser575,
Ser608 and Ser621) were mutated to alanines reduced cell migration [105]. Furthermore,
phosphorylated STIM1 as detected by phospho-specific antibodies is enriched at the lead-
ing edge and membrane ruffles in migrating cells [86]. Both STIM1 and Orai1 have been
proposed to interact with cortactin (CTTN), a major player in actin cytoskeleton remodel-
ing [86,106]. Phosphorylation of STIM1 to spatially regulate SOCE would be an attractive
regulatory approach as it is dynamic and can be readily controlled spatially. However, the
recent generation of a non-phosphorylatable STIM1 mouse strain where all 10 Ser/Thr
residues in the STIM1 C-terminal domain were replaced with Ala brings into question the
importance of STIM1 phosphorylation in regulating cell migration [107]. If, indeed, STIM1
phosphorylation is critical for cell migration one would expect developmental pathologies
in this mouse line as it would affect organ development. However, the mice are healthy
with no overt phenotype and develop normally [107].

8. Disruption of Ca2+ Homeostasis in Cancer Cells

Interestingly, disruption of Ca2+ homeostasis has been repeatedly associated with
cancer progression, which requires cellular migration to mediate metastasis. Ca2+ in the
extracellular space is between 1–2 mM, in the cytosol ~100 nM and in the endoplasmic
reticulum (ER) ranges between 100–800 µM [108]. Several cellular components cooperate
to maintain Ca2+ homeostasis, including channels, transporters, receptors, downstream
effectors and buffering proteins [109]. Disruptions of this homeostasis that lead to an
elevation in basal Ca2+ levels or decrease ER Ca2+ have been associated with cancers and
changes in the expression of specific Ca2+ pumps or channels have been documented in
several tumor types [110]. This affects cell proliferation and migration, and decreases
apoptosis, thus supporting tumor development [78,111–113].

Expression and function of members of the TRP channel superfamily, including
TRPC1, TRPC6, TRPV1, TRPV2, TRPV6, TRPM7 and TRPM8 have been implicated in
tumor growth and migration [22,26,30,114–123]. Similarly, several voltage-gated Ca2+

channels (T, L, N, P/Q and R-type VGCCs) have been associated with different cancer
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types such as melanoma, colon, prostate, and pancreatic cancers [124]. For instance, in
the context of breast tumor, the T-type VGCC was found to be overexpressed in HER-2
positive SKBR cells that were resistant to trastuzumab and in luminal versus basal breast
tumor in one study [125]. In another study, knockdown of the VGCC auxiliary subunit
gamma 4 (CACNG4) in breast cancer cell lines reduced cell migration preferentially in the
more aggressive MDA-MB-231 cells as compared to MCF7; and CACNG4 overexpression
resulted in enhanced lung metastasis and death [126]. Furthermore, high expression
levels of TRPM7 predict a poor outcome in breast cancers due to increased metastasis as
confirmed using mouse xenograft model of human breast cancer [30,118].

In addition, to these Ca2+ signaling pathways store operated Ca2+ entry (SOCE) has
also been implicated in cancer metastasis and tumor cell migration as will be discussed in
further details below. This is consistent with the notion that Ca2+ influx plays an essential
role in the tumorigenesis and metastasis [127,128].

9. SOCE Dependent Regulation of Cancer Cell Migration and Metastasis

Cancer metastasis is considered the end stage of the progression of any tumor [3,129–131].
It is composed of several steps that include infiltration of cancerous cells into the neighbor-
ing tissue, followed by intravasation as tumor cells undergo transendothelial migration
through the vessel wall and, finally, extravasation and proliferation at the distant organ to
form secondary tumors [130]. Despite cancer metastasis accounting for almost 90% of all
cancer-related death, much remains to be learned regarding the molecular mechanisms
underlying metastatic progression [3,131].

In addition to cytoskeletal remodeling, signaling cascades, ion channels and trans-
porters have also been implicated in the metastatic cascade [132]. Such transport pathways
modulate cell volume as well as Ca2+ and proton transport, which are important for cell
migration. Among Ca2+ influx pathways, SOCE has been repeatedly implicated in the
migration and proliferation of many cancer types such as cervical cancer, breast cancer
and melanoma [75,76,117]. It has been proposed that this is due to constitutive activation
of SOCE at low levels in cancerous cells given their lower ER Ca2+ content [133–135].
Furthermore, SOCE was found to modulate migration and invasion of various cancer
cells, including colorectal, prostate, breast, esophageal, endometrial adenocarcinoma and
glioma cells [75,90,121,122], as well as being involved in tumor proliferation, initiation and
carcinogenesis [136,137].

As summarized in Table 1, knockdown of STIM1 or Orai1 in various cancer cells is
associated with inhibition of cell migration, with some exceptions. Consistently overex-
pression enhances cell migration. This is inconsistent with the original identification of
STIM1 as a candidate tumor suppressor as it maps to a region on Chromosome 11 that
when deleted is associated with tumors [40,41]. Independently, through an elegant in vivo
screen of a weak melanoma cell line in mice, Suyama et al. identifies STIM1 as a suppressor
of tumor metastasis and showed that when STIM1 is knocked-down it resulted in faster cell
migration in the wound healing assay [77]. This finding is supported by the lack of expres-
sion of STIM1 in rhabdomyosarcoma and rhabdoid cancer. In addition, overexpression of
STIM1 in rhabdomyosarcoma and rhabdoid cancer cell lines results in cell death but has no
effect in breast cancer cell lines [43], arguing for cell type specific effect of STIM1 expression
in the context of cancer progression. Similarly, in prostate cancer cells Orai1 knockdown
inhibited apoptosis and STIM1 or Orai1 expression enhances cell senescence [85,138], thus
supporting a role for SOCE in cancer cell death. Consistently, STIM1 expression was
substantially decreased in hyperplasia and tumor tissue at histological grade 3 and 4,
compared to normal tissue [85]. In contrast, in prostate cancer cell lines (LNCaP, PC3 and
DU145) STIM1 was expressed at higher levels compared with the hyperplasia cell line
BPH-1 and this was associated with higher SOCE levels [85]. STIM1 expression level and
SOCE activity were lower in the more malignant cell line PC3 compared to LNCaP and
DU145 cells [85]. Furthermore, inhibition of SOCE reduced cell migration, invasiveness
and/or proliferation in melanoma, lung, and breast cancer cells [75,117,129,130]. These
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findings argue that STIM1 and Orai1 play multiple roles in cancer cells and may have a
different regulatory mechanism even in the same cancer type.

Clinically breast tumors with high expression of STIM1 and low expression of STIM2
were associated with poorer prognosis [69]. High levels of STIM1, STIM2 and SOCE
were also documented in metastatic melanoma as compared to primary melanoma [76,80]
and knockdown of Orai1 and/or STIM2 reduced melanoma cell migration and invasive-
ness [80]. However, another study showed lower levels of SOCE in invasive patient-derived
melanomas compared to non-invasive melanoma and this downregulation appears to be
due to PKC-dependent phosphorylation of Orai1 [139], arguing for a complex relationship
between SOCE and melanoma progression.

As is the case in cancer cells, modulation of the expression of STIM1/Orai1 has
differential effects in other non-cancerous cell lines (Table 2). Knockdown of STIM1 or Orai1
alone or in combination, but not STIM2, in human bronchial smooth muscle cells leads to
significant inhibition for PDGF-BB induced cell migration [97]. Similarly, knockdown of
either STIM1 or Orai1 in HEK293 cells reduced cell migration to similar levels although
their effects on FA adhesion turnover was different [92]. In vascular smooth muscle
cells knockdown of STIM1 or Orai1 reduces proliferation and migration, but no effect
was observed following knockdown of the other STIM/Orai isoforms [93,94]. However,
in contrast to the mostly consistent finding of SOCE inhibition resulting in slower cell
migration, surprisingly complete knockout of STIM1 using CRISPR/Cas9 genome editing
in mouse embryonic fibroblast (MEF) cells was associated with faster cell migration in
response to platelet-derived growth factor (PDGF) [95]. This is apparently due to enhanced
STIM2 activation, which leads to increase Ca2+ influx. This finding argues that STIM2 upon
complete loss of STIM1 can support Ca2+ influx to modulate cell migration [95].

Finally, knockdown of STIM1 in MEFs resulted in a significant reduction in the
number of invadopodia/podosomes [96]. Invadopodia are dynamic F-actin rich membrane
protrusions that are essential for cancer cell metastasis and invasion, while podosomes play
an crucial role in the degradation of the extracellular matrix (ECM), thus, facilitating cell
motility and invasion during metastasis [96]. SOCE was proposed to control Ca2+ levels at
protrusion sites in migrating cells, thus, enhancing the reorganization of the cytoskeleton
network and supporting both lamellipodia and filopodia formation [86]. Moreover, as
podosomes recruit matrix metalloproteinases (MMPs) that help in the degradation process,
decreasing the expression of STIM1 was found to significantly decrease the activity of
MMP2 and MMP9, thus altering the invasion ability of the cells [96].

Collectively these studies show that the expression of STIM1 has differential effects
in different cancers and sometimes as is the case for melanomas in the same cancer type.
In most cases STIM1 downregulation inhibits metastasis, but there are clear examples
that are difficult to ignore where STIM1 downregulation enhances metastasis and cell
migration. In particular, in the example of the unbiased ribozyme screen using a weak
melanoma cell line that identified STIM1 as a tumor suppressor [77]. Based on these
divergent results one can conclude that modulating SOCE levels impacts cell migration
and metastasis; however, the direction of this modulation appears to be cell and tissue type
specific. Given the above discussion on the differential role of SOCE in the front and rear
end of moving cells in regulating FA, it is tempting to speculate that SOCE modulation
can differentially regulate FA and the actin cytoskeleton in a cell type specific fashion.
Another issue to consider here that has not been carefully addressed in the cell migration
literature is the established role of STIM1/Orai1 stoichiometry in modulating SOCE. SOCE
levels have a nonlinear bell-shaped dependence on STIM1/Orai1 levels [140], where low
or high STIM1/Orai1 ratios yield small SOCE. Furthermore, at high STIM1 expression
levels Orai1 is trapped intracellularly and is no longer available to mediate SOCE at the
PM [141]. This is because Orai1 recycles continuously between the PM and an intracellular
vesicular pool with ~40% of the total Orai1 cellular pool localizing to the PM at steady
state [141]. Therefore, depending on the initial stoichiometry of STIM1 and Orai1 in the
cell or tissue of interest, knockdown of either protein could shift SOCE levels left or right



Cells 2021, 10, 1246 11 of 19

along the stoichiometry bell curve, thus resulting in differential modulation of SOCE and
by extension cell migration. Indeed, the absolute and relative expression levels of STIM
and Orai isoforms to each other varies significantly among different tissues as shown in
Figure 3 as an example in humans. Furthermore, we do not know whether the different
knockdown approaches used experimentally result is homogenous downregulation of
SOCE proteins, or whether they exhibit spatially different downregulation levels.
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10. SOCE and the Epithelial to Mesenchymal Transition (EMT)

SOCE may also be involved in the epithelial to mesenchymal transition (EMT). In
colorectal cancer cell lines STIM1 knockdown resulted in increased expression of E-cadherin
and β-catenin and decrease in the level of vimentin and fibronectin [82]. β-catenin and
E-cadherin are epithelial markers whereas fibronectin and vimentin are mesenchymal
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markers. STIM1 knock-down was also associated with decreased metastasis to the lung
and its overexpression in increased metastasis [82]. Knockdown of STIM1 in prostate cancer
cells was related to EMT suppression [84] and in breast and lung cancer cells the expression
of E-cadherin, Snail and Vimentin were regulated by STIM1/2 expression [74,79]. Using the
gastric cancer cell lines BGC-803 and MKN-45 cells, the decreased migration and invasion
was associated with a decrease in the vimentin and fibronectin expression and an increased
in E-cadherin expression upon knockdown of Orai1 and/or STIM1 [89].

STIM2 was also implicated in breast cancer metastasis through supporting EMT [83].
STIM2 knockdown inhibited breast cancer cell migration and metastasis in xenograft
models [83]. This was associated with inhibition of nuclear factor of activated T cells 1
(NFAT1) and its downstream expression of EMT markers. In contrast, STIM2 overexpres-
sion enhanced metastasis and resulted in activation of NFAT1 and TGF-β signaling [83].
These results argue that STIM2, presumably through regulating basal cytosolic Ca2+ levels,
activates NFAT1, which in turn induces TGF-β1 expression to promote EMT and enhance
cell migration and metastasis of breast cancer cells. The STIM1 effect on cell migration was
also attributed to NFATc1 activation in both osteosarcoma and gastric cancer cells [87,88].
Additionally, in human primary gastric tumors higher expression of Orai1 and STIM1 was
associated with poorer prognosis [89]. The link between STIM1/STIM2 expression levels
and NFAT is important in potentially explaining the differential effects observed following
changes in expression of these proteins on cell migration. This is because different cell types
have distinct transcriptional programs that can be altered based on NFAT modulation.

11. Concluding Remarks

Ca2+ signaling is intimately connected to the regulation of cell migration and regu-
lates both adhesion to the ECM as well as cytoskeletal remodeling. The Ca2+ signaling
machinery is polarized in migrating cells and this polarization has functional consequences
on migration. In particular, SOCE has differential effects at the front and rear of migrat-
ing cells in terms of regulation of focal adhesion dynamics. Furthermore, modulation of
either STIM1, STIM2 or Orai1 expression may be associated with remodeling of the cell’s
transcription program given the well-documented induction of NFAT through calcineurin
activation downstream of SOCE [142]. This may be important in explaining the differential
results obtained in different cell lines and tumors.

The effect of modulating SOCE in terms of cell migration and tumor metastasis is
tissue and cell type dependent with sometimes opposing effects. For example, STIM1 was
originally isolated as a tumor suppressor and was validated as such in an independent
screen [42,43,125], yet in the context of several cancers including breast cancer STIM1 and
Orai1 are crucial for metastasis [73]. This argues for a potential role for STIM1 that is
independent of mediating Ca2+ entry through SOCE. Furthermore, SOCE does not func-
tion independently in modulating Ca2+ signaling dynamics in migrating cells. Hence,
changes in the expression levels of SOCE components may be countered differentially in
terms of modulating the activity/expression of other Ca2+ signaling components involved
in cell migration (TPRM7, VGCC, PMCA, IP3 receptor, etc.). In turn these Ca2+ chan-
nels/transporters would affect Ca2+ dynamics and accordingly differentially modulate
the actin cytoskeleton and focal adhesions with functional consequences on cell migration.
Therefore, a comprehensive understanding of the role of SOCE in cell migration will re-
quire more in-depth mechanistic studies on multiple cell types to better define not only the
molecular regulation of SOCE in the polarized migrating cell, but also to define the SOCE
downstream effectors in the context of cell migration.
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MPA Membrane-Proximal F-Actin
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pCRC Primary Colorectal Tumor Cells
MEF Mouse Embryonic Fibroblast
PDGF Platelet-Derived Growth Factor
PTK2B Protein-Rich Tyrosine Kinase 2 Beta
FAK Focal Adhesion Kinase
PDGF Platelet-Derived Growth Factor
HUVEC Human Umbilical Vein Endothelial Cells
EMT Epithelial-to Mesenchymal Transition
TGF-β Transforming Growth Factor-β
MMP Matrix Metalloproteinases
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