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Abstract

Rationale

Shorter leukocyte telomere length (LTL) is associated with reduced health-related quality of

life and increased risk for acute exacerbations (AEs) and mortality in chronic obstructive pul-

monary disease (COPD). Increased physical activity and exercise capacity are associated

with reduced risk for AEs and death. However, the relationships between LTL and physical

activity, exercise capacity, and AEs in COPD are unknown.

Methods

Data from 3 COPD cohorts were examined: Cohort 1 (n = 112, physical activity intervention

trial), Cohorts 2 and 3 (n = 182 and 294, respectively, separate observational studies). Sub-

jects completed a 6-minute walk test (6MWT) and provided blood for LTL assessment using

real-time PCR. Physical activity was measured as average daily step count using an accel-

erometer or pedometer. Number of self-reported AEs was available for 1) the year prior to

enrollment (Cohorts 1 and 3) and 2) prospectively after enrollment (all cohorts). Multivariate

models examined associations between LTL and average daily step count, 6MWT distance,

and AEs.

Results

A significant association between longer LTL and increased 6MWT distance was observed

in the three combined cohorts (β = 3x10-5, p = 0.045). No association between LTL and

average daily step count was observed. Shorter LTL was associated with an increased num-

ber of AEs in the year prior to enrollment (Cohorts 1 and 3 combined, β = -1.93, p = 0.04)

and with prospective AEs (Cohort 3, β = -1.3388, p = 0.0003).
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Conclusions

Among COPD patients, increased LTL is associated with higher exercise capacity, but not

physical activity. Shorter LTL was associated with AEs in a subgroup of cohorts.

Introduction

Telomeres, which are comprised of repetitive nucleotide sequences and protein complexes, are

located at the distal ends of linear eukaryotic chromosomes and protect against chromosomal

degradation and the loss of genetic information. Leukocyte telomere length (LTL) is deter-

mined by multiple factors. Initially, LTL may be influenced by intrinsic factors such as genetic

sequence variation[1, 2] and extrinsic factors such as perinatal and early life exposures[3, 4].

Throughout an individual’s lifetime, aging as well as intrinsic and extrinsic factors progres-

sively shorten LTL–thus, the concept of LTL as an integrative summation of an individual’s

“biological age” is appealing[5].

In chronic obstructive pulmonary disease (COPD), telomeres may contribute to disease

susceptibility and development[6, 7] in addition to reflecting lifetime exposures such as ciga-

rette smoke[8, 9]. Longitudinal population-based studies have suggested that individuals with

shorter telomeres may be more susceptible to the effects of cigarette smoking[6] and multiple

cross-sectional studies have confirmed shorter LTL in COPD subjects relative to individuals

without airflow limitation[7, 10]. Among subjects with established COPD, decreased LTL is

associated with increased airflow limitation, reduced health-related quality of life, accelerated

rate of shortening of telomeres, and increased mortality[7, 10–12]. Among a cohort of COPD

subjects enriched for a history of acute exacerbations (AEs), shorter LTL was associated with

increased risk for future AE[12].

Associations between longer LTL and higher exercise capacity, defined as an individual’s

maximal ability to perform work[13], as well as physical activity (PA), defined as any move-

ment that expends energy[13], have been previously reported among older adults without

COPD[14, 15]. In COPD, exercise capacity and PA are significant predictors of healthcare uti-

lization and mortality[16, 17]. We and others have shown that persons with COPD with higher

levels of PA, a modifiable behavior, have better clinical outcomes, such as better functional sta-

tus, decreased risk of AEs, and decreased risk of dying, independent of pulmonary function

[18–21]. However, the relationship between telomere length, PA and exercise capacity, and

clinical events such as AEs in COPD is currently unknown.

In these analyses, we examine data from 3 well-characterized cohorts of COPD patients to

explore the biobehavioral relationships between LTL and PA and exercise capacity, and

expand upon previous investigations into the relationship between LTL and AEs[12]. We

examined the relationship between cross-sectional LTL and (1) directly measured PA, (2) exer-

cise capacity assessed via 6 minute walk test (6MWT), (3) history of AE in the year prior to

enrollment, and (4) risk of future AEs.

Materials and methods

COPD cohorts and assessments

All participants were�40 years old with COPD (�10 pack-years smoking and forced expira-

tory volume in the first second (FEV1) / forced vital capacity (FVC) ratio<0.70 on spirometry

or emphysema on clinical chest CT (for Cohorts 1 and 2)). Exclusion criteria included inability

to ambulate, unstable cardiovascular disease, and occurrence of an AE <4 weeks prior to
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enrollment. Cohort 1 was comprised of 117 subjects recruited from the pulmonary clinics at

the VA Boston Healthcare System in 2012–2016 for participation in a 12-week PA intervention

trial [22]; data from the baseline visit were used in this analysis. Cohort 2 was comprised of

190 subjects participating in an observational study of PA in COPD subjects and were

recruited from VA Boston from 2009–2011[20]. Cohort 3 was an observational study of PA in

294 participants enrolled in the COPD Activity: Serotonin Transporter (SERT), Cytokines and

Depression (CASCADE) study from 2010–2016 [23–25]. Spirometry and 6MWT were per-

formed in all cohorts at enrollment in accordance with American Thoracic Society (ATS)

guidelines[26, 27]. Similarities and differences in daily step count assessment and criteria for

data inclusion for each cohort are shown in Table 1.

Data on AEs were collected (1) retrospectively for the year prior to enrollment and (2) pro-

spectively after enrollment in all cohorts. The methods of assessment, definitions of AEs, and

type of AE data (count versus binary) are summarized in Table 2.

Study protocols for Cohorts 1 and 2 were approved by VA Boston (IRB Protocols #2328

and #1961, respectively). Cohort 3 was approved by the University of Washington, Seattle

(Approval 37332), VA Puget Sound Health Care System (Approval 00240), and the University

of Texas Health Science Center at San Antonio/South Texas Veterans Health Care System

(Approval HSC20100373H). Written informed consent was obtained from all subjects.

Telomere length analysis

Blood for LTL analyses was collected at baseline in all cohorts. Genomic DNA was extracted

from buffy coat samples. The relative LTL was assessed using a modified, high-throughput

Table 1. Physical activity assessment details by cohort.

Cohort 1 Cohort 2 Cohort 3

Accelerometer / Pedometer used Omron HJ-720 ITC Omron HJ-720 ITC and
StepWatch Activity Monitor (SAM)

StepWatch Activity Monitor (SAM)

Valid wear day criteria �100 steps and�8 hours of wear time �200 steps and�8 hours of wear time �10 hours of wear time

Minimum number of days assessed � 5 � 5 � 3

https://doi.org/10.1371/journal.pone.0223891.t001

Table 2. Methods and definitions used in AE assessment by cohort.

Cohort 1 Cohort 2 Cohort 3

History of Exacerbations in the Year Prior to Enrollment
Method Self-reported Self-reported Self-reported

Period queried Year prior to enrollment Year prior to enrollment Year prior to enrollment

Type of data Count Binary (Yes/No) Count

Question(s) used to

assess AE

“Number of exacerbations in the past year” “Physician diagnosed ‘flare’ of COPD in the past

year”

Number of courses of prednisone use

in past year

Future Exacerbations After Enrollment
Method Telephone interview & medical record validation

every 3–4 months

Telephone interview & medical record validation

every 3–4 months

Telephone interview

every 3–4 months

Period of follow-up

(years)

1.5 ±0.3 1.2 ±0.3 2.2 ±5.3

Definition / Severity of AE

Mild Not assessed Not assessed Count data available

Moderate-to-Severe Count data available Count data available Count data available

Mild exacerbations were defined as�2 consecutive days of increased respiratory symptoms. Moderate-to-severe exacerbations were defined as increased symptoms

(above) plus new antibiotic or systemic steroid use or hospitalization.

https://doi.org/10.1371/journal.pone.0223891.t002
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real-time quantitative polymerase chain reaction (PCR) assay[28]. All samples were processed

and analyzed in a single batch; for specific details regarding LTL data generation, please see the

Supplementary Methods (S1 File) [29].

Statistical analysis

Analyses were performed in the three combined cohorts to assess associations between the

entire range of LTL and average daily step count, 6MWT distance, and number of AEs; pooled

analyses were adjusted for cohort. Because average daily step count was assessed using two dif-

ferent devices (SAM and Omron monitors), we examined the correlation between LTL and

PA 1) separately in each cohort and 2) in pooled groups by device type. Generalized linear

models (PROC GLM, SAS version 9.4) assessed for associations between LTL and PA and

exercise capacity, adjusting for factors (e.g. age, FEV1/FVC, sex, and race) associated with LTL

on univariate analyses. Depending upon the distribution of AE data in each cohort, Poisson,

zero-inflated Poisson, and negative binomial models adjusting for age, FEV1/FVC, sex, non-

white race and follow up time (in analyses using prospective data), were constructed to exam-

ine the associations between LTL and the number of AEs. In zero-inflated models, FEV1% pre-

dicted was used as a covariate in the zero model. In Cohort 2, logistic regression was used to

analyze the occurrence of AE (assessed as yes/no) in the year prior to study entry. (See Supple-

mentary Methods–S1 File)

Results

Cohort characteristics

Participant characteristics by cohort and combined are shown in Table 3. The majority of par-

ticipants were male (89.5%) and white (89.7%) with extensive lifetime exposure to cigarette

smoke. Significant differences in baseline characteristics were observed between the three

cohorts. Subjects in Cohort 2 had the highest mean age and cumulative exposure to cigarette

smoke (pack-years), while subjects in Cohort 3 had the lowest mean FEV1% predicted, 6MWT

distance, and LTL. Correlations between baseline PA and 6MWT in each cohorts are shown in

Supplementary (S1 Table).

Telomere length and baseline characteristics

Associations between LTL and clinically relevant continuous and categorical variables are

shown in Supplementary (S2 Table). A significant inverse relationship between shorter LTL

and higher chronological age at enrollment was observed in the combined cohort. Longer

average LTL was significantly associated with non-white race, self-reported history of depres-

sion, and higher FEV1/FVC ratio in the combined cohort. Current smoking at enrollment was

nominally associated with longer average LTL relative to non-current smokers in the com-

bined cohort; however, cumulative pack-years was not significantly associated with LTL in any

of the cohorts.

Telomere length and baseline physical activity

No significant correlations between LTL and average daily step count were identified in the

individual cohorts. In combined analyses grouped by PA monitoring device, LTL demon-

strated a weak but significant positive correlation with Omron-assessed steps from Cohorts 1

(n = 112) and 2 (n = 180) combined (rho = 0.16, p-value = 0.01). However, this association did

not remain significant in multivariate models adjusted for age, sex, non-white race, and FEV1/

FVC ratio (S3 Table). No correlation between LTL and SAM-assessed average daily step count
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was observed in either Cohort 2 or 3 individually or in a combined cohort. A post-hoc ran-

dom-effects meta-analysis, conducted using Omron-assessed daily step count in Cohorts 1

and 2 and SAM-assessed daily step count in Cohort 3, did not demonstrate a significant associ-

ation between LTL and average daily step count (S4 Table).

Telomere length and baseline exercise capacity

In the combined cohort, a positive correlation (rho = 0.15, p = 0.0002) between longer LTL

and greater 6MWT distance was observed, which remained significant in multivariate models

adjusting for age, sex, race, and FEV1/FVC ratio (Table 4).

Telomere length and acute exacerbations in the year prior to enrollment

Since historical AE frequency was assessed differently in the 3 cohorts, separate models were

used in each cohort. Shorter LTL at baseline was significantly associated with a greater number

of AEs in the year prior to enrollment in Cohort 1 (Table 5). Using a similar model, there was

a similar direction of effect with a trend towards significance in Cohort 3 (p = 0.1). A signifi-

cant association between shorter LTL and greater number of AEs in the year prior to enroll-

ment was observed in a combined analysis of both Cohorts 1 and 3. No significant association

Table 3. Participant characteristics by cohort.

Cohort 1 Cohort 2 Cohort 3 Combined Cohort p-value

n 117 190 294 601

Age (years) (n = 600) 68.58 ± 8.37 71.647 ± 8.66 67.62 ± 8.46 69.08 ± 8.68 < .0001

Sex (Male) 115 (98.29) 187 (98.42) 236 (80.27) 538 (89.52) < .0001

Race (Non-white) 10 (8.55) 12 (6.32) 40 (13.61) 62 (10.32) 0.03

BMI (kg/m2) 28.98 ± 5.54 29.01 ± 6.37 28.13 ± 6.05 28.58 ± 6.06 0.2161

Current Smoker (n = 600) 43 (36.75) 46 (24.34) 80 (27.21) 169 (28.17) 0.06

Pack Years (n = 588) 59.17 ± 40.83 66.09 ± 36.95 56.69 ± 29.51 60.18 ± 34.63 0.0145

FEV1 (liters) (n = 594) 1.86 ± 0.61 1.58 ± 0.61 1.27 ± 0.54 1.48 ± 0.62 < .0001

FVC (liters) (n = 594) 3.29 ± 0.79 3.01 ± 0.79 2.97 ± 0.85 2.97 ± 0.85 < .0001

FEV1/FVC (n = 594) 0.56 ± 0.11 0.52 ± 0.12 0.45 ± 0.12 0.49 ± 0.13 < .0001

FEV1% predicted (n = 593) 61.98 ± 21.28 55.92 ± 20.99 41.8 ± 15.08 50.29 ± 20.26 < .0001

FVC % predicted (n = 593) 80.66 ± 19.46 77.19 ± 19.06 69.25 ± 16.73 74.03 ± 18.65 < .0001

MOS score (n = 599) 3.61 ± 1.12 3.76 ± 1.06 3.72 ± 1.09 3.71 ± 1.09 0.4831

MMRC dyspnea score 1.62 ± 1.14 2.14 ± 1.20 1.91 ± 1.1 1.92 ± 1.15 0.0005

Heart Attack Ever (n = 600) 9 (7.69) 50 (26.46) 46 (15.65) 105 (17.50) < .0001

Congestive Heart Failure (CHF) 8 (6.84 23 (12.11) 15 (5.10) 46 (7.65) 0.02

Diabetes 29 (24.79) 51 (26.84) 66 (22.45) 146 (24.29) 0.54

Depression 45 (38.46) 52 (27.37) 79 (26.87) 176 (29.28) 0.05

Arthritis 42 (35.90) 97 (51.05) 101 (34.35) 240 (39.93) 0.0007

Use of Oxygen during Rest (n = 600) 7 (5.98) 20 (10.58) 52 (17.69) 79 (13.17) 0.003

6MWT Distance (m) 386 ± 83 369 ± 105 334 ± 113 355 ± 107 < .0001

Mean Baseline Step Count—Omron (n = 292) 3457 ± 2462 2851 ± 2373 --- 3084 ± 2421 0.0371

Mean Baseline Step Count—SAM (n = 459) --- 5726 ± 3156 6043 ± 3345 5917 ± 3271 0.3093

Exp ddCt (Telomere Length) 0.54 ± 0.10 0.59 ± 0.10 0.52 ± 0.10 0.54 ± 0.10 < .0001

Data are shown as mean ± SD or n (%). P-values are for Tukey’s test for differences in means by cohort (continuous variables) or Chi-square test (categorical variables).

MOS SF-36 = Medical Outcomes Study Short-Form 36 questionnaire. MMRC = modified Medical Research Council. 6MWT = 6-minute walk test. SAM = StepWatch

Activity Monitor.

https://doi.org/10.1371/journal.pone.0223891.t003
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was observed between LTL and binary history of AE (yes/no) in the year prior to enrollment

in Cohort 2. When we examined dichotomized history of AEs (yes/no) in all 3 cohorts com-

bined, no significant association with LTL was observed.

Telomere length and future acute exacerbation risk

The average duration of follow-up for all cohorts combined was 1.8 ±3.8 years with significant

differences by cohort (Table 2); duration of follow-up was used as an offset in all models. The

distribution of all moderate-to-severe AEs in the combined cohort is shown in Supplementary

(S1 Fig); based on this distribution, a negative binomial model was constructed with the num-

ber of AEs as the dependent variable and LTL as the predictor, with covariate age, FEV1% pre-

dicted, and cohort–no significant associations were observed (S5 Table). However, given the

evidence of significant heterogeneity between cohorts, we examined for associations within

each cohort separately. The distribution of moderate-to-severe AEs in each individual cohort

is shown in Supplementary (S2 Fig). Separate negative binomial regressions in Cohorts 1, 2,

and 3 did not demonstrate any associations between moderate-to-severe AEs and LTL.

Because additional data on mild AEs was available in Cohort 3, we examined the distribution

of all prospective AEs (mild-moderate-severe; Fig 1) and performed a subgroup analysis using

Table 5. Association between baseline leukocyte telomere length and number of acute exacerbations in the year

prior to enrollment.

Coeff 95% CI p-value

Cohort 1 -8.31 -15.41, -1.20 0.02

Cohort 3 -1.58 -3.45, 0.28 0.1

Combined (Cohorts 1 & 3)� -1.93 -3.72, -0.13 0.04

Coeff = Regression coefficient. Zero-inflated Poisson models were constructed for each analysis with telomere length

as the independent variable and the number of acute exacerbations in the year prior to enrollment as the dependent

variable. All analyses included adjustment for age, FEV1/FVC ratio, non-white race, and sex; FEV 1% predicted was

included as a predictor in the zero model. Each row of the table represents the results of a separate model.

� Model additionally adjusted for cohort as a categorical variable.

https://doi.org/10.1371/journal.pone.0223891.t005

Table 4. Multivariate model of baseline leukocyte telomere length and 6-minute walk test distance (meters) in a

combined cohort (Cohorts 1, 2, and 3).

Continuous measures β 95% CI p-value

6MWT Distance (m) 0.00003 0.00, 0.00 0.045

Age -0.0019 -0.003, -0.001 0.0002

FEV1/FVC 0.1167 0.05, 0.18 0.001

Categorical measures Least Square Means 95% CI p-value

Race 0.002

White 0.5346 0.52, 0.55

Non-white 0.5800 0.55, 0.61

Sex 0.847

Male 0.5560 0.54, 0.57

Female 0.5586 0.53, 0.59

6MWT = 6-minute walk test. Generalized linear models were constructed with leukocyte telomere length as the

independent variable and 6MWT as the independent variable, with adjustment for age, FEV1/FVC ratio, non-white

race, and sex.

https://doi.org/10.1371/journal.pone.0223891.t004
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a multivariate Poisson regression and observed a significant association between LTL and total

AEs (Table 6).

Discussion

Accelerated cellular senescence has been postulated to contribute to the pathogenesis of

COPD[30–32]. Reduced LTL, often considered a biomarker for biological aging, has been

associated with exposure to oxidative and inflammatory damage as well as poor health out-

comes and increased mortality among COPD patients[12, 33–35]. Healthy lifestyle factors,

such as engagement in PA, are associated with reduced levels of inflammatory biomarkers and

risk for AEs in COPD patients[18, 20, 21, 36]. Our study demonstrates that LTL is associated

with exercise capacity, and both past and future AEs among subgroups of participants with

COPD from 3 independent studies based in the United States.

Fig 1. Distribution of all prospective acute exacerbations (mild-moderate-severe) in Cohort 3.

https://doi.org/10.1371/journal.pone.0223891.g001
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A key finding was a significant association between baseline LTL and exercise capacity,

assessed as the 6MWT distance, after adjusting for age and severity of airflow obstruction. Pre-

vious studies have demonstrated positive associations between LTL and cardiopulmonary fit-

ness and maximal aerobic capacity (VO2max) among healthy adults who regularly engaged in

exercise[14, 37]. Studies of LTL among COPD populations using functional exercise capacity

assessments (such as 6MWT) have not been reported previously. Taken together, previous

studies and our current results suggest that although LTL may be a possible molecular mecha-

nism through which exercise capacity and mortality may be linked. The impact of sustained

engagement in endurance exercise on LTL is unknown. In light of the fact that exercise capac-

ity is both modifiable and the target of training programs such as pulmonary rehabilitation,

future longitudinal studies should examine whether sustained aerobic training impacts long-

term change in LTL in COPD patients.

Our analyses also support significant associations between shorter LTL and higher number

of past and future AEs among several cohorts within our study. An inverse relationship

between LTL and history of AE frequency in the year prior to enrollment was observed in the

cohorts where quantitative retrospective data was available. The lack of association in the com-

bined (Cohorts 1,2, & 3) analysis of dichotomized AEs (yes/no) in the year prior to enrollment

is likely due in part to the reduced power of the binary phenotype. Interestingly, shorter LTL

at baseline was also predictive of future AEs in Cohort 3. These results are consistent with

those from a study designed to examine the efficacy of chronic macrolide therapy on AE’s in

COPD; a higher rate of prospectively assessed moderate-to-severe AE were associated with

decreased LTL in the placebo arm of that trial [12]. No association between LTL and future

AEs was observed in Cohorts 1 and 2 in our analyses. This may be due to 1) the longer average

duration of follow up in Cohort 3, and/or 2) the broader definition of AE used in Cohort 3

(mild, moderate, and severe) relative to Cohorts 1 & 2 (moderate-to-severe AE defined as

increased symptoms requiring systemic steroid and/or antibiotic use). It is not possible to

infer from our cross-sectional data whether AEs reduce LTL or whether LTL simply serves as a

marker of increased susceptibility towards AEs.

Despite a robust association between exercise capacity and LTL, we did not observe an asso-

ciation between LTL and objectively assessed PA. Factors which may have contributed to the

lack of association between LTL and PA in our study include heterogeneity between cohorts

with respect to study participants and PA assessment devices. Although our study was suffi-

ciently powered to detect modest correlations (>80% power to detect a correlation of 0.15–

Table 6. Multivariate Poisson regression of baseline leukocyte telomere length and number of prospective acute

exacerbations (mild-moderate-severe inclusive) after study enrollment in Cohort 3.

Coeff 95% CI p-value

Continuous variables

Leukocyte telomere length -1.34 -2.07, -0.61 0.0003

FEV1% predicted (post bronchodilator) -0.02 -0.02, -0.01 <0.001

Age -0.01 -0.02, -0.003 0.0098

Categorical variables

Race (reference = white) -0.19 -0.44, 0.07 0.1455

Sex (reference = male) 0.52 0.36, 0.68 <0.0001

Current smoking (reference = no) 0.14 -0.02, 0.31 0.0923

Poisson regression was constructed using leukocyte telomere length as the independent variable and number of all

acute exacerbations (mild-moderate-severe) as the dependent variable, with covariates listed above. Follow-up time

in years was included as the offset. Coeff = regression coefficient

https://doi.org/10.1371/journal.pone.0223891.t006
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0.20 at an alpha level of 0.05), the existence of a threshold intensity or duration of PA required

to impact LTL[38] may have precluded detection of an association in our studies. Alterna-

tively, factors other than LTL, such as lung disease severity or unmeasured environmental,

behavioral, and social factors, may play a larger role determining PA relative to biological or

intrinsic physiological factors (e.g. cardiac output, muscle fiber oxidative capacity) among

COPD patients.

In conclusion, we have demonstrated significant associations between LTL and exercise

capacity and AEs. The strengths of our analyses include a biobehavioral approach to under-

standing PA and exercise, large number of well-characterized COPD subjects with rigorously

assessed PA data, and standardized assessments of functional exercise capacity, spirometry, and

comorbidities. Limitations include a predominance of males and limited representation of indi-

viduals of non-white ancestry, both of which may limit the generalizability of our findings.

Cohort heterogeneity, such as differences in airflow severity, comorbidities, and baseline PA

levels, as well as the use of different PA data collection devices and AE ascertainment criteria

may have limited the ability to detect significant associations. However, when applicable, we

have applied established statistical methods to account for these cohort differences and believe

our findings support the need for additional investigations to examine the effects of PA promo-

tion on LTL and the utility of telomeres in the prognostication of COPD-related phenotypes.

Future work is needed to build on our preliminary results to understand the biobehavioral basis

of the relationships between physical activity, exercise capacity, and telomere length.
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