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Overexpression of HER-2 in 
MDA-MB-435/LCC6 Tumours is 
Associated with Higher Metabolic 
Activity and Lower Energy Stress
Wieslawa H. Dragowska1, Mihaela Ginj2, Piotr Kozlowski3, Andrew Yung3, Thomas J. Ruth4, 
Michael J. Adam4, Vesna Sossi5, Marcel B. Bally1,6 & Donald T. T. Yapp1,7

Overexpresssion of HER-2 in the MDA-MB-435/LCC6 (LCC6HER-2) tumour model is associated with 
significantly increased hypoxia and reduced necrosis compared to isogenic control tumours (LCC6Vector); 
this difference was not related to tumour size or changes in vascular architecture. To further evaluate 
factors responsible for HER-2-associated changes in the tumour microenvironment, small animal 
magnetic resonance imaging (MRI) and positron emission tomography (PET) were used to measure 
tumour tissue perfusion and metabolism, respectively. The imaging data was further corroborated 
by analysis of molecular markers pertaining to energy homeostasis, and measurements of hypoxia 
and glucose consumption. The results showed a strong trend towards higher perfusion rates (~58% 
greater, p = 0.14), and significantly higher glucose uptake in LCC6HER-2 (~2-fold greater; p = 0.025), 
relative to control tumours. The expression of proteins related to energy stress (P-AMPK, P-ACC) and 
glucose transporters (GLUT1) were lower in LCC6HER-2 tumours (~2- and ~4-fold, respectively). The in 
vitro analysis showed that LCC6HER-2 cells become more hypoxic in 1% oxygen and utilise significantly 
more glucose in normoxia compared to LCC6Vectorcells (p < 0.005). Amalgamation of all the data points 
suggests a novel metabolic adaptation driven by HER-2 overexpression where higher oxygen and 
glucose metabolic rates produce rich energy supply but also a more hypoxic tumour mass.

Amplification of the HER-2 gene (c-erbB2 or neu gene) is associated with poor prognosis1–7 and is a therapeutic 
target of interest in various cancers3,7,8. HER-2 signalling is known to trigger pathways that increase cell proliferation 
and enhance cell survival, culminating in resistance to anti-cancer therapies2,3. Our group showed that overexpress-
ing HER-2 in the aggressive MDA-MB-435/LCC6 tumour model9 (LCC6HER-2) increased the tumour’s viability 
and levels of hypoxia compared to isogenic control tumours transfected with vector alone (LCC6Vector)10. High 
levels of hypoxia would reduce the effectiveness of radiation treatment and chemotherapy, but more importantly is 
associated with an increased chance of metastasis and lower survival rates11,12. We now report that LCC6HER-2 cells 
consume more oxygen than their non-HER-2 counterparts which may explain the observed increase in hypoxic 
cell fraction found in LCC6HER-2 tumours (relative to control LCC6Vector tumours). Hypoxia in LCC6HER-2 tumours 
is present concomitantly with increased glucose consumption, suggesting higher rates of glycolysis. The data 
also indicate that HER-2 expression is associated with improved cell bioenergetics which may provide a survival 
advantage for HER-2 overexpressing tumours.
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Methods
LCC6 cells, Tumours and In Vitro Oxygen and Glucose Consumption.  The identity of the LCC6 
parental cell line, MDA-MB-435, was determined to be of melanoma origin rather than breast following a period 
of controversy and confusion13,14. Although MDA-MB-435 cells may have been misidentified as breast cancer 
cells in studies examining the effects of HER-2 overexpression in tumour biology, they are still useful models of 
altered gene expression15,16. In our laboratory, the accessibility of MDA-MB-435/LCC6 (LCC6) transfected vari-
ants and its consistent tumour take rates in animals provided an opportunity to study the in vivo effects of HER-2 
overexpression (LCC6HER-2) against an isogenic vector transfected tumours (LCC6Vector)10,17.

Animal study and imaging protocols were reviewed and approved by the animal care committee at the University 
of British Columbia working under the auspices of the Canadian Animal Care Council. All animal procedures and 
monitoring were carried out in accordance with the approved protocols. Tumours were grown subcutaneously to 
200 mm3 in immuno-compromised female Rag2M mice10 and size matched LCC6HER-2 and LCC6Vector tumours 
were imaged with magnetic resonance imaging (MRI) and positron emission tomography (PET) to evaluate in 
situ tumour tissue perfusion and glucose uptake rates, respectively. Tumours were harvested after imaging and 
processed for Western Blotting. In vitro glucose consumption rates were measured using Amplex®  Red Galactose/
Galactose Oxidase Assay (Invitrogen); cells were seeded in 6-well plates (5 ×  105 cells/3 mL media; DMEM supple-
mented with 10% FBS (DMEM 10%FBS), Stemcell Technologies, Vancouver, BC) and allowed to adhere overnight, 
washed twice with glucose free DMEM media, then incubated in DMEM 10%FBS containing 6000, 1000, 500 or 
200 μ M glucose. The remaining glucose concentrations at 0, 6 and 24 hours were determined and expressed as a 
percentage of the initial glucose concentrations. The hypoxia marker EF5, which is reduced in the absence of oxygen 
and forms covalent cellular adducts18, was used to evaluate oxygen consumption in a sealed system. Cells (2, 4 and 
6 ×  106/mL) were suspended in EF5-containing DMEM 10% FBS media (200 μ M) and incubated in air-tight tubes 
for two hours, and after staining with anti-EF5 antibody analysed with flow cytometry, as previously described10. 
The fluorescence intensity of the samples is proportional to the average number of EF5 adducts present in the cell 
population and is a surrogate measure of oxygen depletion under these conditions.

Magnetic Resonance Imaging (MRI).  In situ tumour perfusion rates were measured using an animal MRI 
scanner (Bruker, Germany) equipped with a 7T/30 cm horizontal bore magnet. Tumour perfusion measurements 
were carried out as described previously19. Animals were anaesthetized with isofluorane and positioned in a 
specially designed holder constructed in-house. The animal’s body temperature was maintained at physiological 
levels, and respiratory rates at ~100 breaths/min during the scan. A catheter was inserted in a tail vein for remote 
injection of the contrast reagent, Gd-DTPA. A 3 turn solenoid coil surrounding the tumour was used for spin 
excitation and signal reception. The volume transfer constant (Ktrans) between blood plasma the extra-vascular 
space in the tumour was calculated from the rapid acquisition of T1-weighted sequences, which monitor the pas-
sage of Gd-DTPA in viable tissue, using a two-compartment pharmacokinetic model20. When vessels are highly 
permeable, as in tumours, Ktrans values approximate blood flow per unit volume of tissue.

Positron Emission Tomography (PET).  The Concorde-CTI microPET®Focus™ 120 scanner21 was used 
with 18F-fluorodeoxyglucose (FDG), a fluorinated analogue of glucose to evaluate glucose uptake in LCC6Vector 
and LCC6HER-2 tumours. FDG is taken up by cellular glucose transporters and phosphorylated to FDG-
6-phosphate and trapped in the cytoplasm22,23. Regions of interest (ROI) were only drawn on areas of FDG uptake 
in the PET images to exclude necrotic tissue, and the mean activity from three adjacent planes normalized to the 
ROI area (mm2). Paired sets of mice (5 sets) bearing LCC6Vector and LCC6HER-2 tumours were injected intrave-
nously with FDG and scanned simultaneously after 60 minutes.

Western Blotting.  Tumour lysates were analysed by Western blotting as described previously10 using anti-
bodies for HER-2, P-AMPKThr172 and P-ACCSer79 (Cell Signaling Technology) and GLUT1 (Chemicon Int.). 
Protein expression was reported relative to β -actin in the same lane. Western blot analysis was repeated at least 
twice for each protein.

Statistics.  Statistical analyses were performed with STATISTICA software. One way ANOVA analysis of var-
iance was used to calculate p values. Differences were considered significant at p ≤  0.05. Images of the original 
Western blots are shown in the supplementary material.

Results and Discussion
Previously, we showed that HER-2 overexpression in the LCC6 (LCC6HER-2) tumour model increases tissue hypoxia 
and overall tumour viability without changing vascular parameters; i.e., vessel density, numbers of functional 
Hoechst 33342 perfused vessels and the median distance of tissue to blood vessels (MDV)10. The classical model 
of tumour hypoxia is based on an oxygen gradient that emanates outwards from the blood vessel to tissue24; thus 
an increase in hypoxia without changes in the vascular parameters would imply that factors other than oxygen 
delivery are at play. A possible reason for this could be impaired tissue perfusion; Ktrans, a surrogate marker of tissue 
perfusion was thus measured with MRI. The MR images show that LCC6HER-2 tumours have more areas of active 
blood flow (bright pixels) than LCC6Vector controls (Fig. 1A). The Ktrans values reported here represent the relative 
blood flow rates in tumour tissue. The median Ktrans value in LCC6HER-2 tumours was on average 58% greater than 
LCC6Vector tumours (0.059 ±  0.011 and 0.034 ±  0.0041 (n =  4) ml/g tissue/min, respectively) although the differ-
ence was not statistically significant (p =  0.14, Fig. 1B). However, these results strongly support the notion that the 
emergence of hypoxia in LCC6HER-2 tumours is not due to poor blood flow and suggest that oxygen and nutrients 
may be supplied equally and diffuse the same distance in both tumours. In fact, given the strong trend to higher 
perfusion in LCC6HER-2 tumours, a decrease in hypoxia might be expected.
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LCC6HER-2 overexpressing tumours could also develop more hypoxia than controls because of differences in 
oxygen metabolism. This alternative interpretation is corroborated by the in vitro data showing that LCC6HER-2, 
compared to the LCC6Vector cells, become more hypoxic in a 1% oxygen environment (Fig. 1C; p <  0.001). The 
hypoxia marker EF5 is used here as a surrogate measure of oxygen depletion in the closed system. The data show 
that HER-2 overexpressing cells have higher levels of EF5 staining suggesting they consume more oxygen than the 
vector controls. In turn, higher oxygen consumption reflects increased rates of oxidative processes (e.g. oxidative 
metabolism of energy substrates such as glucose or fatty acids) for producing ATP. In a tumour, the demand for 
oxygen by tumour cells could outstrip the supply and create areas of hypoxia even in vascularized tissue.

Increased hypoxia associated with HER-2 overexpression is not unique to the LCC6 model; overexpressing 
HER-2 in the MCF7 breast cancer tumour model resulted in higher hypoxia levels as shown with pimonidazole 
staining of tumour sections, and lower tissue oxygenation measured directly using an intratumoural pO2 probe25. 
Moreover, as in our study, vascular parameters including MDV were similar in HER-2 overexpressing and control 
MCF7 tumours, and inhibiting HER-2 with trastuzumab resulted in better oxygenation25. However, tumour tissue 
perfusion rates were not measured in this study so the status of oxygen delivery in these tumours is unknown. 
Interestingly, recent studies reported that the transcription factor NF-κ B is an important physiological regulator 
of mitochondrial respiration26. The authors suggested that increased mitochondrial respiration is a metabolic 
adaptation to maintain energy homeostasis in growing cells and tumours under conditions where nutrients are 
in high demand to meet cellular needs of proliferating cells. As previously shown10, LCC6HER-2 cells and tumours 
express NF-κ B at much higher levels than LCC6Vector controls which may account for higher oxidative metabolism 
in HER-2 overexpressing LCC6 tumours.

In contrast to our results showing the association of HER-2 expression with increased oxygen consumption 
(Fig. 1C), studies from other groups showed that expression of HER-2 in various cell lines promotes a metabolic 

Figure 1.  Tissue perfusion rates are higher in LCC6HER-2 tumours relative to LCC6Vector tumours.  
(A) Tumour perfusion maps of Gd-DTPA concentrations in edge to edge axial slices of LCC6Vector and 
LCC6HER-2 tumours (top and bottom row, respectively). The bright pixels within the images show areas of 
tumours which are actively perfused; the intensities correspond to Gd-DTPA concentrations. The areas of 
perfused tissue are more evenly distributed in LCC6HER-2 tumours compared to LCC6Vector tumours. (B) Ktrans 
values show a strong trend towards higher perfusion rates in LCC6HER-2(■ ) tumours compared to LCC6Vector 
(□ ) tumours (median ±  SD, p =  0.14, n =  4). (C) LCC6Vector (□ ) and LCC6HER-2 (■ ) cells were incubated in 
air-tight containers containing 1% oxygen in the presence of the hypoxia marker EF5 for two hours followed by 
staining with anti-EF5 antibody and flow cytometric analysis; fluorescence intensity (arbitrary units) indicates 
the relative amount of EF5 adducts present in the cells (mean ±  SD). The graph shows that LCC6HER-2 cells have 
significantly more adducts than LCC6Vector cells indicating that under these conditions, they consume more 
oxygen and become hypoxic faster. Significant differences (p <  0.001) are indicated by the asterisk (*).
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shift from mitochondrial respiration (oxidative metabolism) to glycolysis via intermediary molecules15,16,27,28, 
and the data suggested that HER-2 overexpression was associated with lower oxygen consumption compared to 
controls15,16,27,28. The different methods of measuring oxygen consumption, culture conditions, cell type specific 
pathways regulating metabolism in vitro, and potential interference from molecular silencing of metabolic path-
ways used in these studies, however, make a direct comparison between these results15,16,27,28 and ours difficult. 
Moreover, the in situ oxygenation or hypoxia levels in tumours were not measured in these reports so it is difficult 
to conclude whether the observed in vitro differences due to HER-2 activity15,16,27 would be present in vivo as well.

To investigate if changes in oxygen consumption associated with HER-2 expression affected glucose metab-
olism we measured glucose consumption in LCC6HER-2 and LCC6Vector cells. Our results showed that LCC6HER-2 
cells have higher glucose consumption in an aerobic environment (Fig. 2). This finding was consistent with the 
findings published in the same reports referenced above15,16,27,28. Interestingly, in the LCC6 model, the rate of 
consumption appears to be dependent on the glucose concentration; at 6000 and 1000 μ M glucose, significant 
differences in glucose consumption between LCC6Vector and LCC6HER-2 cells were noted at 24 hours (88% vs. 82%; 
p =  0.03 and 43% vs. 29%; p =  4.8 × 10−7, for 6000 and 1000 μ M, respectively), whereas at 500 and 200 μ M, signif-
icant differences were apparent by 6 hours (71% vs. 64%; p =  0.001 and 83% vs. 58%; p =  0.001). These data imply 
that HER-2 overexpressing LCC6 cells may respond faster to changes in its environment, i.e., glucose deprivation.

Most importantly, we also confirm higher rates of glucose metabolism in vivo by measuring in situ metabolic 
activity in LCC6HER-2 and LCC6Vector tumours using PET. The data show that FDG signal in LCC6HER-2 is more evenly 
distributed and more intense than in LCC6Vector tumours (Fig. 3A). The in situ accumulation of FDG per unit area 
of viable tissue show that LCC6HER-2 tumours utilize on average ~2-fold more glucose than LCC6Vector tumours 
(2.09 × 10-4 ±  4.26 × 10−5 Bq/mm2 and 9.89 × 10−5 ±  1.4 × 10−5 Bq/mm2 respectively; p =  0.025; n =  5 for each 
tumour group; Fig. 3B). Malignant tissue is known to use more glucose than normal tissue29 due to the Warburg 

Figure 2.  LCC6HER-2 cells consume more glucose than LCC6Vector cells. Graphs (A–D) show the consumption 
of glucose by LCC6Vector (□ ) and LCC6HER-2 (■ ) cells over a 24 hour period (results expressed as the percentage 
of glucose remaining in the media). The rates of glucose consumption are dependent on the glucose present 
in the media:at 6000 and 1000 μ M glucose (A and B, respectively) differences in consumption rates become 
significant after 24 hours; however at 500 and 200 μ M glucose (C and D, respectively), the differences are 
apparent by 6 hours. Significant differences (p <  0.005) are indicated by the asterisk (*).
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effect30. Cells transformed with oncogenes, including HER-2, have also been shown to elevate levels of glucose 
transporters and glucose consumption in vitro, although the molecular pathways involved were not elucidated31–33. 
HER-2 overexpression was also shown to enhance the activation of proteins involved in glycolytic, metabolic, 
stress-responses and detoxification processes in the breast tumour microenvironment34. Others demonstrated a 
glycolytic shift based on higher levels of lactate dehydrogenase A in tumours derived from cell lines obtained from 
mammary gland tumours of neu-transgenic mice28. To the best of our knowledge, we provided the first direct, 
functional measurements showing increased glucose uptake in vivo in the HER-2 background in a set of otherwise 
isogenic tumours. It is uncertain to what extent this increase is a reflection of a glycolytic shift in the oxygenated 
tumour tissue or an increased metabolic activity of a hypoxic fraction present in LCC6HER-2 tumours. However, 
considering the results showing increased glucose consumption in aerobic conditions in LCC6HER-2 compared to 
LCC6Vector cells (Fig. 3) it is reasonable to speculate that HER-2 mediates a glycolytic shift in oxygenated tissue in 
LCC6HER-2 tumours.

Higher oxygen consumption is also a reflection of a greater ATP demand, thus, a parallel increase in oxidative 
and glycolytic metabolism would appear to be a versatile and advantageous adaptation to balance bioenergetic 
stress in HER-2 overexpressing tumours to sustain proliferation and survival of cancer cells. In line with this 
rationale molecular factors germane to cell bioenergetics were examined. Expression levels of phosphorylated
-5′ -AMP-activated protein kinase (P-AMPK) the activated form of AMPK, an important regulator of energy 
processes in cells35 provide further insight into the bioenergetics of the LCC6 tumours. AMPK is phosphorylated 
when the ratio of AMP to ATP in the cell is high – i.e. when the concentration of ATP is too low to sustain cell 
functions and the cell enters a state of energy stress36. P-AMPK subsequently activates various pathways that pro-
duce energy and minimizes cellular energy expenditure in an overall bid to raise ATP levels35,36. The analysis of 
activated AMPK (P-AMPK) showed that expression of this protein was lower (~2-fold) in LCC6HER-2 compared to 
LCC6Vector tumours; levels of phosphorylated Acetyl CoA Carboxylase (P-ACC), a downstream effector of AMPK, 
also trended lower (Fig. 4A). These data provided further insight into the bioenergetics of the LCC6 tumours and 
suggested that LCC6HER-2 tumours appear to have sufficient ATP to meet the energy demand in contrast to control 
LCC6Vector tumours.

The lower energy stress in LCC6HER-2 tumours was also reflected in greatly reduced (~4-fold) expression of 
glucose transporter-1 (GLUT1) in vivo (Fig. 4B). Since GLUT1 is responsible for transporting glucose (and FDG), 

Figure 3.  FDG uptake is higher in LCC6HER-2 tumours. (A) PET images of in situ FDG accumulation in 
LCC6Vector and LCC6HER-2 tumours; the tumour is circled in yellow and the intensity of green areas in the 
tumour reflects the activity of phosphorylated FDG trapped in cells. In the color scale used, purple is low 
activity, red is high activity. (B) Total accumulation of FDG present in regions of interest (viable tissue only) 
drawn on PET images of LCC6Vector (□ ) and LCC6HER-2 (■ ) tumours (mean ±  SD; p =  0.025, n =  5). Significant 
differences (p <  0.05) are indicated by the asterisk (*).
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across the cell membrane22,23, this result appears counterintuitive considering that FDG uptake was greater in 
LCC6HER-2 compared to LCC6Vector tumours. However, we argue that low expression levels of P-AMPK in LCC6HER-2 
tumours indicate that tumours are replete with ATP and thus well-energized; consequently there is no need to 
upregulate GLUT1 levels in LCC6HER-2 tumours. In contrast, existing energy stress in LCC6Vector tumours possibly 
results in sufficient expression of GLUT1 in order to balance energy needs, as described in other systems37. Based 
on our data it is reasonable to hypothesize that the high uptake of FDG in LCC6HER-2 tumours is not due solely to 
GLUT1 levels, but also to activation of glycolytic enzymes by HER-234 that shuttle glucose into glycolytic pathways 
at a higher rate23,38,39. The net result is an increase in overall glucose flux through the cell consistent with the higher 
levels of FDG uptake in LCC6HER-2 tumours.

In conclusion, we hypothesize, on the basis of the present data, that overexpression of HER-2 in the LCC6 
tumour model is associated with higher rates of oxidative metabolism in addition to increased levels of glycolytic 
activity. Joining these two functions ultimately produces a more hypoxic tumour, but one that efficiently meets 
its energy demand. Most importantly, the present data establish a link between HER-2 signalling and cellular 
metabolic processes which warrants further investigation in other tumour models where HER-2 overexpression 
is clinically relevant. On-going work in our laboratory is focussed on the putative roles that HER-2 activation play 
in metabolic processes as in the long-term such studies may identify novel metabolic targets for the treatment of 
HER-2 positive cancers.

Figure 4.  (A) Expression levels of P-AMPK, an indicator of energy stress, are lower in LCC6HER-2 relative to 
LCC6Vector tumours; as expected, the expression levels of a downstream effector of P-AMPK, P-ACC, follow 
the same trend (P-AMPK: phosphorylated AMPK; P-ACC: phosphorylated ACC). (B) Western blot analysis 
shows that LCC6HER-2 tumours have lower expression levels of GLUT1, the major transmembrane transporter 
for glucose, relative to LCC6Vector tumours. Representative results from two tumours are shown in the figure. For 
clarity, the bands in the figure were cropped from the original gel. Gels were run under the same experimental 
conditions. The images of the full gels are available in the supplementary material.
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