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a b s t r a c t 

Objectives: The characterization of asymptomatic and mildly symptomatic patients with COVID-19 by ob- 

serving changes in gene expression profile and possible bacterial coinfection is relevant to be investigated. 

We aimed to identify transcriptomic and coinfection profiles in both groups of patients. 

Methods: A ribonucleic acid (RNA) sequence analysis on nasopharyngeal swabs were performed using a 

shotgun sequencing pipeline. Differential gene analysis, viral genome assembly, and metagenomics anal- 

ysis were further performed using the retrieved data. 

Results: Both groups of patients underwent a cilia modification and mRNA splicing. Modulations in 

macroautophagy, epigenetics, and cell cycle processes were observed specifically in the asymptomatic 

group. Modulation in the RNA transport was found specifically in the mildly symptomatic group. The 

mildly symptomatic group showed modulation in the RNA transport and upregulation of autophagy reg- 

ulator genes and genes in the complement system. No link between viral variants and disease severity 

was found. Microbiome analysis revealed the elevation of Streptococcus pneumoniae and Veillonella parvula 

proportion in symptomatic patients. 

Conclusion: A reduction in the autophagy influx and modification in the epigenetic profile might be 

involved in halting the disease progression. A global dysregulation of RNA processing and translation 

might cause more severe outcomes in symptomatic individuals. Coinfection by opportunistic microflora 

should be taken into account when assessing the possible outcome of SARS-CoV-2 infection. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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The SARS-CoV-2 infection has a variety of clinical manifes- 

ations ( Koh et al., 2020 ; Liao et al., 2020 ), which are affected

y multiple host factors, including its genetics ( Tavasolian et al., 

020 ), epigenetics ( Schäfer and Baric, 2017 ), gene expres- 

ion ( Islam et al., 2021 ), age, sex ( Lieberman et al., 2020 ;

ndurraga et al., 2021 ), and so on. The prevalence of COVID-19 in 

symptomatic patients is about 40-45% of the total cases ( Oran and 

opol, 2020 ). In the other half of the patients in their first stage of

nfection, symptoms such as fever, dry cough, and malaise may oc- 
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ur. These symptoms may be followed by dyspnea and could be 

ccompanied by more severe syndromes, which cause their condi- 

ion to deteriorate ( He et al., 2020 ). Hence, it is important to un-

erstand pathophysiologic differences in asymptomatic and mildly 

ymptomatic patients. One of the many methods to study this is 

hrough gene expression profiling. 

Mapping of gene expression profiles through transcriptomic 

nalysis is one of the most advanced methods to study dis- 

ase pathophysiology. By studying their expression characteris- 

ics, it would be possible to identify biological markers of the 

isease’s pathology and target it for therapeutical intervention 

 Casamassimi et al., 2017 ). Consequently, a transcriptomic analy- 

is would be useful to understand SARS-CoV-2 pathogenesis and 

ost responses and may permit the identification of therapeutic 

argets. 
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Table 1 

Patients Metadata and Co-morbidities. 

Characteristics Patient 

AS1 AS2 SY1 SY2 

Age (yr) 51 15 33 54 

Sex F M F M 

Cough No No Yes Yes 

Fever No No Yes Yes 

Breathing difficulties No No Yes No 

Joint pain No No No Yes 

Runny nose No No No Yes 

Co-morbidities No No No Chronic heart disease 

Ct value (mean) 14.66 18.27 17.97 27.52 

SARS-CoV-2 Pango Lineage C.1.1.398 C.1.1 C.1.1.398 C.1.1.398 

Fig. 1. Quality control analysis of differential gene expression. A principal component analysis plot of the top 500 genes. 

Table 2 

Genome characteristics of the infecting SARS-CoV-2. 

Characteristics Sample 

AS1 AS2 SY1 SY2 

Accesion ID (GISAID) EPI_ISL_747235 EPI_ISL_747239 EPI_ISL_747236 EPI_ISL_745033 

PANGO lineage (Pango 

v.4.0.5 PANGO-v1.3) 

C.1.1.398 C.1.1 C.1.1.398 C.1.1.398 

Clade GR GR GR GR 

Category Non-Variant of Concern, 

Non-Variant of Interest, 

Non-Variant Under 

Monitoring 

Non-Variant of Concern, 

Non-Variant of Interest, 

Non-Variant Under Monitoring 

Non-Variant of Concern, 

Non-Variant of Interest, 

Non-Variant Under Monitoring 

Non-Variant of Concern, 

Non-Variant of Interest, 

Non-Variant Under 

Monitoring 

Median assembly 

coverage 

343x 11,306x 929x 5,512x 

Amino acid mutations Spike D614G, N G204R, N 

R195S, N R203K, NSP1 

L149R, NSP2 I273T, NSP3 

N1220S, NSP3 T181I, NSP4 

G309C, NSP10 A32V, NSP12 

P323L 

Spike D614G, N G204R, N 

R203K, NSP1 F143del, NSP1 

K141del, NSP1 S142del, NSP12 

P323L, NSP15 T33I 

Spike D614G, E L21F, N 

G204R, N R203K, NSP3 T1036I, 

NSP12 D109N, NSP12 P323L 

Spike D614G, N G204R, N 

P67S, N R203K, NSP2 V628I, 

NSP4 P187S, NSP12 P323L 
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The expression of multiple genes has been used to predict in- 

ectious disease severity in viral infections ( Calzavara-Silva et al., 

009 ; Kieboom et al., 2015 ). Hence, we designed this study to char-

cterize important biological processes and gene expression mod- 

lated in asymptomatic and mildly symptomatic patients using di- 

gnostic nasopharyngeal specimens. Our ribonucleic acid (RNA) se- 

uence data would also provide information about the infecting 

ARS-CoV-2 strain and possible coinfection through metagenomic 

nalysis. 
450 
aterials and methods 

election of samples and RNA extraction 

Nasopharyngeal swab samples were collected from diagnostic 

pecimens in Laboratorium Kesehatan Jawa Barat. Patients were 

ategorized into two groups: asymptomatic patients and patients 

ith mild illness on the basis of the guidelines from the United 
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Fig. 2. Global gene expression analysis. Volcano plots showing differentially expressed genes (orange) in asymptomatic and mildly symptomatic samples. 
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tates National Institute of Health (NIH) on the severity of illness 

 NIH, 2021 ). 

Two nasopharyngeal swab samples from each group were col- 

ected from samples that tested positive for SARS-CoV-2, with 

 cycle threshold value lower than 30. RNA isolation was per- 

ormed with the QIAamp Viral RNA Mini Kit (QIAGEN, Ger- 
451 
any), using factory protocols. Measurement of total RNA qual- 

ty was performed using the RNA 60 0 0 Pico Kit on Agilent 

ioanalyzer 2100 (Agilent Technologies, USA). Measurement of 

NA concentration was performed using the Qubit® RNA High 

ensitivity Assay on Qubit® 2.0 Fluorometer (Life Technologies, 

SA). 
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Fig. 3. Gene expression of several SARS-CoV-2 entry proteins. Dot plot displaying the normalized count of ACE2 and TMPRSS2 expression. ∗P < 0.01 
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DNA synthesis, preparation of DNA library, and DNA sequencing 

cDNA library was constructed using 1-10 ng of RNA with the 

llumina Stranded Total RNA Prep, Ligation with Ribo-Zero TM Plus 

Illumina, USA), using factory protocols. This kit allowed the degra- 

ation of cytoplasmic rRNA, human mitochondria, bacterial rRNA, 

nd human β-globin mRNA transcripts. Quantification of DNA li- 

rary concentration was performed using the Qubit® DNA Broad 

ange Assay on Qubit® 2.0 Fluorometer (Life Technologies, USA). 

he cDNA libraries were sequenced using the Illumina NextSeq 

50, producing 101 bp paired-end DNA reads. Four technical repli- 

ates were generated from each sample, resulting in 16 sets of 

ASTQ files in total. 

ARS-CoV-2 genome analysis 

Raw FASTQ reads obtained from each sample were uploaded 

nto the DRAGEN RNA Pathogen Detection 3.5.15 web-based ap- 

lication on the BaseSpace Illumina webpage ( https://basespace. 

llumina.com/apps/12030018/DRAGEN-RNA-Pathogen-Detection ), 

o be aligned onto the genome of SARS-CoV-2 and other respira- 

ory viruses on the Illumina ( Yang et al., 2018 ) and Seattle Study

lu virus panels, producing aligned FASTA sequence files. Finally, 

hese whole genome sequences were uploaded onto the GISAID 

age ( https://gisaid.org ). 

ifferential expression analysis 

Raw FASTQ reads obtained from the sequencing were quality- 

rocessed using the BBDuk plugin in Geneious Prime v.2020.2, ac- 

ording to the following parameters: exclusion of reads below Q30 

nd exclusion of reads below 30 bp. Mapping of the processed 

eads was performed on the annotated human GRCh38 genome, 

sing the Geneious RNA mapper plugin. The reads, which were 

apped to multiple locations, were excluded from the expression 
452
evel calculation. The level of gene expression was measured in 

aw read counts and exported for the differential expression anal- 

sis. Differential expression analysis was performed using the DE- 

eq2 package on R ( Love et al., 2014 ). A raw read count matrix of

ene expression from healthy controls was acquired from a previ- 

us publication by Lieberman et al ( Lieberman et al., 2020 ). These 

ata were obtained from the NCBI Gene Expression Omnibus, with 

he accession number GSE154770. The threshold for a differentially 

xpressed gene was set as follows: P -value < 0.01, and |log 2 fold 

hange| > 2. The plots were visualized using the R package ggplot2 

 Wickham, 2016 ). 

ene ontology analysis 

The list of differentially expressed genes was used to analyze 

nriched gene ontology terms. Analysis was performed using clus- 

erProfiler 4.0 to identify gene ontology terms within the three 

ene ontology categories ( http://bioconductor.org/packages/release/ 

ioc/html/clusterProfiler.html ) ( Yu et al., 2012 ) . We extracted the 

op 25 most enriched biological process categories only for a more 

elevant discussion. 

oinfection analysis 

Total RNA extraction with QIAamp Viral RNA Mini Kit yielded 

ufficient bacterial reads for a metagenomic analysis ( Zhang et al., 

018 ). Raw FASTQ files were trimmed using the BBDuk + plugin 

n Geneious Prime v.2020.2 software, with the removal of short 

eads ( < 70 nucleotides). The processed reads were then individu- 

lly mapped with KRAKEN2 to the minikraken_8GB_20200312 bac- 

erial database ( Wood et al., 2019 ; Wood and Salzberg, 2014 ), with

he output of bacterial abundance from each taxon, as done pre- 

iously ( Ma et al., 2021 ). Visualization was performed with multi- 

le R packages: alpha diversity (Shannon index) and beta diversity 

Bray-Curtis), with R package ggplot2 ( Wickham, 2016 ) and DESeq2 

https://basespace.illumina.com/apps/12030018/DRAGEN-RNA-Pathogen-Detection
https://gisaid.org
http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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Fig. 4. The expression level of multiple genes within several immunity categories. Log 2 fold change value of several differentially expressed genes within the complement 

system and proinflammatory cytokines category. The membrane attack complex genes ( C7, C8A , and C9 ) were significantly upregulated in mildly symptomatic patients ( P 

< 0.01) but not in asymptomatic ones. A set of proinflammatory cytokines ( CXCL8, IL16, IL18 , and TXLNA ) were downregulated ( P < 0.01) in both groups. Proinflammatory 

cytokine interleukin-15 (IL15) was specifically downregulated in asymptomatic samples only ( P < 0.01; log 2 fold change = −2.899). 
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 Love et al., 2014 ) for differential analysis and pheatmap ( Kolde, 

019 ) for hierarchical clustering analysis. 

esults 

Nasopharyngeal specimens were collected during a 2-month 

eriod (September-October 2020) from SARS-CoV-2 qualitative re- 

erse transcriptase-polymerase chain reaction-positive diagnostic 

amples of Laboratorium Kesehatan Jawa Barat, with cycle thresh- 

ld value less than 30 to ensure high coverage of the viral genome 

ssembly. Patient demographic data were collected as well as their 

ymptoms during specimen collection. Table 1 summarizes the pa- 

ient’s characteristics, symptoms, and co-morbidities. The notation 

ssignment for technical replicates and the number reads (raw, 

uality-processed, and mapped) are presented in S1 File. The prin- 

ipal component plot ( Fig. 1 ) and hierarchical clustering (S1 Fig- 

re) of the samples show a close correlation of gene expression 

etween samples from similar groups. 

iral genome assembly 

We noticed that all but one samples belong to the C.1.1.398 

ineage ( Table 2 ). However, these variants belong to the GR clade 
453 
ith no known mutations affecting the clinical manifestation. The 

nly notable mutation is Spike D614G, which has been proven 

o increase transmissibility but not severity ( Plante et al., 2021 ). 

onetheless, this mutation was observed in all of our samples, re- 

ardless of their disease severity. 

lobal gene expression analysis 

We used a total of 36,248 sets of genes in this study. We 

ound that a total of 10,489 genes were differentially expressed in 

symptomatic patients (478 genes were upregulated, 10,011 genes 

ere downregulated) and 8178 genes in mildly symptomatic pa- 

ients (2164 genes were upregulated, 6014 genes were downregu- 

ated). Differential gene expression analysis showed that a larger 

et of genes were downregulated in asymptomatic patients than 

hose in mildly symptomatic patients ( Fig. 2 ) that might contribute 

o the halting or progressing the illness. We identified multiple 

enes within the category of rRNAs and mitochondrial mRNAs that 

ere significantly downregulated in both asymptomatic and symp- 

omatic samples ( Fig. 2 ). This is due to the usage of a different set

f healthy control from a different study as mentioned previously, 

f whom the two types of RNA were not depleted. 
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Fig. 5. Top 25 most enriched biological processes on the basis of the adjusted P -value. Dot plot displaying enriched biological process term in asymptomatic and mildly 

symptomatic samples. Color magnitude represents adjusted P -value, dot size represents the count of the enriched gene within each category, and the x-axis represents gene 

ratio (percentage of the enriched genes within that category to the total of assigned genes within this study). The biological process term/category is arranged on the basis 

of the value of gene ratio, not on their adjusted P -value, for easier visualizing purposes. 
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We found that there is a significant upregulation of 

ngiotensin-converting enzyme 2 (ACE2) expression in mildly 

ymptomatic patients but not in asymptomatic patients ( Fig. 3 ). 

owever, transmembrane protease serine 2 expression was signifi- 

antly downregulated in all groups. 

To better assess the inflammatory and immune response dif- 

erences between the two groups of patients, we visualized a 

eatmap on the basis of the log 2 fold change value of differen- 

ially expressed complement system genes ( Fig. 4 ) and proinflam- 

atory cytokines ( Fig. 4 ). Interestingly, interleukin (IL)-6 and IL- 

0 were not differentially expressed, contrasting a previous study 

 Dhar et al., 2021 ; Jain et al., 2021 ; Zhang et al., 2020 ). 

ene ontology analysis 

We performed gene ontology analysis using DESeq2 differen- 

ially expressed genes as input. For more relevant analysis, we gen- 

rated only gene ontology terms in the biological process category 
454 
 Fig. 5 ). Asymptomatic and mildly symptomatic patients shared 

ommon deregulated biological processes (i.e., cilium modifica- 

ion/assembly, RNA splicing, and nuclear transport). Those pro- 

esses might be the direct consequences of SARS-CoV-2 infection 

nd may explain the universal pathology of non-severe COVID- 

9. Cilia regulatory gene RFX3 and cilia component protein DNAH7 

 Robinot et al., 2021 ) were among the genes that were downregu- 

ated in our study ( P < 0.01). 

acroautophagy flux reduction in asymptomatic patients 

Our study shows expression level differences among genes re- 

ated to macroautophagy machinery. Moreover, macroautophagy 

s included in the top 25 most enriched biological processes of 

symptomatic patients, indicating its importance in modulating 

isease severity. Hence, we further analyzed the expression level 

f genes (log 2 fold change) within this ontology term ( Fig. 6 ). Gen-

rally, we observed a large set of downregulated autophagy-related 

enes in asymptomatic patients ( Fig. 5 ). Autophagy reduction in 
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Fig. 6. Log 2 fold change of genes within the macroautophagy ontology term. 

Autophagy-related genes ( ATG13, ATG4D , and ATG9B ) were specifically downregu- 

lated in asymptomatic patients. Autophagy regulator gene MAP1LC3C was signif- 

icantly downregulated in the asymptomatic group, yet upregulated in the mildly 

symptomatic group. 

Fig. 7. Log 2 fold change of genes within the mRNA catabolic process term. A down- 

regulation of K-homology splicing regulatory protein ( KHSRP ) gene expression among 

mildly symptomatic patients ( P < 0.01) was detected. Our study also found the up- 

regulation of ZC3H12D , an mRNA regulator zinc finger gene, in asymptomatic pa- 

tients ( P < 0.01) but not in mildly symptomatic patients. 
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455 
symptomatic patients was featured by a complete downregula- 

ion of autophagy-related genes ( ATG s). These genes are affiliated 

ith the autophagosomes and DMVs formation ( Yin et al., 2016 ). 

e found an upregulation of MAPILC3C in the symptomatic group 

 Fig. 6 ). Those genes are positive regulators in the autophago- 

ome formation process ( Bonam et al., 2020 ; Yu et al., 2008 ). The

AP1LC3C protein is a member of the MAP1LC3 protein family, 

hich plays part in the autophagosome initiation ( Bonam et al., 

020 ). 

RNA catabolism dysregulation in mildly symptomatic patients 

We found that some biological processes related to mRNA pro- 

essing (mRNA catabolic process, RNA transport, etc) are particu- 

arly enriched in mildly symptomatic patients ( Fig. 5 ). RNA splic- 

ng was the only ontologic term within this category that was en- 

iched in asymptomatic patients. This showcases the central role of 
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Fig. 8. Heatmap plot of species abundance within asymptomatic and mildly symptomatic patients. It is shown that Veillonella parvula abundance is significantly higher in 

the symptomatic group. ∗∗∗the highlighted V. parvula . 
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RNA processing in the progression of the disease. Hence, we built 

 heatmap showing the log 2 fold change value of differentially ex- 

ressed genes within this category ( Fig. 7 ). 

oinfection with local opportunistic bacteria 

Taxonomic mapping from the KRAKEN2 result (using 

inikraken_8GB_20200312 databases) was plotted to a bar 

lot on the basis of the abundance data for each species. On 

he basis of our DESeq2 analysis result, we found 30 most dif- 

erentially abundant species that were higher in symptomatic or 

symptomatic patients. We visualized the relative abundance of 

he 30 species with a heatmap on the basis of Euclidean distance . 

e found that the Streptococcus pneumoniae dominated the SY1 

ample, with an average percentage of 74% and 0.22% in the SY2 

ample. S. pneumoniae was also found in asymptomatic samples, 

ith a percentage of 0.01% in AS1 and 0.03% in AS2. Streptococcus 

ohnii (5.5% in SY1 patient and less than 0.1% in other patients) 

nd Haemophilus influenzae (3.2% in SY1 patient and less than 

.1% in other patients) also had a higher relative abundance in 

Y1 samples. We found that only Veillonella parvula had a higher 

bundance in both symptomatic patients ( Fig. 8 ). 

There is no intrasample variability for each technical replicate 

nd among asymptomatic samples ( Fig. 9 a). We also found that 

here is a great dissimilarity in beta diversity ( Fig. 9 b). Another re-

earch with a bigger sample size also showed diversity variation 

mong samples from the same level of disease severity ( Ma et al., 

021 ). SY1’s alpha diversity was lower than the others ( Fig. 9 a) be-

ause of the overgrowth of S. pneumoniae ( Fig. 9 c), whereas SY2’s 

lpha diversity was high. This difference between symptomatic pa- 

ients might be due to the use of a cross-sectional study with dif- 

erent types of symptoms present ( Table 1 ). 
456 
iscussion 

Our study aims to identify differences in biological processes 

nd alteration in the microflora community of nasopharyngeal 

amples from asymptomatic and mildly symptomatic patients with 

OVID-19. We collected two samples for each group and analyzed 

heir RNA sequence data. According to clinical output categoriza- 

ion by NIH ( NIH, 2021 ), patients AS1 and AS2 were categorized as 

symptomatic, whereas patients SY1 and SY2 were mildly symp- 

omatic, possessing at least one common symptom of COVID-19. 

atient SY2 possessed a chronic heart disease condition. Although 

his finding may affect the outcome of the study, Table 1 shows 

o particular symptoms related to this condition. Hence, its influ- 

nce over the gene expression of the nasopharynx tissue would be 

inimal. On the other hand, the infecting SARS-CoV-2 variants are 

ot listed as variants of concern, variants of interest, or variants 

nder monitoring by WHO (who.int). Mutations found in our sam- 

les were not known to influence the manifestation of the disease, 

xcept for the presence of Spike D614G, which was only known 

o rise the transmissibility and fitness of the virus ( Plante et al., 

021 ). 

Our study confirms a previous study that reported the loss of 

he ciliary layer due to SARS-CoV-2 infection ( Robinot et al., 2021 ). 

e observed the downregulation of RFX3 , a positive regulator of 

iliogenesis, and DNAH7 , a component of cilia structure, as iden- 

ical to that previous study ( Robinot et al., 2021 ) and implies a 

isruption in the ciliated basal body along the upper respiratory 

ract, regardless of its clinical manifestation. Although the previ- 

us study highlighted the downregulation of ciliogenesis regula- 

or FOXJ1 at the later stage of infection ( Robinot et al., 2021 ), we

ound no significant differences in the expression of FOXJ1 in both 

roups of patients ( P > 0.05). This may suggest that FOXJ1 may still 
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Fig. 9. Diversity and Relative Abundance Analysis. (A) Alpha diversity analysis with the Shannon index showed that there were no significant differences in intrasample 

variation. (B) Beta diversity analysis with Bray-Curtis dissimilarity showed no diversity variation among each sample from the same category. (C) Relative abundance of each 

species to species with > 1% relative abundance. 
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e expressed at the basal level but its downregulation occurs post- 

ranslationally due to viral infection, as proven in a study with cil- 

ated EC cells ( Abdi et al., 2018 ). The direct consequence of ciliary

mpairment is loss of smell (anosmia), one of the most common 

ymptoms of SARS-CoV-2 infection ( Meng et al., 2020 ), consider- 

ng that the olfactory sensors lie along with the ciliated cells of 

he nasal cavity ( Li et al., 2020 ). The cilia may also act as an entry

oint for SARS-CoV-2 along the upper respiratory tract, as previ- 

usly studied in other coronaviruses ( Afzelius, 1994 ), allowing a 

igh load of virion in the nasal cavity and pharynx ( Zou et al.,

020 ) regardless of case severity. 

Another body of biological processes that share similar dysreg- 

lation in both groups of the patient lies within the nucleocyto- 

lasmic transport and RNA splicing category. Multiple pieces of 

vidence demonstrated that the SARS-CoV-2 proteins’ interference 

ver the components of nucleocytoplasmic transport with ORF6 

rotein performs a vital role in this process ( Addetia et al., 2021 ;

ato et al., 2021 ; Miyamoto et al., 2021 ) by binding to nucleoporin

rotein ( Kato et al., 2021 ; Miyamoto et al., 2021 ), dislocating them

rom the nuclear membrane ( Kato et al., 2021 ), and blocking mRNA 

ransport from nucleus to cytoplasm ( Addetia et al., 2021 ) and 

TAT1 transport into the nucleus ( Miyamoto et al., 2021 ), hindering 

 proper antiviral interferon response. Although these findings sug- 

est a dysregulation of nucleocytoplasmic transport component at 

he protein level, our transcriptomic study implies a more system- 

tic dysregulation at their transcriptional level. We found a large 

et of genes were downregulated within this category of biological 

rocess. This provides a hint of intervention in the nucleocytoplas- 

ic gene expression system by yet unknown components of SARS- 

oV-2. However, the blocking of mRNA nuclear transport by the vi- 

al components would halt multiple cell regulation and pathways 

 Ren et al., 2010 ). Moreover, SARS-CoV-2 NSP16 protein binds to U1 

nd U2 small non-coding RNA region of the spliceosome, inhibit- 

ng it from splicing premature mRNA ( Banerjee et al., 2020 ). This 

ction disrupts an array of mRNA modifications and alters multiple 

athways and cellular functions ( Srivastava et al., 2020 ). 
457 
Specifically, we noticed the deregulation of processes related to 

pigenetic and cell cycle modification in asymptomatic patients. 

hese findings suggest the involvement of the two modifications 

n halting the progression of the disease. We have not been able to 

dentify which specific action contributes to this phenomenon be- 

ause of the complex and unpredicted outcomes of epigenetic reg- 

lation. However, we hypothesized that the host cell’s response to 

iral infection by modifying its histone and chromatin structure al- 

ows efficient viral elimination through a proper immune response 

s described before ( Menachery et al., 2014 ). 

Interestingly, we found the specific downregulation of IL-15 

n asymptomatic patients ( P < 0.01) but not in symptomatic pa- 

ients. In general, overexpression of inflammatory genes and re- 

uction of activated T cells are the hallmark of betacoronavirus 

nfection, including during SARS-CoV-2 infection ( Lau et al., 2013 ; 

yabkova et al., 2021 ). Multiple reports showcased the “cytokine 

torm” phenomenon as the main cause of poor prognosis among 

evere and critically ill patients ( Guo et al., 2020 ; Kumar et al.,

019 ; Ramasamy and Subbian, 2021 ; Trougakos et al., 2021 ). How- 

ver, we found no other upregulation of inflammatory cytokines in 

ur samples. The discrepancy between our findings and the pre- 

ious studies might be because the use of nasopharyngeal tissue 

s not the proper anatomical location to observe this phenomenon. 

onetheless, our result is interesting because IL-15 overexpression 

eads to excessive activation and exhaustion of neutrophils around 

he local tissue ( Ratthé and Girard, 2004 ). Activation of neutrophils 

tself is used as a prognostic factor in the management of patients 

ith COVID-19. A high neutrophils-to-lymphocytes ratio marks the 

ossible severe outcome of the disease ( Liu et al., 2020 ). 

Our study found the dysregulation of the mRNA metabolic pro- 

ess, including its translation. We observed this effect explicitly 

n mildly symptomatic patients. Fig. 5 shows that 12 of the 25 

ysregulated biological processes are related to this category. This 

ight benefit the viral infection by halting native mRNA trans- 

ation and promoting viral genomic RNA translation and replica- 

ion, which is a very well-known pathogenesis among RNA viruses 
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 Bushell and Sarnow, 2002 ; Jaafar and Kieft, 2018 ; Toribio and Ven-

oso, 2010 ). Remarkably, a previous single-cell transcriptomic study 

ound consistent dysregulation of the host transcription system in 

ultiple tissues during SARS-CoV-2 infection among symptomatic 

ndividuals ( Bass et al., 2021 ). The hijacking of the mRNA trans- 

ation process includes genes related to viral infection response, 

pecifically innate interferon response ( Astuti and Ysrafil, 2020 ; 

anerjee et al., 2020 ). A delayed interferon response is commonly 

nown as the hallmark of SARS-CoV-2 infection ( Astuti and Ys- 

afil, 2020 ; Guo et al., 2020 ; Kasuga et al., 2021 ; Lau et al., 2013 ).

 more systematic disruption in mRNA metabolism in our symp- 

omatic cohort might need to occur for a poor clinical outcome to 

ccur. Significant downregulation of KHSRP —a negative regulator of 

etinoic acid-inducible gene I-mediated signaling ( Onomoto et al., 

021 )—in symptomatic patients might reduce the excessive induc- 

ion of interferon responses ( Onomoto et al., 2021 ) by halting the 

ctivation of retinoic acid-inducible gene I-mediated receptors. We 

lso found the specific upregulation of ZC3H12D gene expression 

n asymptomatic samples ( P < 0.01) but not in the symptomatic 

roup. The expression of ZC3H12D negatively correlates with the 

nflammatory reaction by acting as a destabilizing regulator of sev- 

ral inflammatory gene mRNAs ( Zhang et al., 2015 ), and its ex- 

ression is high during the case of acute lung injury ( Zhang et al.,

015 ), one of the complication syndrome of patients with COVID- 

9 ( Parasher, 2021 ). 

Other studies also reported aberrant activation of complement 

ystem proteins in the blood due to SARS-CoV-2 infection. This ac- 

ivation contributes to the elevation of proinflammatory cytokine 

elease and intravascular thrombosis ( Chouaki Benmansour et al., 

021 ; Bruin et al., 2021 ; Holter et al., 2020 ; Java et al., 2020 ;

oris et al., 2020 ; Perico et al., 2020 ). We observed an elevation of

omplement activation genes ( C7, C8A , and C9 ) within the mildly 

ymptomatic samples, suggesting its involvement in the progres- 

ion of the disease. The excessive activation of the complement 

ystem in the blood causes a high release of inflammatory cy- 

okines and induces vascular thrombosis ( Holter et al., 2020 ; Li and 

hen, 2021 ), the two main causes of the severity of COVID-19 

 Parasher, 2021 ). 

We also found a significantly higher expression of the ACE2 

ene in mildly symptomatic compared with the control and 

symptomatic groups ( Fig. 3 ). It is found that ACE2 expression is 

 function of interferon expression ( Ziegler et al., 2020 ). Hence, 

his might contribute to an extreme inflammatory profile among 

ymptomatic patients ( Ramasamy and Subbian, 2021 ). A high level 

f ACE2 expression in the nasopharyngeal tissue of symptomatic 

ndividuals was also observed in a previous transcriptomic study 

 Islam et al., 2021 ). Transmembrane protease serine 2 was down- 

egulated in patients with COVID-19, a similar finding to a previ- 

us study, where its expression was not differentially expressed 

mong multiple degrees of severity ( Jain et al., 2021 ) or even 

ownregulated among patients with COVID-19 ( Islam et al., 2021 ; 

ieberman et al., 2020 ; Rossi et al., 2021 ). 

We specifically noted an enrichment in the protein catabolic 

rocess and macroautophagy/autophagy process in this subset of 

atients ( Fig. 5 ). Multiple genes with prominent roles in au- 

ophagosome influx were significantly downregulated within this 

roup of patients. The most evident ones are the ATGs and 

AP1LC3C (P < 0.01), suggesting their role in the progression of 

he disease. The protein products of these ATG genes are central 

o the formation of autophagosomes and double-membrane vesi- 

les ( Andaloussi et al., 2017 ; Bonam et al., 2020 ; Rubinsztein et al.,

012 ; Webber and Tooze, 2010 ; Xie and Klionsky, 2007 ; Yun et al.,

020 ). Coronaviruses and other positive-sense RNA viruses, includ- 

ng SARS-CoV-2, use the DMV compartment to aid their genome 

eplication process, protected from pathogen recognition receptors 

 Cottam et al., 2014 ; Netherton and Wileman, 2011 ; Shroff and 
458 
azarko, 2022 ; Wolff et al., 2020b , 2020a ). Moreover, some au- 

ophagy inhibitor compounds have been tested to modulate in- 

ammation in patients with COVID-19. The most notable one is 

zithromycin, a macrolide antibiotic with an inflammatory regu- 

ation property, whose activity in suppressing the autophagosome 

nflux has been well studied ( Renna et al., 2011 ; Venditto et al., 

021 ). 

Our study found that S. pneumoniae, H. influenzae , and S. cohnii 

ad a higher relative abundance in symptomatic patients, specifi- 

ally in the SY1 patient and only a few in other patients ( Fig. 9 ).

he high relative abundance of pathogenic bacteria in SY1 pa- 

ient affected the lower alpha diversity index in SY1 patient than 

n others. Besides, the great dissimilarity of beta diversity might 

e caused by the different individual profiles of bacteria. Pneu- 

ococcal infections have been reported in many COVID-19 cases 

nd worsen the patients’ outcomes ( Amin-Chowdhury et al., 2021 ). 

lthough this species is reported as a commensal opportunistic 

athogen, residing mostly in the upper airways ( Weiser et al., 

018 ), the colonization of this bacteria leads to respiratory infec- 

ion. This might happen during the loss of mucociliary clearance 

ue to viral infection ( Sender et al., 2021 ), which is reported in

ur study and is induced by the depletion of ciliated cells ( Li et al.,

020 ; Robinot et al., 2021 ). S. pneumoniae had many virulence fac- 

ors, such as toxin pneumolysin, that cause pore-forming. The ef- 

ect of pore-forming is to influence inflammatory responses and 

nternalization of other bacteria, such as opportunistic pathogen 

. influenzae ( Neill et al., 2015 ). In patients with pneumonia, 

he normal microflora S. cohnii colonizes and causes bacteremia 

 Sender et al., 2021 ). S. pneumoniae colonization can interact with 

ther commensal bacteria through cooperative or competitive rela- 

ionships. S. pneumoniae cooperatively interacts with H. influenzae 

nd S. cohnii ( Sender et al., 2021 ; Weiser et al., 2018 ). The clinical

ata showed that SY1 patients had breathing difficulty symptoms 

hat might be due to the overgrowth of S. pneumoniae, H. influen- 

ae , and S. cohnii in the respiratory tract. Interestingly, Veillonella 

arvulla had a higher relative abundance in both symptomatic pa- 

ients (SY1 and SY2) than in asymptomatic patients ( Fig. 9 ). This 

uggested that the presence of V. parvula might be related to the 

ymptoms of patients with COVID-19. Previously, V. parvula was 

lso found to increase its abundance in patients with COVID-19 

ompared with the normal patients ( Ma et al., 2021 ). 
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