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Abstract
Several different barcoding methods of distinguishing species have been advanced, but which

method is the best is still controversial.Chlorella is becoming particularly promising in the

development of second-generation biofuels. However, the taxonomy ofChlorella–like organ-

isms is easily confused. Here we report a comprehensive barcoding analysis ofChlorella-like
species fromChlorella,Chloroidium,Dictyosphaerium and Actinastrum based on rbcL, ITS,
tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P

ID and character-based barcoding methods. First of all, the barcoding results gave new

insights into the taxonomic assessment ofChlorella-like organisms studied, including the clear

species discrimination and resolution of potentially cryptic species complexes inC. sorokini-
ana,D. ehrenbergianum andC. Vulgaris. The tufA proved to be the most efficient barcoding

locus, which thus could be as potential “specific barcode” forChlorella-like species. The 16S

failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID,

ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA
genes. The best resolution for species differentiation appeared in tufA analysis where GMYC,

PTP, ABGD and character-based approaches produced consistent groups while the PTP

method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could

clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages,

with many character attributes. Thus, the character-based barcoding provides an attractive

complement to coalescent and distance-based barcoding. Our study represents the test that

proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.

Introduction
Chlorella (Trebouxiophyceae, Chlorophyta), single-celled green algae, is one of the most
famous microalgae genus worldwide that grow in marine, freshwater or edaphic habitats. Chlo-
rella could be used as powerful ‘superfoods’, and is significant in the development of second-
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generation biofuels and medical treatments [1–4]. Nevertheless, the taxonomic assignment of
Chlorella is easily confused since there are no obvious structural features among species or
some of observable characteristics are variable within species. After the type species are identi-
fied, more than 100 Chlorella species have been described [5–9]. For a long time, numerous
studies focusing on morphological characters, ultrastructural composition of the cell wall, bio-
chemical and physiological characters and molecular phylogenetic characteristics have been
carried out to revise the system of Chlorella [6,9–25]. New Chlorella-related species and genera
are often discovered in recent studies [4,26–30]. Most notably, Chlorella species are recognized
as members of Chlorophyceae and Trebouxiophyceae. Based on the biochemical and molecular
data, Chlorella is shown that it consists of only five “true” Chlorella species [9,18,20]. Darienko
et al. [22] propose to transfer all Chlorella-like strains that have been identified as Chlorella sac-
charophila and Chlorella ellipsoidea to the genus Chloroidium in the so-calledWatanabea
clade. According to recent molecular studies, species that have typical Chlorellamorphology
are assigned to the family Chlorellaceae (Trebouxiophycean) that is divided into Chlorella-
clade and the Parachlorella–clade [20,31,32]. Based on SSU- and ITS rDNA sequences and
light microscopic observations, Bock et al. [25] detect six lineages of Dictyosphaerium-like
strains that are closely related to Chlorella vulgaris and describe several new species. Conse-
quently, high levels of cryptic diversity found within Chlorella and the polyphyletic characters
between Chlorella and Dictyosphaerium results in fundamental taxonomic revision of these
organisms, e.g. the description of many new species and genera [20,23–25,32,33]. All these
studies indicate that the classification of Chlorella is still very confused and it is urgent to revise
the genus. However, the identification of Chlorella–like taxa in the species level is still unclear.
It is still unknown how many species are actually included in Chlorella. Moreover, most previ-
ous molecular studies generally focus on the phylogenic analysis of Chlorella-related clades
based on 18S, ITS or SSU gene data [21,31–33]. The molecular taxonomic identification of
Chlorella-like microalgaes often analyzes limited gene loci or samples. For example, the taxo-
nomic reassessment of Chlorella by molecular signatures (barcodes) [24] is just based on the
ITS. Therefore, numerous cryptic species within Chlorella-like organisms may be overlooked.
To recover the hidden diversity, more molecular markers that have sufficient nucleotide diver-
sity, low saturation and a simple alignment process should be used for taxonomic identification
[32].

DNA barcoding is the most promising approach for species identification and detection of
cryptic species and potentially new species, particularly for the microbial communities [34–
44]. The traditional DNA barcoding [34], including the monophyly and distance-based meth-
ods, are originally used for DNA barcoding. The distance method relies on the ‘barcoding gap’
and the monophyly method can reconstruct the evolutionary histories of character traits
[34,35,45]. However, for some taxonomic groups, it is impossible to identify the specimens
based on intraspecific variation vs. interspecific divergence. For example, in plants, the species
discrimination is not always accurate using the ‘barcoding gap’, e.g. [46–49], and in some cases,
species identification is possible even if a ‘barcoding gap’ is absent [50]. The monophyly-based
DNA barcoding approach has the drawback that relates to the use of hierarchical methods for
identification [51–60]. On the other hand, the phylogenetic tree is often used for flagging
species.

Recently, several different methods have been put forward for distinguishing species [61].
The generalized mixed Yule–coalescent model sets a threshold to delineate evolutionary signif-
icant units (ESUs) akin to species [62–64]. The P ID (Liberal) method of species delimitation is
advanced for the exploration of species boundaries [65], which allows differing species bound-
ary hypotheses to be investigated by enabling the user to a priori assign taxa to putative species
groups on a phylogenetic tree. The poisson tree process (PTP) model is another tree-based
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method that distinguishes specimens in both populations and species level using coalescence
theory [66]. Automatic Barcode Gap Discovery (ABGD), a new distance method, can assign
the sequences into potential species based on the barcode gap whenever the divergence within
the same species is smaller than that among organisms from different species [67].

The character-based barcoding approach has recently been proved useful in species identifi-
cation and cryptic species revelation of some organisms (including some plants) [39,40–
41,50,68–72]. It is based on the concept that members of a given taxonomic group have the
same diagnostic characters that are absent from comparable groups [69,73]. The character-
based approach has the logical advantage that it will fail to diagnose the specimens when diag-
nostic character data are lacking, in comparison with using distances. With the development of
DNA barcoding, it seems that combination of improved species-level phylogenetic trees and
new statistical methods that evaluate quantitative character states will greatly help us to under-
stand the biodiversity patterns [74,75]. In this context, combination of multiple DNA barcod-
ing approaches may be more effective to reveal cryptic biodiversity. However, the character-
based barcoding approach is not yet commonplace in barcoding practice. So far, few studies
about barcoding microalgaes have been performed using character-based methods. On the
contrary, most molecular taxonomic identification of algae is just based on the phylogenetic
trees or genetic distance, including DNA barcoding of marine green macroalgae [76], freshwa-
ter green algae [77] and some Chlorella-related samples [24].

Besides the barcoding approaches, the efficient ‘DNA barcodes’ also play an important role
in successful species identification across a wide range of taxonomic groups. Due to a much
slower mutation rate the cytochrome c oxidase 1 (CO1) sequence which has been proved effi-
cient in barcoding animals does not discriminate most plants [78,79]. Although in red and
brown algae and some diatoms, the 5’ end of COI (COI-5P) provides resolution at the species
level [79–84], it is often unsuccessfully amplified in green algae, despite extensive primer test-
ing [76,77]. The presence of introns within COI [85–88] may be the largest obstacle to develop-
ing the COI-5P as a suitable DNA barcode marker for green algae. For land plants the core
DNA barcodes are portions of two plastid coding genes (rbcL andmatk) [89]. However, the
candidate loci fail in eliminating the disadvantages of current DNA barcoding for plants [90].
Efficient ‘DNA barcodes’ for plants are still unknown. Moreover, sincematK is absent in algae
it is urgently needed to select the specific barcodes for taxonomic group of algae, especially for
microalgaes. Recently, a new concept, the ‘specific barcode’ is proposed, which refers to a frag-
ment of DNA sequence that can enable species identification within a given taxonomic group
(e.g. a genus or family) by sufficiently high mutation rate [91]. ‘Specific barcodes’ for plants
can assist species-level identifications. Presently the rbcL gene (encodes the large subunit of
Rubisco), tufA gene (encoding elongation factor) and ITS (internal transcribed spacer region)
have been proved useful in discriminating some microalgae species, e.g. [76,77,92]. Thus, they
could be candidates as ‘specific barcodes’ for green algae.

In this study we present a comprehensive DNA barcode analysis (traditional barcoding,
GMYC, P ID, PTP, ABGD and character-based approaches) of Chlorella-like species from
Chlorella, Chloroidium, Actinastrum and Dictyosphaerium, based on four gene loci rbcL, tufA,
ITS (ITS1-5.8S-ITS2) and 16S. Publicly available sequences were added to the newly obtained
sequences from this study to better evaluate identification success among the organisms.
Sequences from all the genes are used: (i) to identify Chlorella-like taxa and reveal the possible
existence of cryptic species (ii) to evaluate the efficiency of coalescent, distance and character-
based barcoding approaches in retrieving the taxon identities of this morphologically complex
microalgaes.
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Materials and Methods

Ethics Statement
No specific permits were required for the described field studies. The field studies did not
involve endangered or protected species. No specific permissions were required for the loca-
tions. The locations are not privately-owned or protected in any way.

Algal sampling, culturing and morphological identification
The Chlorella-like green microalgaes studied were from the genera Chlorella, Chloroidium,
Actinastrum and Dictyosphaerium, most of which were Chlorella strains. A total of 176 Chlo-
rella-like samples were analyzed. The collection spots covered marine, freshwater, north pole and
terrestrial areas. The procedure for clone isolation followed Andersen [93]. The nonaxenic strains
were grown in 250 mL flask containing 200 mL liquid at an irradiance of 40 umol m-2 s-1 with
14:10 h light: dark cycle at 20°C. Some strains were obtained from different Culture Collections,
e.g. Austin, Texas, Waller Creek at University Campus, USA. A detailed list of taxa studied, was
provided in S1 Table.

The samples collected in this study were first identified based on the available morphologi-
cal characters. Specimens that could not to be assigned to binomial names were just labeled as
unknowns.

DNA Extraction, Amplification and Sequencing
DNA was extracted using the Qiagen DNEasy Plant Extraction kit (Qiagen Inc., Valencia, CA,
USA) following the instructions given by the manufacturer. The rbcL, tufA, ITS and 16S bar-
code regions were amplified and sequenced from most species using universal primers or prim-
ers designed in this study (S2 Table) [24, 94–96]. PCR reactions for all barcode regions were
carried out in a total volume of 25 μL, using 2×Taqman PCR MasterMix. PCR conditions for
all primer sets were as follows: 95°C for 3 min, primer-specific annealing temperatures for 45s,
72°C for 1 min; 35 cycles of 95°C for 30 s, primer-specific annealing temperatures for 45s, 72°C
for 1 m, with a final extension of 72°C for 1 min. Then the PCR products were sequenced on
an ABI 3730XL (Applied Biosystems).

Sequence alignment
Forward and reverse sequences of each region were edited in Sequencher (Gene Codes Corpo-
ration), and a set of publicly available sequences from Genbank was added. All rbcL, ITS, 16S
and tufA sequences were aligned using MAFFT 6.717 [97] and trimmed to a region 1158 nucle-
otides, 1016–1300 nucleotides, 315–429 nucleotides and 783 nucleotides in length respectively.

Traditional barcoding analysis
Phylogenetic reconstruction. Neighbour joining trees of rbcL, tufA, ITS and 16S

sequences were constructed based on Kimura 2-parameter (K2P) distance model as recom-
mended by Hebert et al. [34–35] in MEGA 5.0 [98] with bootstrap values (1000 replications).
Since the identification of Chlorella-like species was difficult by morphological characters, the
NJ trees were first used to flag species for character-based barcoding analysis.

For Bayesian analysis of each gene, the jModeltest v.0.1.1 [99] was used to estimate the best
substitution model using Akaike Information Criterion (AIC). The most appropriate models
for rbcL, ITS, 16S and tufA were GTR+G, GTR+ G, TVMef+I+G and GTR +G respectively. As
described in detail previously [41], the Bayesian analysis were conducted in MRBAYES 3.1.2
[100]. The maximum-likelihood (ML) search was performed using PHYML 3.0 [101].
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Distance analyses. Genetic distances were ascertained using MEGA 5.0 [98] and the Dis-
tance Summary applications of the BOLD website, with the K2P model [37]. To assess the bar-
coding gap effectiveness, the analyses of intra- and interspecific divergences were conducted
among the taxa assignments based on multiple method-based barcoding analyses.

GMYC species delimitation
Using BEAST [102,103], a linearised Bayesian phylogenetic tree was first calculated employing
a Yule pure birth model [104] (Gernhard 2008) tree prior. Settings in BEAUTi v. 1.7.1 were:
substitution models for each gene, empirical base frequencies, four gamma categories, all
codon positions partitioned with unlinked base frequencies and substitution rates. An uncorre-
lated relaxed lognormal clock model was used with rate estimated from the data and ucldmean
parameter with uniform prior to value 0 as a lower and 10 as an upper boundary. All other set-
tings were left as defaults. The length of MCMC chain was 40 000 000 sampling every 4000. All
BEAST runs were executed in Bioportal [105], and the ESS values and trace files of runs were
evaluated in Tracer v1.5.0. Two independent runs were merged using Log-Combiner v1.7.1
with 20% burn-in. Maximum clade credibility trees with a 0.5 posterior probability limit, and
node heights of target tree were constructed in TreeAnnotator v1.7.1. Single-threshold GMYC
analyses was conducted in R [106] using the APE [107] and SPLITS [108] packages.

Poisson tree process model (PTP)
Since the ultrametric trees are not required as input this coalescent-based method is very fast.
This method is implemented in a web server (http://species.h-its.org/).

P ID (Liberal) species boundary delimitation
The Species Delimitation plugin [65] within Geneious Pro v5.5.4 (Biomatters; http://www.
geneious.com) was investigated to assess species boundary hypotheses across the Bayesian gene
tree. Geneious is a bioinformatics desktop software package produced by Biomatters Ltd
(http://www.biomatters.com). P ID(Liberal) in Geneious, represents the probability of making
a correct identification of an unknown specimen by measuring the genetic variation found
within its putative species group and comparing that to the species group with which it is most
likely to be confused [109]. Maximum Likelihood trees were inferred from rbcL, tufA and ITS
datasets by employing PhyML 3.0 [101].

Automatic Barcode Gap Discovery
The ABGDmethod is available at http://wwwabi.snv.jussieu.fr/public/abgd/. The rbcL, 16S,
ITS and tufA complete sequence data were processed in ABGD using the K2P nucleotide sub-
stitution model. Prior for the maximum value of intraspecific divergence was set between 0.001
and 0.1, and 10 recursive steps within the primary partitions was defined by the first estimated
gap. The gap width was set 1.0.

Character-based DNA barcode analyses
Pure unique identifying characters, termed diagnostic characters or “characteristic attributes”
(CAs) that distinguish a species from others, were determined using characteristic attribute
organization system (CAOS) which comprises P-Gnome and P-Elf programs [66,110]. The
CAOS algorithm could extract CAs for each clade at branching node within a guide tree [69].
In this study, the guide trees inferred from rbcL, ITS and tufA sequences were first produced
using the programs PAUP v4.0b10 [111], and were incorporated into a NEXUS file containing
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rbcL, ITS and tufA sequence data respectively in MacClade [112]. Then the incorporated
NEXUS datasets were conducted in CAOS system where the P-Gnome script was used to iden-
tify characters. Finally, the most variable character states were listed.

Results
A total of 176 Chlorella-like samples from this study and publicly available data were analyzed.
PCR amplification and sequencing were successful with the ITS locus in most of the samples
(S1 Table). With the rbcL, 16S and tufA loci, there were more difficulties in amplification and
in sequencing, especially for tufA. A total of 96 rbcL, 76 ITS, 86 16S and 66 tufA sequences of
Chlorella-like samples and outgroups were analyzed (S1 Table). The accession numbers of
newly obtained sequences submitted to the GenBank Barcode database were: KM514738-
KM514804 for 16S, KM514805-KM514860 for ITS, KM514861-KM514917 for rbcL and
KR154236-KR154291 for tufA.

Traditional DNA barcoding
Phylogenetic analyses. Generally, the NJ, Bayesian and Maximum Likelihood trees of

rbcL, ITS and tufA recovered consistent groups respectively (Figs 1–3 and S1 Fig, S2 Fig and S3
Fig). A total of 31, 20 and 14 monophyletic Chlorella-like clades were recovered in rbcL, ITS
and tufA bayesian trees respectively (Figs 1–3), including the potentially cryptic lineages in
Chlorella sorokiniana, Dictyosphaerium ehrenbergianum and Chlorella vulgaris, These recov-
ered lineages would be further analyzed by GMYC, PTP, P ID, ABGD and character-based bar-
coding. Sequences of C. sorokiniana, D. ehrenbergianum and C. vulgaris fell into several
distinct clades respectively in rbcL, ITS and tufA trees, which might be indicating potentially
cryptic lineages (Figs 1–3). Thereinto, C. sorokiniana was divided into: five clades (I), (II),
(KC810315, JQ415926), (JQ415921) and (HM101339) in rbcL tree (Fig 1); five clades (I), (II),
(III), (KJ676111, KJ676109) and (KJ676113) in ITS tree (Fig 2); and four clades (I), (II), (III)
and (KJ742376, KJ397925) in tufA tree (Fig 3). C. vulgaris was also divided into: five clades (I),
(II), (EU038286, JQ315474, EU038284), (KC810313, JQ717305, AB240145) and (JQ415915) in
rbcL tree (Fig 1); three clades (I), (FR865683) and (FM205832, KC517115, JX185298) in ITS
tree (Fig 2); and three clades (I), (II) and (III) in tufA tree (Fig 3). D. ehrenbergianum was
divided into three clades (I), (II) and (III) in rbcL tree (Fig 1). It was worth noting that all the
samples collected from Arctic pole grouped together as a separate clade, but they still could not
be identified to the specific taxa in the species level. In addition, most unknown samples were
recovered as separate clades that did not group together with other species (Figs 1–3). The 16S
NJ, Bayesian and Maximum trees, however, could not separate the closely related Chlorella-like
samples, and the supports for the monophyletic clades were very low (S4 and S5 Figs). There-
fore, the coalescent, distance and character assignments of 16S sequences were not analyzed in
this study. It was apparent that the tufA phylogenetic trees recovered more well-supported
monophyletic taxa in comparison with the rbcL, ITS and 16S phylogenies.

Distance analyses. Based on the phylogenetic, GMYC, PTP, P ID, ABGD and character-
based barcoding assignments of rbcL, ITS and tufA sequences, intra- and interspecific variation
of above defined Chlorella-like assignments was conducted respectively (Figs 1–3), and the
existence of DNA barcoding gap was tested. The results showed that the pairwise intraspecific
distance of rbcL were from 0% to 4.2% with a mean of 0.51% while the pairwise interspecific
distances was from 0% to 21.70%. The mean rbcL divergence among the possible cryptic line-
ages within C. sorokiniana, D. ehrenbergianum and C. vulgaris were from 1.3% to 9.8%, 2.3% to
5.4% and 0.9% to 9.6% respectively, which was higher than 0.51% (the mean intraspecific dis-
tance) (S3 Table). However, no clear barcoding-gap was found between the intra- and
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Fig 1. Bayesian phylogenetic tree for the rbcL gene. Vertical bars on the right indicate the clades detected by the coalescent-based GMYC, PID, PTP, the
distance-based ABGD approach, the character-based CAOS and the final assignment. Posterior probabilities and NJ bootstrap values were included.

doi:10.1371/journal.pone.0153833.g001
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Fig 2. Bayesian phylogenetic tree for the ITS gene. Vertical bars on the right indicate the clades detected by the coalescent-based GMYC, PID, PTP, the
distance-based ABGD approach, the character-based CAOS and the final assignment. Posterior probabilities and NJ bootstrap values were included.

doi:10.1371/journal.pone.0153833.g002
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Fig 3. Bayesian phylogenetic tree for the tufA gene. Vertical bars on the right indicate the clades detected by the coalescent-based GMYC, PID, PTP, the
distance-based ABGD approach, the character-based CAOS and the final assignment. Posterior probabilities and NJ bootstrap values were included.

doi:10.1371/journal.pone.0153833.g003
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interspecific distances of rbcL sequences (Fig 4A). The ITS pairwise intraspecific distance ran-
ged from 0% to 9.3% with a mean of 1.6% while the pairwise interspecific distances was from
0% to 45.1%. The mean ITS divergence among the separate cryptic lineages within C. sorokini-
ana and C. vulgaris ranged from 1.7%-36.6% and 13.4%-18.4% respectively, which were also
higher than 1.6% (the mean intraspecific distance) (S4 Table). However, as with rbcL, there
was apparent overlap between the intra- and interspecific distances of ITS sequences (Fig 4B).
The tufA divergences among 14 Chlorella-like taxa in phylogenetic and character analysis were
analyzed. The tufA pairwise intraspecific distance ranged from 0% to 1% with a mean of 0.1%
while the pairwise interspecific distances was from 0% to 28.6%. The mean tufA divergence
among the cryptic lineages C. sorokiniana (I),(II),(III),(KJ742376,KJ397925) and C. vulgaris
(I),(II),(III), ranged from 7.9%-28.6% and 10.7%-16.1% respectively, which was also greatly
higher than the mean intraspecific distance (0.1%) (S5 Table). Since all the intraspecific dis-
tance was lower than 2% (proposed as 10× rule by Hebert et al. [35]) and all the interspecific
distance was higher than 2%, there was a small barcoding gap between the intra- and interspe-
cific variation of tufA sequences (Fig 5).

ABGD analysis
Based on the distance-based approach as implemented in the software ABGD, different groups
as candidate species were produced for rbcL, ITS and tufA gene sequences. Generally, the
ABGD analysis of rbcL, ITS and tufA produced fewer genetic groups than other barcoding

Fig 4. A (a): Histograms of intra- (in blue) and inter-specific (in red) average distances between rbcL sequences; (b): Histograms of intra- (in blue) and inter-
specific (in red) pairwise distances between rbcL sequences. B (a): Histograms of intra- (in blue) and inter-specific (in red) average distances between ITS
sequences; (b) Histograms of intra- (in blue) and inter-specific (in red) pairwise distances between ITS sequences.

doi:10.1371/journal.pone.0153833.g004
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Fig 5. (a) Histograms of intra- (in blue) and inter-specific (in red) average distances between tufA sequences; (b) Histograms of intra- (in blue) and inter-
specific (in red) pairwise distances between tufA sequences.

doi:10.1371/journal.pone.0153833.g005
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methods (Figs 1–3). For rbcL, the ABGD analysis revealed 21 genetic groups when using restric-
tive values with priori genetic distance thresholds 0.77% (Fig 1 and S6 Fig). Most of the 21 groups
were consistent with the ABGD analysis of ITS and tufA in which 14 groups and 12 groups were
produced at a priori genetic distance thresholds of 1% and 3.59% respectively (Figs 2 and 3, S7
and S8 Figs). In all analyses, C. vulgaris and C. sorokinianawere split into several groups.

GMYC species delimitation
The optimal threshold points obtained by the GMYCmodel for rbcL, ITS and tufA genes were
shown in Figs 1–3, S9–S11 Figs, respectively. As a whole, the specimens studied were oversplitted
by the GMYCmodel for rbcL, ITS and tufA genes in comparison with ABGD analysis (Figs 1–3).
The results of the single threshold analysis for the rbcL, ITS and tufA gene suggested 25, 27 and
16 groups respectively, some of which consisted of single specimens. Especially in ITS analysis,
the C. sorokiniana (I) and C. sp. Collect from Arctic pole were split into several groups.

PTP-based identification
The resolution produced by bPTP approach was variable among rbcL, ITS and tufA genes (Figs
1–3). The maximum-likelihood identification produced better resolution than bayesian identi-
fication. For rbcL, it recognized 21 independent entities which were consistent with the groups
revealed by ABGD analyses (Fig 1). However, for ITS and tufA, the taxa were all over split by
PTP analysis than other methods (Figs 2 and 3).

P ID-based identification
Based on the bayesian analysis, the tree-based hypotheses were reevaluated for species hypoth-
esis testing. Most candidate species were recovered as monophyletic clades in P ID species
boundary delimitation of rbcL, ITS and tufA genes except Chlorella vulgaris (I) which was not
monophylic in rbcL analysis (Figs 1–3). The resolution produced by P ID method was generally
consistent with the Character analysis. All delimited species of rbcL, ITS and tufA possessed a
P ID (Liberal) value P>0.7 (S6–S8 Tables).

Character-based identification
Based on the morphological identification, traditional barcoding, GMYC, PTP, P ID and ABGD
analysis, above 31, 20 and 14 defined Chlorella-like clades recovered by rbcL, ITS and tufA
sequences (Figs 1–3) were analyzed respectively for searching for diagnostic characters. It was
shown that all the Chlorella-like species including the possible cryptic lineages and unknowns
were clearly distinguished in the character-based DNA barcoding. In the rbcL gene region of 31
Chlorella-like taxa recovered in Fig 1, 45 character states were detected (Fig 6), in which all the 31
clades revealed a unique combination of character states at 45 nucleotide positions with more
than three CAs. The possible cryptic lineages within C. sorokiniana,D. ehrenbergianum and C.
vulgaris, e.g. C. sorokiniana (I),(II), C. vulgaris (I),(II) and D. ehrenbergianum (I),(II),(III) were
all clearly separated with many diagnostic characters (Fig 1, Fig 6). The ITS character-based
DNA barcode were shown in Fig 7, in which 20 defined Chlorella-like clades recovered in Fig 2
revealed a unique combination of character states, including the possible cryptic lineages C. soro-
kiniana (I),(II),(III) and C. vulgaris (I),(FR865683),(FM205832,KC517115,JX185298). The tufA
character states for 14 Chlorella-like clades recovered in tufANJ tree (Fig 3) were shown in Fig 8.
At 30 nucleotide positions of the tufA gene region more than five CAs were revealed for each
clade, also including the cryptic lineages C. sorokiniana (I),(II),(III) and C. vulgaris (I),(II),(III).
In comparison with rbcL and ITS, tufA detected the most diagnostic characters in the fewest
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nucleotide positions. Therefore the discrimination of taxa of all clades, including cryptic and
unknown taxa, could be resolved by character-based DNA barcoding.

Discussion
This study showed that DNA barcoding based on multiple barcoding approaches was useful in
species identification and cryptic species revelation of Chlorella-like green microalgaes. Actu-
ally, like Chlorella, the identification of microalgaes is often difficult due to their morphological

Fig 6. Combinations of diagnostic nucleotides for each of the 31Chlorella-like taxa recovered in Fig 1. Nucleotide numbers refer to 45 selected
positions on the rbcL sequences (positions 151 to 998).

doi:10.1371/journal.pone.0153833.g006

Fig 7. Combinations of diagnostic nucleotides for each of the 20Chlorella-like taxa recovered in Fig 2. Nucleotide numbers refer to 44 selected
positions on the ITS sequences (positions 229–1069).

doi:10.1371/journal.pone.0153833.g007
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plasticity or tiny body, which enables DNA barcoding as a powerful tool for revealing microal-
gae biodiversity, particularly with the combination of different analytical approaches.

Chlorella primers for barcoding
DNA barcoding of plants has struggled to seek universal DNA barcodes that not only have the
discriminatory power but also are easily amplified across Plantae as the COI gene chosen for
animals. However, none of the available barcode loci worked well across the kingdom Plantae
that includes land plants and algae [113]. For example, in molecular identification of freshwa-
ter green algae [77], the ITS1 and ITS2 regions were successfully amplified in only partial sam-
ples, which impeded the gene regions for barcoding green algae. For the barcoding of marine
green macroalgae, low amplification success of rbcL reduced the utility of this marker as a uni-
versal barcode system [76]. In this study, the rbcL, 16S and tufA genes were successfully ampli-
fied in only a small part of Chlorella-like samples with the available primers. Amplification
failure might be because of the primer site incompatibility in them since we have amplified the
gene ITS from the same DNA templates. Thus, the rbcL and 16S specific primers for Chlorella-
like strains were developed in this study based on known sequences from this study and Gen-
bank, which turned out to be effective for amplifying and sequencing some Chlorella-like sam-
ples. For tufA, however, due to its highly variable sites and very limited available sequences, it
was not possible to design the specific primers at present.

Barcoding identification and unveiling cryptic diversity ofChlorella-like taxa
Identification of Chlorella-like organisms has long been problematic on the basis of morpho-
logical characteristics. Since most molecular studies of Chlorella focus on the phylogenetic
analysis, the identification of Chlorella-like green microalgaes at species level often analyzed
limited gene loci or samples. For example, for rbcL, a commonly used molecular marker for
algae identification, prior to the initiation of this research, only six sequences of Chlorella spe-
cies had been deposited in Genbank, and most of them were identified as unknowns. For both
Chloroidium and Dictyosphaerium, only three rbcL sequences had been deposited in Genbank.
For tufA, another commonly used marker, only 27 Chlorella sequences had been deposited in
the Genbank database, and 16 of them were not identified to the species level. Moreover, the
previous molecular taxonomic identification of Chlorella-like algae, including the use of DNA
barcoding, was generally based on the phylogenetic trees or genetic distance that has often
been disputed for barcoding. Therefore, the taxonomy of Chlorella–like species is still very

Fig 8. Combinations of diagnostic nucleotides for each of the 14Chlorella-like taxa recovered in Fig 3. Nucleotide numbers refer to 30 selected
positions on the tufA sequences (positions 19–673).

doi:10.1371/journal.pone.0153833.g008
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complicated, and numerous cryptic species within Chlorella-like taxa may be still not revealed.
In the present study, the barcoding analysis based on distance and character-based approaches
indicate that the sequences analyzed can gave useful information into the taxonomic assess-
ment of Chlorella-like strains, including the species discrimination and the revelation of unveil-
ing complexes of possible cryptic species.

Firstly, the comprehensive barcoding analysis enabled the separation of all the specimens
studied. The NJ, Bayesian and Maximum Likelihood trees produced with rbcL, ITS, tufA and
16S generally revealed congruent species delineation topologies, which revealed distinct and
deeply diverged lineages. Based on the integrated analysis of GMYC, PTP, P ID and ABGD
methods, the character-based barcoding of rbcL, ITS and tufA all showed clear taxa assign-
ments that corresponded to the diverged lineages in the phylogenetic trees. Secondly, the bar-
coding analysis led to the revelation of potentially cryptic species in C. sorokiniana, C. vulgaris
and D. Ehrenbergianum. These potentially cryptic species were all separated in all GMYC,
PTP, ABGD, P ID and character-based barcoding analysis of rbcL, ITS and tufA genes. Particu-
larly, they are clearly recovered with many diagnostic characters in character-based barcoding.
In addition, to some extent, the interspecific genetic variation of rbcL, ITS and tufA among the
possible cryptic lineages were higher than the intraspecific divergence (see the intra- and inter-
specific variation results in S3–S5 Tables). Thus, all the barcoding results revealed the poten-
tially cryptic species complexes in C. sorokiniana, C. vulgaris and D. Ehrenbergianum. In short,
the genetic data in this study indicate that there is extraordinary cryptic diversity in Chlorella-
like taxa and further taxonomic re-evaluation of these possible cryptic species should be per-
formed. Finally, many unknown Chlorella-like samples in this study did not match well with
sequences published in BOLD and Genbank database. Our DNA barcoding analysis did not
allow the identification of unknown specimens at the species-level. Researchers argue that bar-
coding is helpful in species discovery by evaluating their sequence divergence [114,115]. That
is, if a matching target sequence in a barcoding database is absent the novelty of the species is
generated. Thus, the unknown Chlorella-like specimens in this study need to be further studied.
At present the DNA barcoding databases contain a limited number of reference sequences (tar-
geted barcode) for microalgaes. More available microalgae target barcoding sequences will be
greatly helpful to understand the microalgae diversity since only with an increase of accurate
barcode sequences in the target databases is how DNA barcoding methods can help to produce
reliable assignments of unknown species (query sequences). Also it is becoming apparent that
an increased sampling may be needed to ensure the presence of a discernable barcoding gap
between interspecific divergence and intraspecific variation in any given taxon and to confirm
the existence of diagnostic molecular characters [50,116].

‘Specific barcode’ for Chlorella-like green microalgaes
COI was suggested as the locus that could provide recognition tags for all animals [34,35, 45].
However, COI along with other mitochondrial genes are not suitable for barcoding plantae due
to their very low rates of substitution [117]. Thus, the search for plant barcodes shifted to chlo-
roplast and nuclear genomes with high substitution rates. Despite some arguments, the most
viable candidates as DNA barcode loci for plants are rbcL andmatK. However, previous find-
ings show that thematK or rbcL gene alone can not be used as a suitable universal barcode
[89,91,117]. Moreover,matK is absent in algae. In this context, the concept of ‘specific barcode’
for plants is put forward, which involves a trade-off between single-locus barcodes and super-
barcodes [91]. The ‘specific barcodes’ for different plant groups will resolve better resolution
for DNA barcoding of Plantae. The rbcL, ITS and tufA have been recommend as the most
promising DNA barcodes for some green algae [76,77]. In the present study, the 16S gene
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which has been used for identifying C. vulgaris [95] failed in discriminating most Chlorella-like
strains, especially for the closely related species, which corresponds with the arguments that
mitochondrial genes are not suitable for plant barcoding. Both of rbcL and ITS proved useful in
distinguishing most Chlorella-like taxa. Yet a much higher proportion of resolution success
was shown by rbcL, in comparison with tufA and ITS, including the existence of a small bar-
coding gap, the consistent groups among GMYC, ABGD and P ID methods, and many more
diagnostic characters. Therefore, the tufA could be as potentially suitable ‘specific barcode’ for
Chlorella-like taxa, which of course needs to be further compared with other gene sequences.

Efficiency of distance and character-based DNA barcoding
Several different methods of distinguishing species have been advanced by members of the bar-
coding community, but which method is the best is still in debate, especially for plants
[50,68,69,89,117–121]. Although the phylogenetic or distance trees in traditional barcoding
approaches are informative about the genetic affinities, they are arbitrary as criterions for spe-
cies identification [50,68,69]. Recently, it is proposed that incorporation of multiple lines of
methodologies should be used for understanding species boundariesed framework to develop
the initial species hypotheses where distinct clades are defined as those that do not share haplo-
types between populations and can be identified as divergent ms, especially with the methods
of GMYC, ABGD, PTP, P IN and CAOS [109, 122–124]. It has also been proposed that an
optimal path to understand species boundaries is starting with a tree or distance-baonophyletic
population clusters [109]. Then the character-based approach is employed to confirm the ini-
tial identification. Our study represents one of the first efforts to test the congruence of barcod-
ing results from multiple delimitation methods.

For traditional barcoding, generally, the NJ, Bayesian and Maximum Likelihood analysis
recovered consistent topology for each gene of rbcL, ITS, 16S and tufA. However, due to the
shortcoming of tree-based species identification [55, 60] the phylogenetic trees are more likely
to be used initially to identify putative independently-evolving lineages. The intra and inter-
specific distance of traditinal barcoding was also analyzed in this study. To some degree, the
distance method was helpful in species discrimination. For example, as a whole, the interspe-
cific variation of rbcL, ITS and tufA sequences among the potentially cryptic species complexes
in C. sorokiniana, C. vulgaris and D. Ehrenbergianum was higher than the intraspecific varia-
tion. Nevertheless, for all of rbcL, ITS and tufA sequences, although the interspecific genetic
variation was generally higher than the intraspecific genetic varation, there was no apparent
barccoding gap between them (seen S3–S5 Tables). That is, the minimum interspecific distance
is smaller than the maximum intraspecific distance, which contradicts the criterion of species
identification with sequences distance [89].

The resolution produce by GMYC, PTP, P ID, ABGD and character-based barcoding meth-
ods were variable in each of rbcL, ITS and tufA genes. In rbcL analysis, the groups recovered by
GMYC, ABGD and PTP methods were consistent while the groups recovered by P ID and
character methods were consistent. In ITS analysis, the groups produced by GMYC, ABGD
and PTP methods were all different from each other while P ID and character methods pro-
duced same groups. The best resolution for species differentiation appeared in tufA analysis
where GMYC, PTP, ABGD and character-based approaches produced consistent groups while
the PTP method over-split the taxa. Similar to previous studies [122, 125–129], GMYC typi-
cally generates more OTUs (operational taxonomic units) than other approaches for rbcL
sequences and errors in the ultrametric gene tree will influence final results. The PTP, however,
generate more OTUs than other methods in both ITS and tufA genes. Generally, the P ID and
character-based methods produced consistent groups in all rbcL, ITS and tufA genes.

DNA Barcoding of Chlorella-Like Species (Chlorophyta)

PLOS ONE | DOI:10.1371/journal.pone.0153833 April 19, 2016 16 / 24



Based on the integrated analysis of traditional barcoding, GMYC, ABGD, PTP and P ID
methods, the putative species recovered were confirmed by character-based barcoding. The
character-based DNA barcoding showed more advantages, particularly for revealing the possi-
ble cryptic lineages. For example, as expected, the character-based analysis generated relatively
congruent results in rbcL, ITS and tufA genes, and most taxonomic groups analyzed by rbcL,
ITS, 16S and tufA genes, including the potentially cryptic species, possessed unique simple
identifying character states in character-based barcoding. Some species that could not be dis-
criminated with traditional barcoding, GMYC, PTP or ABGDmethods could be detected by
character-based method, e.g. Chlorella vulgaris (I) and Chlorella sorokiniana (I) in rbcL barcod-
ing analysis, and Chlorella sorokiniana (I) in ITS barcoding analysis (Figs 1–3). In addition, if
one species is represented with only a single individual or not all closely related species are
sampled it is not possible to determine the correct intra- and interspecific divergences, which
may hinder the presence of a discernable barcoding gap. Nevertheless, a single individual can
be still assigned to a distinct clade in character-based DNA barcode. In this study, quite a few
Chlorella-like taxa represented with only a single individual were clearly distinguished with
unique combination of character attributes, especially for the unknowns. This is particularly
useful for flagging hidden new species. Thus, a character-based discrimination criterion can
maximize the success rate of molecular identification in Chlorella-like organism, which can
resolve cases that the coalescent and distance-based barcoding does not. It may be an optimal
option to first combine multiple barcoding approaches to test primary species hypotheses spe-
cies and then confirm the taxonomic assignments by the character-based method. Future DNA
barcoding of comprehensive Chlorella-like green microalgaes with character-based analysis
may move towards a better understanding of this morphologically complex microalgaes.

Conclusion
This study indicates that the combination of rbcL, ITS and tufA sequence data analyzed by
combination of GMYC, ABGD, PTP, P ID and character-based barcoding is very useful to dis-
criminate the Chlorella-like samples and reveal the complexes of potentially cryptic species
that merit further study. The resolution produced by GMYC, PTP, P ID, ABGD and character-
based barcoding methods were variable in each of rbcL, ITS and tufA genes. The tufA produced
consistent groups among GMYC, ABGD, P ID and character-based methods and also offered
many more diagnostic characters than rbcL and ITS. The tufA region thus could be as poten-
tially suitable ‘specific barcode’ for Chlorella-like taxa. On the other hand, all the character
analysis of rbcL, ITS and tufA sequence could clearly distinguish all taxonomic groups, includ-
ing the potentially cryptic lineages, with many character attributes. In comparison with other
barcoding methods, the character-based discrimination criterion can maximize the success
rate of molecular identification in Chlorella-like organisms, which can resolve cases that the
distance and coalescent-based criterion does not. The character-based barcoding could be
used as an attractive complement to coalescent and distance-based barcoding. It could be an
optimal option to first combine multiple barcoding approaches to test primary species hypoth-
eses species and then confirm the taxonomic assignments by the character-based method.
Further DNA barcoding of comprehensive Chlorella-like green microalgaes with character-
based analysis may move towards a better understanding of this morphologically complex
microalgaes.
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S1 Fig. Maximum Likelihood tree for the rbcL gene.
(TIF)
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S2 Fig. Maximum Likelihood tree for the ITS gene.
(TIF)

S3 Fig. Maximum Likelihood tree for the tufA gene.
(TIF)

S4 Fig. Bayesian phylogenetic tree for the 16S gene. Posterior probabilities and NJ bootstrap
values were included.
(TIF)

S5 Fig. Maximum Likelihood tree for the 16S gene.
(TIF)

S6 Fig. Automatic partition of tellinaceans based on rbcL gene. The number of groups inside
the partition (initial and recursive) of each given prior intraspecific divergence value were
reported.
(JPG)

S7 Fig. Automatic partition of tellinaceans based on ITS gene. The number of groups inside
the partition (initial and recursive) of each given prior intraspecific divergence value were
reported.
(JPG)

S8 Fig. Automatic partition of tellinaceans based on tufA gene. The number of groups inside
the partition (initial and recursive) of each given prior intraspecific divergence value were
reported.
(JPG)

S9 Fig. GMYC resulution of rbcL genes. The red vertical line in the tree was the threshold
point obtained from the GMYCmodel.
(TIF)

S10 Fig. GMYC resulution of ITS genes. The red vertical line in the tree was the threshold
point obtained from the GMYCmodel.
(TIF)

S11 Fig. GMYC resulution of tufA genes. The red vertical line in the tree was the threshold
point obtained from the GMYCmodel.
(TIF)

S1 Table. List of specimens with the classification, collection details, and voucher numbers.
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S2 Table. Primer sequences and annealing temperatures used to amplify the different
regions.
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S3 Table. The mean interspecific divergencesof rbcL sequences for Chlorella-like taxa.
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S4 Table. Themean interspecific divergences of ITS sequences for Chlorella-like taxa.
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S5 Table. The mean interspecific divergencesof tufA sequences for Chlorella-like taxa.
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S6 Table. Species Delimitation Results of PID for rbcL. The species number (clade) corre-
sponds to the P ID clades in Fig 1.
(XLSX)

S7 Table. Species Delimitation Results of PID for ITS. The species number (clade) corre-
sponds to the P ID clades in Fig 2.
(XLSX)

S8 Table. Species Delimitation Results of PID for tufA. The species number (clade) corre-
sponds to the P ID clades in Fig 3.
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