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Abstract
Purpose of Review To discuss and provide evidence-based data on dietary supplements as part of treating diabetic neuropathy
Recent Findings Few randomized controlled trials are available, but some have shown beneficial efficacy of various dietary
supplements on objective primary endpoints including nerve conduction velocities and axon potentials as well as subjective
patient-reported outcomes.
Summary No medical cure for diabetic neuropathy exists, and prevention is therefore crucial. Tight glucose control slows the
progression of nerve damage in diabetes, but an unmet clinical need for effective interventions is warranted. Consequently, a
growing number of patients turn to dietary supplements proposed to possess neuroprotective properties. However, the postulated
effects are often not evidence-based as they have not been tested scientifically. Taken together, this review will focus on dietary
supplements investigated in clinical trials for their potential capabilities in targeting the molecular mechanisms involved in the
underlying pathogenesis of diabetic neuropathy.

Keywords Diabetic neuropathy . Dietary supplement . Antioxidants . Neuroprotection

Introduction

The incidence of people diagnosed with diabetes worldwide is
escalating. Meanwhile, treatment has improved, thus leading
to longer life expectancies for affected individuals.
Accordingly, the presence of long-term diabetes and macro-
and microvascular complications is increasing [1]. Currently,
it is considered as one of the most important public health
issues, as these complications cause negative impact on the
individual quality of life and increase socioeconomic expen-
di ture. Among the microvascular complicat ions,

polyneuropathy affects up to 50% of adults with long-term
type 1 and type 2 diabetes. The pathogenesis is complex and
multifactorial and includes immune-mediated, inflammatory,
vascular, and metabolic pathways [2, 3]. The clinical manifes-
tations of classical diabetic symmetrical polyneuropathy
(DSPN) include sensory and motor loss of the peripheral
nerves to feet and hands, evident as a “stocking-and-glove”
distribution mirroring a length-dependent axonopathy of the
larger sensory and motor nerves in the extremities [4]. Thus,
patients experience a number of paradoxical sensory deficits
ranging from loss of protective sensation/numbness to debili-
tating neuropathic pain [5].

Proposed Molecular Pathways Involved
in Diabetic Neuropathy

Nerves are particularly sensitive to fluctuations in blood glu-
cose levels because neurons have continuously high glucose
demand and are vulnerable to episodes of glycolytic and an-
aerobic metabolism. Furthermore, neurons fail to regulate ep-
isodic glucose uptake under the influence of insulin. Neurons
express the glucose transporter 3 (GLUT3), which allows for
continuous import of glucose due to a high affinity (KM below
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normal fasting blood glucose level) [6, 7]. Physiologic func-
tions of nerves are fueled by ATP, which primarily is gener-
ated by glucose metabolism. Disruption of glucose metabo-
lism underlies peripheral neuropathies, and diabetic hypergly-
cemia can cause up to fourfold increases in glucose levels.
Persistent or repetitive excessive glucose uptake leads to al-
tered intracellular glucose metabolism and neuronal damage
often referred to as glucose neurotoxicity [8].

One metabolic consequence of excessive intracellular glu-
cose is a shift towards the polyol pathway in which glucose is
converted to sorbitol (Fig. 1). Increased sorbitol has two neg-
ative consequences on neuronal homeostasis. Firstly, it results
in disturbances in the osmotic balance leading to compensa-
tory efflux of myoinositol, which is essential for normal nerve
function [9]. Secondly, the increased glucose-to-sorbitol con-
version results in oxidative stress, which has been widely ac-
cepted as an important player in the pathogenesis of DSPN
[10, 11]. Sorbitol production is facilitated by the enzyme al-
dose reductase and its cofactor NADPH. Under normal cir-
cumstances NADPH is also used in the regeneration of the
endogenous antioxidant glutathione. The depleted cellular
NADPH stores caused by excessive sorbitol production thus
leads to impairments in the natural defense against oxidative
stress with accumulation of regenerative oxygen species
(ROS) within the cell as a consequence [9]. Additionally,
hyperglycemia leads to increased production of pyruvate,
which eventually causes the voltage gradient across the
inner mitochondrial membrane to be increased, ultimate-
ly resulting in superoxide generation, oxidative stress,
and mitochondrial injury [7]. This results in altered

bioenergetics with reduced capacity of ATP production,
which may cause cellular apoptosis and neuronal degen-
eration [11].

In addition, accumulation of glucose also induces the pro-
cess of auto-oxidation in which glucose is converted to
glyoxal. Glyoxal is one of three major advanced glycation
end product (AGE) precursor molecules (the other two being
methylglyoxal and 3-deoxyglucasone), which form spontane-
ous and irreversible bonds with proteins and lipids both intra-
and extracellularly. These altered molecules, known as AGEs,
interact with AGE receptors (RAGEs) thereby promoting ac-
tivation of protein kinase C and transcription factor NF-κB
leading to proinflammatory cytokine production.
Furthermore, AGE–RAGE interaction promotes ROS produc-
tion by depletion of glutathione and contributes to vascular
dysfunction by reducing levels of nitric oxide necessary for
vasodilation [12]. AGE formation thus contributes to
endoneurial hypoxia and neuronal damage [13].

Development of DSPN is also influenced by altered lipid
metabolism [14]. Oxidation of low-density lipoproteins pro-
duces substrates for the lectin-like oxLDL receptor (LOX-1),
which upon activation initiates a signaling pathway resulting
in increased ROS production [15].

Taken together, in recent years, DPN-focused research has
evolved from a glucocentric viewpoint to a broader under-
standing of the underlying pathophysiology secondary to mul-
tiple linked metabolic and inflammatory insults including ox-
idative stress, reduced levels of nerve growth factors, and
structural vascular changes, all of which contribute to a neu-
rotoxic microenvironment [2, 9, 11].

Fig. 1 Overview of the polyol
pathway. Hyperglycemia causes
excessive glucose uptake in
neurons through GLUT3.
Consequently, increased levels of
sorbitol lead to osmotic stress and
ROS production due to decreased
regeneration of the endogenous
antioxidant GSH. GLUT3,
glucose transporter 3; GSH,
glutathione; GSSG, glutathione
disulphide; NADP, nicotinamide
adenine dinucleotide phosphate
(oxidized); NADPH,
nicotinamide adenine
dinucleotide phosphate (reduced);
ROS, reactive oxygen species

Curr Diab Rep (2021) 21: 3131 Page 2 of 11



Prevention and Treatment of Diabetic
Neuropathy

Despite efforts in early recognition and diagnosing of DSPN
in order to slow the progression, currently, no effective treat-
ment is available at a global level except for tight control of
blood glucose [16]. In type 1 diabetes, appropriate blood glu-
cose control aiming at near-normal levels reduces the inci-
dence of DSPN substantially [5]. In type 2 diabetes, however,
development of DSPN seems to be less influenced of blood
glucose levels with only a relative risk reduction of less than
10% in well-regulated individuals [3, 17]. Lifestyle interven-
tions with focus on increased exercise and healthy diet may
have a beneficial effect in delaying nerve damage in diabetic
subjects or even facilitating nerve fiber regeneration [18, 19].

Along with the increasing knowledge regarding pathogenesis
of DSPN, experimental treatment options targeting the underlying
molecular pathways have been investigated including attenuation
of oxidative stress. The balance between generation and elimina-
tion of free radicals is crucial. Primary increase in radical genera-
tion, or a decrease in radical elimination from the cell, leads to
oxidative cellular stress [20]. Experimental and clinical evidence
support that the generation of reactive oxygen species (ROS) in-
creases in both types of diabetes and that the development of
DSPN is closely associated with oxidative stress [21, 22]. Thus,
substances with antioxidative properties have gained interest in the
attempt to slow progression or ultimately reverse development of
DSPN. Additionally, compounds with neurosupportive character-
istics may be utilized in the DSPN treatment regime [23].

Several naturally occurring bioactive compounds found in
foods possess antioxidative and neuroprotective qualities,
which may be utilized as a safe and effective treatment option
for prevention of or even reversal of DSPN [24]. Thus, in the
following, a short overview of dietary supplements suggested
for treating DSPN is provided with focus on compounds stud-
ied in clinical trials during the last 5 years (Table 1).

Selected Dietary Supplements in Diabetic
Neuropathy

Alpha-lipoic Acid

The naturally occurring alpha-lipoic acid (ALA), also known as
thioctic acid, serves as an important cofactor for enzymes required
for generation of energywithin themitochondria. ALA also serves
as a vital antioxidant capable of neutralization of ROS and scav-
enging of free radicals both intra- and extracellularly [25].
Additionally, ALA is capable of metal chelation, regeneration of
endogenous antioxidants, and repair of oxidative damage [25, 26].
Only limited amounts of ALA are synthesized in the body, and
supplementation through the diet is therefore necessary in order to
reach sufficient levels [25].

ALA has been shown to increase glucose uptake and there-
by improve glycemic control in diabetes [27, 28]. As such,
ALA may have an indirect protective effect on the pathogen-
esis of DSPN, which is known to be influenced by long-term
hyperglycemia. However, due to the potent antioxidative ca-
pacities, ALA has also been studied as a potential DSPN treat-
ment option directly targeting the underlying pathophysiology
[29]. A recent retrospective observational study showed a sig-
nificant decrease in the self-reported and validated
Neuropathy Symptom Score (NSS) after a minimum of 2
months ALA supplementation [30]. An improved NSS was
also reported by a prospective single-arm intervention study
after 40 days of ALA treatment. Furthermore, ALA supple-
mentation reduced neuropathic pain and increased quality of
life of included patients [31]. Improvements in objective mea-
sures of peripheral nerve function such as nerve conduction
velocity have also been reported in a single-arm study [32].
The results of this study are, however, questionable due to the
fact that no control-group and randomization were included.
In a large randomized controlled trial with the active group
receiving daily ALA supplementation (600 mg) for 4 years, a
clinically meaningful improvement in DSPN was shown, but
no change in nerve conduction testing was observed [33].
Interestingly, the beneficial effects on both antioxidant capac-
ity and ROS production rate have been reported to be limited
to short-term administration of ALA with a return to near-
baseline levels after daily supplementation for 60 days [32].
This underlines the importance of further research including
the optimal dose and duration of intervention.

Curcumin

The spice turmeric has been used in traditional Asian medi-
cine for thousands of years [34]. The active component,
known as curcumin, can be isolated from the C. longa plant
by drying and powdering of the roots [35]. Administration of
curcumin as a nutritional supplement is complicated due to its
hydrophobic nature resulting in low bioavailability.
Consequently, synthetic formulations optimized regarding ab-
sorption rate and metabolism have been developed in order to
overcome this issue [35, 36].

Several possible features of curcumin are of interest in re-
gard to diabetic neuropathy. Anti-inflammatory, antioxidant,
and neuroprotective capacities have been shown in animal
studies [37–39]. A curcumin derivate, J147, has been shown
to prevent oxidative stress through upregulation of adenosine
5′-monophosphateactivated protein kinase (AMPK) and asso-
ciated decreased transient receptor potential A1 (TRPA1) ex-
pression [38]. Excessive activation of TRPA1 is present dur-
ing oxidative stress and may induce hyperalgesia and neuro-
inflammation [40]. These findings are particularly interesting,
since AMPK is known to play a vital role in the link between
energy balance and metabolic response, and furthermore
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found to be dysregulated in diabetes [41]. Additionally, a
blood glucose stabilizing effect of curcumin has been reported
in both rodents and humans [34].

Data from clinical trials are sparse. A single randomized
controlled trial has been conducted during the last 5 years.
Here, 8-week supplementation of 80 mg nanocurcumin was
shown to be effective in reducing DPSN measured by the
validated Toronto Clinical Neuropathy Score [36]. This result
is promising and should be validated in other randomized
control trials.

Vitamin E

The natural sources of vitamin E include green leafy plants, fruits,
seeds, and plant oils. After its discovery in 1922, vitamin E has
been studied in the context of several pathologies due to a well-
documented and potent antioxidative capacity. Vitamin E can be
divided into two groups known as tocopherols and tocotrienols
each sub-divided in four isotypes. Both tocopherols and
tocotrienols contain a hydroxyl group, capable of neutralization
ofROS through hydrogen donation.Historically, tocopherols have
been the most studied form of vitamin E, but recently, tocotrienols
have gained increasing interest and are speculated to be superior in
regard to antioxidative capacity [42].

Rodent models of diabetic neuropathy have shown in-
creased antioxidant capacity as well as decreased proinflam-
matory cytokine levels in plasma after tocotrienol supplemen-
tation [43]. Recently, clinical studies have investigated vita-
min E supplementation as DSPN treatment. In an open-label
study, 92 patients diagnosed with DSPN were randomized to
receive no intervention or vitamin E as an add-on to regular
medications for 12 weeks. Subjects in the active group had a
significantly lower total neuropathic pain score in addition to
increases in self-reported physical health. When subdivided
according to age, however, the improvement in neuropathic
pain was restricted to the group above 50 years [44]. The
open-label nature of this study is, however, a major risk factor
for introducing bias in the subjective evaluation of treatment
effect, and the results should therefore be interpreted with
caution. Objective measures of neuronal function have been
investigated in a randomized controlled trial in type 2 diabe-
tes. Here, improvements in both sensory and motor nerve
conduction velocity, but not amplitudes, after 8 weeks of vi-
tamin E supplementation were reported. Furthermore, a sig-
nificant higher serum concentration of NGF was observed in
the active group after intervention [45].

Another randomized controlled trial on 300 diabetic sub-
jects, however, failed to show any changes in both subjective
and objective measures of DSPN after 12 months of vitamin E
supplementation [46]. These contradictory results from recent
clinical trials underline the need for further investigations on
vitamin E supplementation in DSPN including dose and
choice of isotype.

Polyunsaturated Fatty Acids

Diabetes is associated with dysfunctional fatty acid metabo-
lism resulting in impaired production rate of long-chain poly-
unsaturated fatty acids (PUFAs). Consequently, the composi-
tion of phospholipids in cellular membranes is disturbed [47].
Additionally, dyslipidemia characterized by increased serum
levels of free fatty acids and triglycerides is common in type 2
diabetes, and an association to DSPN development has been
observed [48]. Dietary interventions aiming at switching from
high intake of saturated fatty acids to PUFAs or monounsatu-
rated fatty acids (MUFA) may—at least theoretically—be
beneficial in preventing neuronal damage. Certainly, in vitro
studies have suggested the underlying mechanisms to be pro-
tective in mitochondrial function in both neurons and support-
ive Schwann cells [48, 49]. Another important mechanism in-
volves oxygenated metabolites of PUFA-rich fish oils known
as resolvins, which have shown to possess neuroprotective
properties [50]. In the same line, animal studies with supple-
mentation of fish oil have shown promising result regarding
neuroprotective actions and antinociceptive effects on neuro-
pathic pain [47, 51, 52]. Furthermore, a neuroregenerative po-
tential of PUFAs has been shown in rodent models of DSPN
with enhanced nerve conduction velocities and increased cor-
neal nerve fiber length [53, 54].

Finally, in a single-arm clinical trial, 12 months of supple-
mentation with omega-3 PUFAs increased corneal nerve fiber
length. This effect was observed in patients both with and
without signs of DSPN at baseline. However, no changes were
shown in nerve conduction velocities, amplitudes, or sensory
function [55]. These results should, however, be interpreted
with caution due to the open-label, single-arm study design
and the associated l imitat ions. Nonetheless , the
neuroregenerative potential of PUFAs found in preclinical
studies is intriguing and should be investigated further in clin-
ical randomized controlled trials.

Folic Acid

Vitamin B9, better known as folate, is required for synthesis of
pyrimidines and purines and thus essential for DNA replica-
tion and mitosis [56]. Folate is crucial during early embryo-
genesis, and maternal deficiencies during the first weeks of
gestation are associated with a substantial increased risk of
neural tube defects [57]. Due to its potent effect on neuronal
growth during development, folate is interesting in regard to
neuronal pathologies and has indeed been shown to be able to
induce repair in the adult nervous system [57]. Folate must be
introduced via the diet or from nutritional supplementation
(often in the form of the synthetic folic acid) because the
human organism is incapable of de novo synthesis [58].

In a study on streptozotocin-induced diabetic rats, daily
supplementation of folic acid protected against DSPN
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development. This was shown both histologically, electro-
physiological, and functionally. Furthermore, the study
showed significantly increased levels of NGF in the sciatic
nerve in the folic-acid-treated group compared to the diabetes
group [59]. In addition to neurotrophic effects, folate has been
shown to possess antioxidant properties [59].

In humans, a link between low serum folate levels and
incidence of DSPN in type 2 diabetes has been proposed by
a recent meta-analysis. Sub-group analysis, however, revealed
that this observation was only present in the Chinese popula-
tion, and not in the Caucasian [56]. In a randomized controlled
trial, 16 weeks of folic acid supplementation (1 mg/day) sig-
nificantly improved several objective components of nerve
conduction including sensory amplitude (sural nerve) as well
as motor amplitude and velocity (peroneal and tibial nerves)
[60]. These findings are of high clinical interest, but confir-
mation from other cross-sectional studies and randomized
controlled trials is needed.

Vitamin D

Vitamin D is a fat-soluble compound best known for its effect
on bone metabolism. However, the vitamin D receptor is
found in various places including the bone, intestine, kidney,
and neuronal tissue, thus underlining the importance of this
substance in many physiological pathways [61].

A meta-analysis from 2015 found a three-fold increased
risk of DSPN in diabetic patients with vitamin D deficiency
compared to diabetic patients with adequate levels [62]. This
is particularly interesting since low levels of vitamin D is
common in diabetes [63, 64]. A biological link between
DSPN and vitamin D may involve the peripheral glial cells,
which support neuronal homeostasis by secretion of various
neurotrophic factors including nerve growth factor (NGF).
Through binding to receptors on the glial cell, vitamin D is
capable of regulating NGF synthesis, and animal studies
have shown that vitamin D deficiency leads to reduced
levels of NGF [65].

Recently, two single-arm clinical studies have investigated
the effect of vitamin D supplementation in painful DSPN. In
one study, a single intramuscular vitamin D dose of
600,000 IU was administered to a cohort of 143 diabetic pa-
tients. Subsequently, participants were followed for 20 weeks.
Neuropathy-specific quality of life improved significantly 12
weeks after the injection [66]. In the other study, an oral for-
mulation of vitamin D was administered once weekly with a
dose of 50,000 IU. After 12 weeks of intervention, significant
improvements in DSPN evaluated by the Michigan
Neuropathy Screening Instrument were seen, which consists
of both subjective (questionnaire) and objective (physical ex-
amination) measures [67].

The lack of placebo arms in these studies is unfortunately
major drawbacks to the study design, and future randomized

controlled trials investigating both subjective and objective
endpoints of neuronal function are thus needed in order to
further explore the role of vitamin D in DSPN prevention or
even reversal.

Vitamin B12

Cobalamin better known as vitamin B12 is involved in DNA
and protein synthesis. The natural sources include dairy prod-
ucts and meat [68]. Deficiency of this vitamin is highly prev-
alent in people with diabetes possibly due to decreased ab-
sorption capacity in the gastrointestinal tract caused by long-
term metformin usage [69]. Insufficient levels of vitamin B12
are associated with several neurological pathologies including
delirium, dementia, and neuropathy. Surveillance of vitamin
B12 levels in people with diabetes is therefore crucial [70].
The effect of normalization of vitamin B12 levels in type 2
diabetes was investigated in a recent randomized controlled
trial. Twelve months supplementation successfully increased
B12 levels to normal values and improved both subjective and
objective measure of DSPN [71]. Other clinical studies have
reported similar results [72], and vitamin B12 status should
therefore be incorporated in the standard diabetes checkup.

Conclusion

With the increasing prevalence of patients with long-term di-
abetes and concomitant complications, demands for effective
treatment options grow. Consequently, patients turn to the
internet for inspiration regarding alternative over-the-counter
therapies. Dietary supplements including antioxidants and vi-
tamins have been suggested as possible treatment options spe-
cifically targeting the underlyingmolecular pathogenetic path-
ways. Many of these supplements have been used for several
years and thus have well-described safety profiles. However,
the proposed efficacy of dietary supplements for DSPN is
often based on individual experiences rather than data from
high-quality clinical trials. More research in this area is there-
fore encouraged, but several aspects should be considered
carefully when planning future study designs.

Firstly, most dietary supplements are not subjected to the
same rigorous regulations and controls (e.g., Good
Manufacturing Practice) as the medical market, and quality
and homogeneity of the investigated supplement should there-
fore be taken into consideration. Regarding DSPN, the conduc-
tion of clinical studies is complicated by several characteristics
of the disease. Firstly, the disease progression is subtle and may
extend over years or even decades eventually reaching a point-
of-no-return in which the neuronal damages seem irreversible
[9]. Inclusion of participants with longstanding diabetes and
established DSPN may thus be incompatible with a positive
outcome despite the use of an appropriate intervention.
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However, even early intervention may fail to prove effective-
ness, mainly because of the slow progression of the disease in
combination with the usually short-term intervention periods of
clinical trials. Much thought should therefore be put into the
optimal study design before conduction of any clinical trial
investigating experimental therapies for DSPN. Another impor-
tant aspect to keep inmind is the differences between type 1 and
type 2 diabetes. Many studies include participants with a mixed
distribution of diabetes type, and while both conditions may
lead to hyperglycemia and associated neurotoxicity, the patho-
genetic pathways vary substantially and may thus respond dif-
ferently to the same intervention.

Subjective endpoints, e.g., patient-reported outcomes from
questionnaire are vulnerable to recall bias and placebo re-
sponse, especially in open-label studies. However, these
patient-reported outcomes are significant for the patient and
can reflect improvements in quality of life, which may vary
from changes in objective outcomes of peripheral nerve func-
tion. In randomized controlled trials with double blinding,
subjective outcomes can be attributed a high degree of validity
and importance and should therefore be included. Regarding
objective endpoints, nerve conduction velocities and action
potentials are validated and robust measures of peripheral
nerve function. These do, however, only reflect large fiber
function, while measures of small fibers (e.g., monofilament
testing and corneal confocal microscopy) may be more appro-
priate for detection of the early and regenerative potential of
the intervention. Some studies have shown improvements in
objective outcomes after supplementation with various com-
pounds [32, 45, 55, 60], and further investigation and valida-
tion in larger randomized controlled trials are warranted.

In conclusion, the role of vitamins and supplements as possi-
ble therapy options for DSPN prevention or even reversal has
shown promising results in several clinical studies. Further vali-
dation in high-quality randomized controlled trials is encouraged.
Moreover, research regarding optimal initiation of intervention,
duration, dose, and route of administration is warranted.
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