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Early classification of Alzheimer’s disease
phenotype based on hippocampal electrophysiology
in the TgF344-AD rat model

Faraz Moradi,1,7 Monica van den Berg,2,3,7 Morteza Mirjebreili,4 Lauren Kosten,2,3 Marleen Verhoye,2,3

Mahmood Amiri,5,* and Georgios A. Keliris2,3,6,8,*

SUMMARY

The hippocampus plays a vital role in navigation, learning, and memory, and is
affected in Alzheimer’s disease (AD). This study investigated the classification
of AD-transgenic rats versus wild-type littermates using electrophysiological
activity recorded from the hippocampus at an early, presymptomatic stage of
the disease (6 months old) in the TgF344-AD rat model. The recorded signals
were filtered into low frequency (LFP) and high frequency (spiking activity) sig-
nals, andmachine learning classifiers were employed to identify the rat genotype
(TG vs. WT). By analyzing specific frequency bands in the low frequency signals
and calculating distance metrics between spike trains in the high frequency
signals, accurate classification was achieved. Gamma band power emerged as a
valuable signal for classification, and combining information from both low and
high frequency signals improved the accuracy further. These findings provide
valuable insights into the early stage effects of AD on different regions of the
hippocampus.

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder affecting millions of people each year and has

become one of the biggest socioeconomic burdens to societies. In the United States alone, over 5.7 million

Americans were living with AD in 2018, and estimates indicate that this amount will increase to nearly 14

million by 2050.1 The hallmarks of AD include the excessive aggregation of amyloid-b (Ab) and tau proteins

in brain areas including the hippocampus and adjacent mediotemporal cortex.2 The accumulation of these

proteins interferes with synaptic and neuronal signaling, which eventually leads to neuronal death and

cognitive symptoms.3,4 In the early stages of AD, hyperexcitability of neurons is observed, which has

been shown to drive disease progression.3,5 Detection of these early alterations in neuronal activity might

prove to be an interesting diagnostic marker of AD. In addition, restoration of the network imbalance within

the hippocampus in patients suffering from mild cognitive impairment (MCI) has been shown to improve

cognition, suggesting that restoring the hyperactivity could be an interesting novel therapeutic strategy.6,7

The hippocampus is a vital brain area that is involved in numerous cognitive functions including spatial

navigation, learning, and memory,8 functions which are impaired early in AD. Over several decades, inves-

tigations of hippocampal function have focused heavily on neurophysiological network activity, including

the gamma and theta rhythms.9 It has been demonstrated that theta oscillations, ranging in frequency from

4 to 12 Hz, are linked to a variety of learning and memory processes in both humans and animals.9–12

Gamma oscillations, on the other hand, are characterized by activity in the frequencies ranging from 30

to 100 Hz13 and have been linked to functions such as attention14–16 and information transmission and stor-

age.17–19 Theta and gamma oscillations do not exist in isolation; instead, they interact and co-occur in

several areas of the brain.20 A specific type of cross-frequency coupling (CFC), named phase-amplitude

coupling (PAC), is characterized by the coupling between the phase of the theta and the amplitude of

the gamma rhythms.26 Research indicates that PAC in the hippocampus may play an essential role in

learning and memory.20 For humans, the magnitude of the coupling is found to be positively associated

with cognitive processes.20–22 Furthermore, PAC has been proposed to play a key functional role in

learning task performance,23 facilitation of inter-area communication,24,25 and can serve as a memory

buffer.22 In relation to AD, there have been numerous articles suggesting that the oscillatory activity
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including power and/or coupling in theta26–28 and gamma26,29 rhythms is altered in AD patients, and

consistent changes were also found in animal experiments using AD models.30,31

The activity of single neurons is characterized by discrete events called action potentials or spikes which are

considered as the fundamental element of neuronal communication and can be extracted from the high-

frequency component of electrophysiological recordings (>300 Hz). Neuronal hyperactivity, caused by AD

pathology, can be directly observed as increased spiking activity in the high-frequency signals, which has

been observed in several animal models of AD.32,33 In addition, measuring the synchrony of two sets of

spike trains has been demonstrated to carry a lot of information in several different contexts. Spike train

distance metrics were used to estimate the reliability of responses across repeated presentations of the

same stimulus and to evaluate the information flow among coupled neurons.34,35 Furthermore, some

recent studies reported the application of measuring spike train distance metrics for the classification of

tactile afferents using artificial spike sequences36

With the rise of machine learning (ML), numerous applications have been implemented toward the

detection and classification of brain diseases, including AD. Classical ML methods like random forest

(RF), support vector machine (SVM), and k-nearest neighbor (k-NN), have been used mainly on structural

MRI data, to detect AD.32,37–40 However, volumetric alterations, caused by neuronal loss, are only present

at relatively late stages of the disease, whereas neuronal hyperexcitability is present at very early stages of

AD. Therefore, we put forward the hypothesis that alterations in hippocampal electrophysiological param-

eters, caused by neuronal hyperactivity at early stages of AD, could be used as features of different ML

methods, to detect AD. We performed hippocampal electrophysiological measurements in TgF344-AD

rats, a promising AD model that demonstrates all neuropathophysiological hallmarks present in AD pa-

tients, such as amyloidosis, tauopathy, neuronal loss, and cognitive decline,41–43 and compared it with

wild-type (WT) littermates. Both low-frequency LFP signals and high-frequency spiking activity were

used as features to investigate the performance of different ML classifiers. We found that specific low

and high frequency signals used with chosen ML methods could provide classification accuracies over

80% and that combining information from both could boost the accuracy to 100%. Our findings provide

evidence that the disruption in local neuronal signaling in the hippocampus results in alterations in LFP

and spiking characteristics, which were valuable features in the ML-based classification of AD.

RESULTS

Low-frequency signal (LFS) analysis

Several studies have shown that gamma oscillations are commonly disrupted in AD.30,31,44 More specif-

ically, fast gamma oscillations were shown to be diminished in the hippocampal CA1 region of a knock-

in mouse AD model as well as the TgF344-AD rat model.30,31,45–47 To evaluate if gamma and potentially

other rhythms are impaired at an early stage in the hippocampus of TgF344-AD rats relative toWT controls,

we computed the average PSD for different rhythms and specifically delta (1–4 Hz), theta (4–12 Hz), slow

gamma (30–50 Hz) and fast gamma (50–100 Hz) (see STAR methods). In Figure 1, the average PSD for

each pair of these bands is illustrated per recording session (WT: blue circles, TG: red circles). In addition,

the diagonal panels show a univariate distribution that represents the marginal distribution of the data in

each band (Figure 1). This illustration allows the comparison across the TG and WT groups for each pair of

the four frequency bands to identify the ones that can reasonably discriminate between them. The results

showed no apparent difference among TG and WT rats when the delta and theta frequency bands were

considered with the samples of the two groups close to each other and a high degree of overlap between

the distributions. On the contrary, when the slow and fast gamma oscillations were considered, it was

immediately apparent that the separation between the distributions of PSD values across the two groups

was substantial, promising higher discriminability in feature space and a better classification performance.

To better understand in which frequency bands differences occurred between the two groups, we plotted

the power spectra, time-frequency plots, and normalized-power bar plots along with statistical analysis

(Figure 2). A general trend of broadband reduced power was observed in the TG animals. We found no

significant differences in the average normalized power for delta and theta oscillations (Delta; WT:

1.29 G 0.03; TG: 1.09 G 0.08; p= 0:069; Theta; WT: 1.39 G 0.19; TG: 1.2 G 1.2; p = 0:375, Mann–

Whitney U test, n = 7 WT and n = 11 TG recording sessions). However, for both slow (30–50 Hz) and fast

(50–100 Hz) gamma oscillations a significant reduction in the average PSD was observed (Slow gamma;
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WT: 0.13 G 0.008; TG: 0.075 G 0.008; p<0:001, Figure 2 Fast gamma; WT: 0.048 G 0.0024; TG: 0.023 G

0.0026; p<0:001, Mann–Whitney U test, n = 7 WT and n = 11 TG recording sessions).

Previous studies that used electrophysiological recordings in the same rat model have indicated an atten-

uation in the theta phase to gamma amplitude coupling (PAC) in the hippocampus of 8–9 month-old

animals.47,48 To investigate if PAC, which plays an essential role in memory formation,20 shows attenuation

already at an earlier time point during disease progression, we assessed PAC across theWT and AD groups

at age 6 months. To this end, we calculated the modulation index (MI) capable of detecting CFC between

two different frequency ranges of interest in a single signal as previously described by Canolty et al. (Fig-

ure S2).49 Example results from two TG and twoWT rats are shown in Figure 3. The PAC spectrograms (Fig-

ure 3B) revealed that large amplitude slow and fast gamma oscillations occur in the peak to falling phase of

theta oscillations in WT; however, slow and fast gamma oscillations seem to be attenuated in TG. There-

fore, we have decided to compute theMI for fast and slow gamma among all samples (Figure 3C). The anal-

ysis revealed a significant reduction in normalized MI for both fast gamma (Figure 3C fast gamma; WT:

11.1730 G 0.7218; TG 6.1287 G 0.7508; Mann–Whitney U test p<0:001, n = 7 WT and n = 11 TG recording

sessions) and slow gamma coupling in TG (Figure 3C slow gamma; WT: 9.3609 G 1.0717; TG: 4.2137 G

0.5085; Mann–Whitney U test p<0:001, n = 7 WT and n = 11 TG recording sessions).

Subsequently, we proceeded to use ML classifiers (see STAR methods for details) to estimate their perfor-

mance and ability to identify the rats from the WT and TG groups. To investigate how each frequency band

affects the model’s accuracy, we first trained the ML classifiers with all frequency bands included. In Fig-

ure 4A, the total accuracy among all samples is shown, while Figures 4B and 4C presents the performance

separately in each group. To estimate the importance of each band, the fast gamma, slow gamma, theta,

and delta oscillations have been removed one by one and their effects on the classification accuracy were

calculated (Figure 4D). When all frequency bands were used as input of the classifiers (RF, k-NN, and SVM)

Figure 1. Pairwise comparison of the normalized power in delta, theta, slow gamma, and fast gamma for TgF344-

AD and Wild-type groups

Each point represents the average PSD of a single sample in the specified band. The diagonal plots are the univariate

distributions that show the amount of overlap between the distribution of two groups in individual frequency bands. The

other plots compare WT and TG for specified frequency bands. Blue/Red points are recording session (samples) of WT

(n = 7)/TG (n = 11), respectively.
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the model performance was, as expected, maximum. However, the discrimination performance dropped

significantly after eliminating fast and slow gamma oscillations indicating their importance in the classifica-

tion of WT and AD rats.

Given that the number of samples from each rat was slightly different, the above-mentioned classification

results could be susceptible to bias against rats with a low number of samples. Therefore, as a control, the

results of the LFS classification task were reproduced with a selection of an unbiased sample (one sample

from each subject) to ensure that the same results could be achieved. These results are available in the

supplementary information (Figures S4–S6).

High-frequency signal (HFS) analysis

Signals such as the spectral power in different frequency bands and PAC, which we used in the LFS analysis,

provide straightforward, measurable quantities that are also associated with specific cognitive mechanisms

that are relatively well understood. In the case of HFS, the average firing rate of neurons is one of the quan-

tities that is similarly straightforward to calculate and interpret. However, although the firing rate is a quan-

tity that has been extensively used in neuroscience, its use is in most cases coupled with a stimulus (or task)

and it is usually the stimulus response function that provides information about the underlying mechanisms

and/or aberrations due to pathology. On the other hand, in the case of activity during relatively free

behavior such as the one the rats in our study performed, it is very difficult to draw conclusions based

on the firing rate alone. The huge variability in the base firing rates, which depend on cell types, brain areas

or specific layers within them, as well as variability caused by the behavior itself, make the evaluation of

spike trains based on the firing rate problematic and difficult to understand. To this end, spike train

distance metrics have been developed that provide a powerful alternative approach to evaluate spiking

activity in more general conditions. Moreover, depending on the spike-train distance metric used, we

can deduce information whether changes depend on underlying principles of neural coding such as rate

Figure 2. Comparison of the power spectral density (PSD), time-frequency plots, and average PSD of 4 different frequency bands

(A) From left to right average mean PSD of the delta, theta, slow gamma, and fast gamma in WT rats (n = 7 recording session) and TG (n = 11 recording session).

(B) The time-frequency spectra for WT (upper panels) and TG rats (lower panels) for different frequencies of interest.

(C) Normalized power for WT and TG rat in the frequency bands of interest. WT = wildtype, TG = TgF344-AD.
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or temporal codes. Here, we used three different spike-train distance metrics: Van Rossum distance (VR-d),

a parametric distance based on the temporal structure of a pair of spike trains; inter-spike interval distance

(ISI-d), a parameter-free spike distance metric that extracts information from inter-spike intervals by eval-

uating the ratio of instantaneous firing rates; and event synchronization distance (ES-d), a complementary

measure that is sensitive to spike coincidences. Given that these metrics depend on different characteris-

tics extracted from the spike trains, the performance of each metric in the classification task can provide

information about the underlying mechanisms being disrupted in AD.

In Figures 5A and 5B, the spike distances among all spike patterns calculated in the TG and WT groups are

shown. It is immediately obvious that the patterns for each metric show differences and similarities across

the two groups. VR-d is a parametric spike train distance which is based on the temporal structure of two

pairs of spike trains. In Figure 5 (left panels), we can observe that the VR distance between WT units is

generally small. However, the distance between TG units is not consistent, and some spike trains have

considerable distance from the others. ISI-d is a parameter-free spike distance metric that extracts infor-

mation from inter-spike intervals by evaluating the ratio of instantaneous firing rates. In Figure 5 (middle

panels), the ISI distances among both TG and WT spike trains demonstrate similar values and variability

and thus it is not immediately obvious if this metric can provide information for classification. A major weak-

ness of ISI-d is the fact that it is not well suited to track synchrony changes based on spike coincidences. On

the contrary, ES-d is a complementary metric that is sensitive to spike coincidences while sharing the funda-

mental advantages of ISI-d. In Figure 5 (right panels), like ISI-d, the ES-d values and variability across the

two groups are similar and thus it is difficult to judge any difference between the two groups.

Dimensionality reduction via principal component analysis (PCA) was subsequently performed and the

three components explaining the highest variability were used as features for further analysis. In Figure 6,

Figure 3. Slow gamma coupling was diminished in the hippocampal CA1 of 6-month-old TgF344-AD rats

Spectrograms of phase-amplitude coupling in the hippocampus were represented for two TG andWT rats by computing the modulation index between the

indicated frequency ranges.

(A) Comodulograms showing the phase and power of 0–100Hz for two representative TgF344-AD (TG) rats (top row) two representative wildtype (WT) rats

(bottom row). Modulation index values were color-coded and plotted according to theta and gamma frequency. The dotted lines denote 30 and 50 Hz

borders between theta, slow gamma, and fast gamma oscillations.

(B) Comodulogram showing the phase of the theta band (5–12 Hz) versus the power across the range 0–140Hz. (C) Modulation Index of slow (30–50 Hz) and

fast gamma (50–100 Hz) oscillations with theta rhythms across all recording sessions (WT: n = 7, TG: n = 11). Each gray dot represents a recording session. TG

rats exhibited a significant decrease in slow gamma modulation index compared to WT (*p < 0.01). Plots represent mean Modulation Indices (+/- standard

deviation)
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the results of the PCA are presented in 3D feature space. Using this representation, it becomes easier to

observe that in the case of VR-d the data points of the WT group are very close to each other forming a

cluster that is separated from the datapoints of the AD group. Thus, VR-d is a promising metric for classi-

fication. For the other two metrics, ISI-d and ES-d, the data points of the two groups are intermixed and

thus it is more difficult to predict the results of classification.

Using the features extracted from PCA analysis we then proceeded to use classifiers and namely SVM,

k-NN, and RF (parameters were discussed in the method details) to classify the two groups of rats based

on HFS (Figure 7). Note that for k-NN, different values of k from 3 to 13 have been tested to evaluate

the model. However, we have only reported the result of k = 5 as the best result. The classification results

were compatible with the observed separation of groups in the feature space (Figure 6) with the features

based on the VR-d providing the highest total classification accuracy for all classifiers while the ISI-d had the

lowest total performance (Figure 7A). Notably, when the performance for each group was plotted sepa-

rately (Figures 7B and 7C) a slightly different behavior across groups was observed. For the WT group

VR-d showed clearly the highest accuracy reaching 100% for SVM and k-NN classifiers while ISI-d performed

very poorly; ES-d had intermediate performance. For the TG group, on the other hand, the maximum

classification accuracy was in general less but comparable for each metric.

Concatenation of HFS and LFS analysis

As we reported in the previous sections, we have used two types of analysis to extract features from low and

high-frequency signals respectively. Because each analysis extracts features with distinct characteristics,

the LFS and HFS models do not share information. Therefore, it is possible to combine LFS and HFS infor-

mation by stacking these models. The simplest form of stacking can be described as an ensemble learning

technique where the predictions of multiple classifiers (referred as level-one classifiers) are used as new

features to train a meta-classifier.50 Figure 8A shows how LFS and HSF models have been stacked as

level-one classifiers and logistic regression as meta-classifier. The predictions of level-one models (P1;

P2) are stacked and used as input to train the final prediction’s meta-classifier. To stack models, the best

model of HFS (RF model using VR-d features) and the best model of LFS (RF model) were chosen. The

meta-model is often a simple model, providing a smooth interpretation of the predictions made by the

base models. As a result, linear models are often used as the meta-model, such as linear regression for

regression tasks (predicting a numeric value) and logistic regression for classification tasks (predicting a

class label). Although this is common, it is not required. Logistic regression is a statistical technique

Figure 4. Classification accuracy of the LFS model with three ML classifiers: K-nearest neighbors, Support vector

machine, and random forest

Frequency bands: Fast Gamma (FG), Slow Gamma (SG), Theta (T), and Delta (D).

(A) the overall accuracy.

(B) the classification accuracy for TG rats alone.

(C) the classification accuracy for WT rats alone. From left to right in each section, the frequency bands are removed from

the classifier’s input one by one to see their effects on the accuracy.

(D) the results of feature importance analysis. The MDI for each frequency band (higher values indicate higher effects).

Slow and fast gamma bands showed higher MDI. Errorbars show the standard deviation.
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used to estimate the probability of a discrete outcome given an input variable. Also, it can be considered as

analogous to linear regression albeit modified for classification problems.51 The major distinction between

linear and logistic regression is that the range of logistic regression is limited to values between 0 and 1.

Table 1 provides the classification performance of the proposed ML method. According to the classifica-

tion results, we have achieved 80.23 and 94.44%, respectively, using high and low-frequency features. How-

ever, using the combination of high- and low-frequency features using stacking models, the accuracy was

100%, and the feature space of two classes was easily separable with a single line (Figure 8B).

DISCUSSION

AD is characterized by the progressive accumulation of amyloid-b plagues and neurofibrillary tau tangles in

the brain and is gradually leading to cognitive decline through multiple stages starting with mild memory

loss, increasing deficits in daily life activities, loss of executive functions, and eventually dementia.52,53 To

date, no therapies exist able to stop or decelerate this devastating condition, while diagnosis is possible

only years after the onset of pathophysiological events, presenting a major challenge toward developing

successful therapeutic approaches. Hyperexcitability, caused by synaptic dysfunction induced by the pres-

ence of toxic AD proteins, occurs before symptoms are present and is known to drive disease

progression.3,5

In this study, we recorded electrophysiological signals (LFPs and neuronal spiking activity) from the hippo-

campus of freely moving TgF344-AD rats andWT littermates, at an early phase of disease progression. Pre-

vious studies that characterized in detail the pathophysiology of this animal model, have indicated its great

potential over other murinemodels.54,55 Very importantly, the relatively slow disease progression dynamics

in this model that simulate different stages of AD in humans, offer remarkable opportunities for identifying

novel AD biomarkers, understanding the underlying mechanisms of pathology and cognitive decline, and

testing new therapeutic approaches. At the period we performed our recordings (6-month-old rats), only

mild Ab accumulation is observed in the cortex and hippocampus, cognitive deficits are by and large

absent, and thus this time-point is accepted to simulate the early pre-symptomatic phase of AD in

humans.41,42 We hypothesized that subtle changes in electrophysiological activity in the hippocampus

could be potentially used to classify individual rats across the two genotypes, AD and WT.

Figure 5. The spike distance metrics for individual spike responses for TG (B) and WT (A) groups

From left to right, van Rossum distance (VR-d), inter-spike interval distance (ISI-d), and event synchronization distance

(ES-d). The blue color indicates more similarity, while yellow color indicates larger distances between the two spike trains.
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The hippocampus, a brain region amongst the first to be affected in Alzheimer’s patients and strongly

implicated in learning and memory processes, has been consistently shown to exhibit abnormal

morphology and function in AD patients, with a remarkable reduction in volume as well as aberrant

activation during cognitive tasks.56,57,68,69 Consistent with these clinical observations, pre-clinical and

translational research in transgenic animal models of AD pathology have repeatedly shown hippocampal

dysfunctions and in particular abnormalities in oscillatory brain rhythms. Accumulating evidence suggests

that disturbances in synaptic and neuronal function are leading to impairments of coordinated activity at

early pre-symptomatic stages of the disease with major targets the brain networks that support memory

and cognition.53,58 Aberrations in the activity of these brain circuits range from subtle changes in oscillatory

rhythms to more profound alterations that are reflected in EEG signals at later stages of the disease. Such

impairments in brain rhythms, considered to underlie compromised hippocampal-dependent cognitive

function, were also shown in pre-clinical animal models of AD before the onset of behavioral deficits.59–61

To identify potential early aberrations in electrophysiological signals in the hippocampus of our TgF344-

AD rat model, we first performed analysis of the low frequency signals (LFPs). Two different frequency

ranges of gamma oscillations thought to be generated in the hippocampus were analyzed: slow gamma

(25–50 Hz) and fast gamma (50–100 Hz).49,62–64 We found that both the slow as well as the fast gamma

oscillations power were decreased in the AD rats in comparison to WTs (Figure 2). This is consistent with

findings in which gamma oscillations were found to be disrupted in AD patients,29 in mice,30,31 but also

in some previous experiments in the same transgenic rat model, albeit performed at a slightly later stage

of disease progression (age 8-9 months).47,48

In the hippocampus, gamma oscillations are nested within the slower theta oscillations with this co-mod-

ulation being proposed as a mechanism that recruits cell assemblies throughout the theta cycle.65 The

coupling between the phase of the theta with the amplitude of gamma oscillations has been demonstrated

to support cognitive processes and memory formation in humans,22 monkeys,20 and rodents.23,63,66 To

probe potential changes in these coupling in the TgF344-AD rat model we performed analysis of CFC (Fig-

ure 3). We found a significant reduction of the MI in the theta phase with slow gamma and the fast gamma

amplitude in the AD rats. Slow gamma is associated with gamma locking and signal transfer in the hippo-

campus from CA3/CA1 (Figure S1C) and fast gamma from EC/CA1 (Figure S2A).62 In the current study

we observe a significantly reduced coupling between theta and fast gamma, suggesting impairments of

the signal transfer from MEC to CA1. This is in line with previous results in TgF344-AD rats, where altered

synaptic transmission was observed in 6-month-old TgF344-AD rats between neurons in the dentate gyrus

and medial entorhinal cortex.67 Moreover, in a recent study in 4-month-old TgF344-AD rats we observed

significantly decreased PAC between in fast gamma coupling, similar to what is observed in the current

study.68 In addition, a decreased PAC was observed in the ow gamma frequencies, hinting toward early

aberrations in the CA3 circuit. Together, these results strongly suggest impaired information transfer

through the medial perforant pathway in 6-month-old TgF344-AD rats.

Figure 6. The feature space of each distance metric in 3D space

The red and blue dots represent TG and WT rats respectively. Each figure is the result of the application of PCA algorithm on the matrix of spike train

distances. Three principal components from each spike distance matrix were considered as the inputs to the classifiers.
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Several studies have demonstrated that injections of Ab-oligomers induce reduced power of gamma oscil-

lations.69 Gamma oscillations are generated by inhibitory interneurons in the hippocampus and studies

have demonstrated that optogenetic activation of GABAergic inhibitory neurons restores the gamma

oscillations in the hippocampus in mice injected with Ab-oligomers.70,71 These results suggest that inter-

neuron function is disrupted already at early stages of AD. Several studies have linked interneuron dysfunc-

tion with alterations in gamma oscillations in different mousemodels of AD.46,72–75 Interestingly, decreased

PAC has been linked with changes in activity of GABAergic neurons.71,76,77 As the current study observes

both decreases in the power of gamma oscillations as well as PAC between theta and gamma oscillations in

the presence of amyloid pathology,41,42 we postulate that this is caused by interneuron dysfunction.

Increased anxiety has been observed in TgF344-AD rats from 4 months onward with respect to WT litter-

mates. The hippocampus plays an important role in anxiety, through its role in fear responses.68,78,79 Power

Figure 7. Classification accuracy for three different classifiers: RF, SVM, k-NN

LOSO-CV was used for training and testing individual classifiers.

(A) the total performance for the classification of TG and WT samples is presented.

(B and C) The classification performance for (B) TG rats and (C) for WT rats separately.

Figure 8. Stacking model pipeline

(A) P1 is the probabilistic prediction of the LFS model and P2 is the average prediction of each mouse’s spike train using

the HFS model. Next, P1 and P2 are used as input of meta-model (logistic regression).

(B) The feature space of meta-model for classification. The red and blue dots represent TG and WT rats respectively.
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of theta oscillations has been linked to anxiety in mice.80 While the TgF344-AD rats do show signs of

increased anxiety, the current study didn’t observe significant differences in theta power and thus we

postulate increased anxiety does not play a major role in our findings.

Using the information and insights we obtained from the frequency band power analysis, we performed

classification using combinations of the power in different frequency bands in our effort to understand

the contribution of each band on classification accuracy. As expected from visualizing the pairwise combi-

nations of the PSD values for different frequency bands (Figure 1), our results indicated that the best

accuracy is achieved when average power in the gamma band is one of the classifier’s inputs; whereas, if

only theta and delta band information is used, classification is close to chance levels. Comparing the per-

formance of different ML classifiers, we observed that their performance was similar on average, with the RF

achieving the highest total classification (Figure 5). The importance of gamma band activity in classification

across the groups is in line with previous findings30,31,45–47,61,81 suggesting that gamma oscillations are

essential in spatial memory and get disrupted during early stages of AD. Moreover, this finding provides

support to suggestions that gamma frequency entrainment or reactivation have positive effects and can

be developed toward potential treatments for AD.44,82 Several studies in AD patients have already demon-

strated that restoring gamma oscillations can reduce loss of functional connectivity and brain atrophy,

improve cognitive function, and reduce amyloid burden.83

Having established that low frequency electrophysiology signals carry important information for classifica-

tion, we then performed analysis of the high frequency signals by performing spike sorting to extract the

spike trains of activity from different cells. Then, we calculated three spike-train distance metrics (VR-d, ISI-

d, ES-d) across pairs of units in the TG and WT animals and used this as features for classification of the

genotype. We found that VR-d provided the highest classification performance with over 80% total accu-

racy while the ISI-d and ES-d performance was on average close to chance levels. Interestingly, the ISI-

d performance was dissociated between the two genotype groups showing high classification perfor-

mance in TG animals but low in WT.

To further understand if the aberrations in hippocampal spiking activity are providing the same (or

additional) information for classification as the low frequency signals, we decided to perform a concatena-

tion of the HFS and LFS analyses into a combined ML model. We found that stacking information from the

two analyses, boosted the classification to 100% accuracy. This could indicate that although a lot of infor-

mation in these frequency ranges may be shared (e.g., due to the phase locking of spiking to the theta and/

or gamma rhythms), additional independent information can help the accurate classification.

In conclusion, the results of this paper indicate that with a combination of ML models, feature extraction

methods based on similarities and distances in the neural responses (high-frequency components of the

neuronal data) and time-frequency analysis of LFP signal (low-frequency components of the neuronal

data) recorded from the rat’s hippocampus, we can classify healthy and AD rats at an early, pre-symptom-

atic stage of AD. These promising findings provide a clear indication that information from a combination

of signals and electrophysiological measurements, could potentially accelerate diagnosis of AD and assist

scientists in the development of more effective therapies.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact Georgios A. Keliris (georgios.keliris@outlook.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data: OpenNeuro: ds004598, https://doi.org/10.18112/openneuro.ds004598.v1.0.0.

d Code: Original code has been deposited at https://github.com/Research-lab-KUMS/AD-project and is

publicly available as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and ethical statement

All procedures were in accordance with the guidelines approved by the European Ethics Committee (de-

cree 2010/63/EU) and were approved by the Committee on Animal Care and Use at the University of

Antwerp, Belgium (approval number: 2019-06). Electrophysiological experiments were performed in

6-month-old male TgF344-AD rats (N = 5) and male wild-type littermates (N = 4). Rats were group-housed

prior to head-stage implantation but housed separately afterward. All animals were kept on a reversed, 12h

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Dental cement Stoelting, Co, Dublin, Ireland Cat# 50000

Kwik-Cast World Precision Instruments,

Florida, USA

Cat# KWIK-CAST

Deposited data

Dataset (ephys data) OpenNeuro OpenNeuro: ds004598, https://doi.org/10.18112/

openneuro.ds004598.v1.0.0

Experimental models: Organisms/strains

F344-Tg(Prp-APP,Prp-PS1)19/Rrrc Rat Resource and Research Center (RRRC) RRID:RRRC_00699

Software and algorithms

Tridesclous Samuel Garcia https://github.com/tridesclous/tridesclous

Phy (Python GUI for manual spike curation) Cyrille Rossant, Ken Harris et al. https://github.com/cortex-lab/phy

MATLAB MathWorks https://www.mathworks.com/

Buzcode (MATLAB analysis tools) Buzsáki Lab https://github.com/buzsakilab/buzcode

Chronux toolbox Mitra lab http://chronux.org/

AD Project Code This paper Github code: https://github.com/

Research-lab-KUMS/AD-project

Sci-kit learn Open-Source Data Analysis Library https://scikit-learn.org/

Other

Laminar 16-channel silicon electrode Atlas Neuroengineering, Leuven, Belgium E16-100-S1-L6
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light/dark cycle, with controlled temperature (20�C–24�C) and humidity (40–60%) conditions. Standard

food was provided ad libitum. Animals were water-deprived 24h prior to the habituation and acquisition

of the LFP data. After the animal performed the task in the linear track, water was provided for 30 min.

METHOD DETAILS

Surgical procedure

For the implantation of the electrodes, animals were anesthetized using isoflurane (at 1.0 L/min, induction

5% and maintenance 2–3% isoflurane). Animals were placed in a stereotaxic frame and a craniotomy was

made above the right dorsal hippocampus (AP -3.00, ML 2.50). A 16-channel laminar electrode with

intercontact distance of 100 mm (E16+R-100-S1-L6 NT, Atlas Neuro-engineering, Belgium) with internal

reference was placed into the dorsal hippocampus by penetrating the dura (Figure S1A). The depth of

the recording sites was identified by the layer-specific local field potentials (LFP) of the hippocampus

(DV 2.5–3.5 mm). The craniotomy was sealed with a sterile silicone gel (Kwik-Cast, WPI). Stainless steel

screws were drilled into the skull overlaying the olfactory bulb, left hippocampus and cerebellum, of which

the latter served as a ground electrode. Two EMG wires were stitched in the neck muscle in order to record

EMG activity. The implant was covered in several layers of dental cement (Stoelting, Co, Dublin, Product-

number 50000) and the wound was closed. Rats were allowed to recover for at least 7 days.

Linear track acquisition

Animals were habituated to the behavioral room and linear track (Figure S1B) for 1 day, after which the rats

were trained for 5 consecutive days to walk along the linear track. Cups with sugar water at the end of the

arms were used to motivate the animals to walk back and forth. Habituation sessions and training sessions

lasted 20–30 min. The combined electrophysiological and behavioral acquisition was performed during

two, or three consecutive days, based on the performance (active time) of the rats in the linear track. A wire-

less head stage (W2100, MultiChannel Systems, Germany) was connected to the laminar electrode, 15 to

30 min prior to start of the experiment in the linear track. After the habituation to the acquisition setup, an-

imals were placed in the center of the track and the electrophysiological recordings were started. The

movements of the animal were recorded using a camera mounted on the ceiling above the linear track,

and the freely available Bonsai acquisition software (Bonsai — Open Ephys (open-ephys.org)) was used

to detect the animal position over time. An acquisition session ended when the animal was not moving

around for more than 5 min.

Data analysis

Preprocessing of LFP signals

Data was recorded from the 2 EMG channels and the laminar electrode consisting of 14 intracranial channels.

The top three intracranial electrodes were located outside the hippocampus and were not used in our anal-

ysis. The remaining 11 intracranial channels were used for LFP analysis and spike sorting. To prevent the effect

of impedance differences between electrodes on LFP, the LFP power for each electrode was normalized to

the power of the 0.5–1 Hz band. The first and last 60 s of each recording session were excluded to eliminate

possible artifacts on the neural activity patterns associated with handling or moving into or out of the linear

track. The LFP signals were extracted from the broad-band signal (sampling rate = 10 kHz) using a 3rd-order

Butterworth filter (MATLAB function filtfilt) with a low cut-off frequency of 0.1 Hz and a high cut-off frequency

of 300 Hz. After filtering the signal was downsampled to 1000 Hz and stored for further analysis. The average

length of the recordings was: TG (1620.72 s), WT (1440.14 s). Out of 20 recording sessions from 9 rats (n = 4WT

rat, n = 5 TG rat), two of the samples (WT3_D1 and TG1_D2) were excluded from our further analysis after vi-

sual inspection because of excessive noise and long periods of signal saturation.

Power spectrum analysis

The power spectrum density (PSD) was estimated using a 2-s window size (MATLAB function pwelch). We

computed the power between frequencies 1–100 Hz and normalized it to the power between 0.5 and 1 Hz

as also indicated above. Then, the power at four individual frequency bands namely delta (1–4 Hz), theta (4–

12 Hz), slow gamma (30–50 Hz), and fast gamma (50–100 Hz) bands was used for further analysis.31

Time-frequency analysis of power and frequency coupling

The Chronux84 toolbox in MATLAB (function mtspecgramc) was used for the time-frequency analysis. As

the duration of recordings for each sample was between 17 and 30 min, we have chosen a snippet of
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15 min (the first minute was removed because of background noise and inactivity of the animal and then we

selected 15 min after that) from each recording. The toolbox has parameters like window and step size,

tapers which were tuned to obtain proper representations (window and step size = 15, taper = [5 9]). For

computing cross-frequency coupling between desired phase and amplitude ranges, the Buzcode

toolbox85 from Buzsaki Lab was used. The modulation index of phase-amplitude between desired ranges

was computed for all data from each rat using the method discussed in Canolty et al.49 In this method the

amplitude of the slow or fast gamma and the theta phase is defined by ASG;HG and FTH. Afterward, a set of

surrogate means of modulation indexes fMsurg is created by offsetting ASG;HG and FTH by some large time

lag. Furthermore, we define a normalized or z-scored lengthMnorm = ðMraw � mÞ=s, where m is the mean of

the surrogate lengths and s their standard deviation. Each representation is the result of averaging across

all other channels (Figure 3). Moreover, we have represented the raw modulation index and normalized

modulation index versus slow and fast gamma average amplitude in Figure S2.

Detection of sleep spindles

Automatic detection of HVSs calculated using the algorithm described previously by.46 HVSs was identified

in the hippocampus when rhythmic negative deflections lower than �0.3 mV occurred while instantaneous

power between 6 Hz and 12 Hz was more than double instantaneous delta power for 2 s or longer. The

average time-frequency spectrum was calculated within frequencies between 0 and 20Hz for each animal.

Classification models

We have put forward two different pipelines for the classification task: 1. Using Low-Frequency Signals (LFS)

and 2. Using High-Frequency Signals (HFS). Moreover, we also combined the information from both these

models to estimate the total performance of using these local network features for classification. In the LFS

model, the average power spectrum density (PSD) is computed for the frequency bands of interest (delta,

theta, slow gamma, fast gamma) and then the feature importance method was used by calculating the

Mean Decrease in Impurity (MDI; see Data S2) to determine the effectiveness of each frequency band in

the classification of TG and WT rats. The LFP data from each rat comprises the model input and is defined

as X ðX e Rtimepoint3ChannelÞ. X is a 2D matrix of the recorded data by having the time points of each channel

on the rows. The HFS model comprises of three main steps: (1) Running spike sorting algorithms using Tri-

desclous sorter86 and SpikeInterface87 toolboxes to isolate spike responses of neural activities; (2) Extract-

ing spike train distance and synchrony metrics including Van Rossum (VR-d), Inter Spike Interval (ISI-d), and

Event Synchronization (ES-d) for each TG and WT group; and (3) Applying PCA to reduce the dimension-

ality of the feature space.

Classification Using Low-Frequency Signals (LFS)

Spectral power model

Further analysis on the LFP signal was performed to investigate how TG and WT can be distinguished in

low-frequency features using each frequency band’s mean power. In this case, the average power of delta

(1–4 Hz), theta (4–12 Hz), slow gamma (30–50 Hz), and fast gamma (50–100 Hz) are extracted for every rat as

shown in Figure 1. Therefore, the shape of the extracted feature matrix is SWT34 and STG34 where SWT

(STGÞ is the number of samples for the WT (TG) group and 4 is the number of extracted frequency bands.

Also, we have analyzed a scenario in which each frequency band is removed one by one from the input fea-

tures of the ML classifier. Consequently, the shape of each feature matrix is decreased to SWT3 1 and STG3

1 in the final step. This removal of each frequency band is used to demonstrate how different hippocampal

neural oscillations affect the model’s performance.

Feature importance

The feature importance gives an abstract view about the role of each feature. Although this study aims to

build a classifier to discriminate between TG and WT, it is also essential to quantify the importance of each

input feature which in turn shows those frequency bands that have been changed in the AD rats. For this

purpose, a random forest (RF) classifier was trained with all four frequency bands, and Mean Decrease in

Impurity (MDI) has been used as a measure for evaluating the importance of each feature. The MDI calcu-

lates each feature importance as the sum over the number of splits (across all trees) that include the feature,

proportionally to the number of samples it splits.
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Classification Using High-Frequency Signals (HFS)

Spike sorting and unit extraction

Pre-processing for spike sorting included high-pass filtering with a cutoff at 300Hz and low-pass filtering

with a cutoff at 4900Hz. In addition, a common reference removal (CAR) filter was employed to increase

the signal-to-noise ratio. For spike sorting, we used SpikeInterface, an open-source Python library for work-

ing with spike-sorting data. It provides a unified interface for interacting with different spike-sorting soft-

ware packages and includes tools for data preprocessing, quality control, and post-processing analysis.

SpikeInterface includes different sorters in which you can perform spike sorting and compare your results.

From available packages in SpikeInterface, Tridesclous Sorter, an automatic spike-sorting toolbox that

groups spike responses into separate ‘‘units’’ based on their similarity in shape and features was used to

extract clusters. We indicate that these ‘‘units’’ are not very well isolated, as neuron isolation from single

electrodes on a laminar probe is difficult and these may contain spiking activities from a few neighboring

neurons. We have defined three operators (operating a defined function on an input) for each of the steps:

Band-pass filter ð;Þ, Common average reference filter ð4Þ, Tridesclous Sorter ð⨀Þ. In the preprocessing

step, band-pass and CAR filters have been applied to raw data using the Tridesclous toolbox. During the

spike sorting step, spikes were detected based on the global peak detection algorithm used in Tridesclous

sorter. The threshold was set to 4 * median absolute deviation (MAD). All the unit extraction was done auto-

matically. So, the output of each recording session (X ) from the spike sorting section would beN units. Each

unit has Ns number of spikes. The details of the algorithm are illustrated in Data S1.

Further, to remove artifacts such as high frequency noise present in some channels, we have also consid-

ered two thresholds on the number of spikes from each unit: the number of spikes in each unit should be

higher than 600 (0.66 Hz) as most pyramidal cells fire < 1Hz in hippocampus and lower than 360000 (400Hz)

for 900 s of recordings. After considering this criterion, the number of samples was reduced to 17 and

TG3_D3 was removed. Also, the number of units for WT and TG has reduced from 36 to 29 and 19 to 18.

The number of units extracted from each recording session is reported in Table S1. The example of auto

correlograms and cross correlograms of 4 recordings were represented in Figure S3.

Calculation of metrics reflecting temporal coding

In temporal coding, the spike times of an individual neuron are considered to carry essential information.

Here, to take into consideration the temporal complexity of spike sequences, we extracted different

synchronization and distance metrics. These measures can compare two spike patterns and provide infor-

mation about their relationship (similarity or dissimilarity). We have used three spike distance metrics to

compute the spike train relationships among the units of each genotype group: 1-Van Rossum distance

(VR-d), 2-Inter-Spike Interval distance (ISI-d), and 3-Event- Synchronization Distance (ES-d). VR-d is a metric

for the dissimilarity of spike trains andmeasures the distance between two sets of spike trains by transform-

ing them into continuous functions by convolving them with an exponential kernel.88 ISI-d assesses the

dissimilarity between spike trains based on instantaneous rate synchrony calculated by the time intervals

between spikes. ES-d also measures spike synchrony albeit using a different approach. In contrast to ISI-

d, it measures similarity instead of dissimilarity.89 To calculate these metrics, isolated units from each group

of TG andWT have been concatenated tomake a unified list of spike trains. The total number of spike trains

used for each group is defined byNTG;NWT . In summary, all three spike distancemetrics were calculated for

each pair of spike trains. For more information on the mathematical description of each metric we refer to

Data S2.

Machine learning classifiers

Currently, the DL and ML models have a great potential to be used in hospitals and health care systems for

clinical decision support in a variety of diseases including cancers90,91 and AD (image analysis).92,93 The

number of dimensions in the feature space is one of the important parameters in an ML model that should

be controlled to achieve reasonable accuracy while avoiding overfitting. In the final step of the HFS model,

we use unsupervised dimension reduction methods to reduce the feature dimensions. For this purpose, we

applied PCA and the components carrying the highest explained variance were chosen. We have

employed this approach for different numbers of components (1–9), and the best performance was

achieved by considering three components (p = 3). Van Rossum distance variance explained by the first

three components: TG (98.8%), WT (95.3%). Inter spike interval distance: TG (71.4%), WT (74.8%). Event

synchronization distance: TG (72.7%), WT (57.2%).

ll
OPEN ACCESS

18 iScience 26, 107454, August 18, 2023

iScience
Article



For evaluation of LFS and HFS models classic ML classifiers were used (SVM, KNN, and RF). KNN is a

supervised ML algorithm used for classification and regression. Given a new observation, the algorithm

finds the k training observations that are closest to it (based on a distance metric, such as Euclidean dis-

tance) and assigns the most common label among those k observations to the new observation. The

main parameter of this classifier is the number of considered neighbors. We have tested numbers from

1 to 9 and the best accuracy was achieved when we used a number of 5 neighbors. SVM is a supervised

ML algorithm that can be used for classification or regression tasks. The basic idea behind SVM is to

find a hyperplane that maximally separates the different classes in a high-dimensional feature space.

The observations closest to the hyperplane, called support vectors, determine its position and orientation.

Once the hyperplane is determined, new observations can be easily classified by checking on which side of

the hyperplane they fall. The SVM algorithm is more powerful but also more complex than KNN. It is partic-

ularly useful when the data has many features and when the classes are well separated in that high dimen-

sional feature space.We have used the default parameters with rbf kernel to perform the classification. RF is

an ensemble ML algorithm that can be used for classification or regression tasks. It combines multiple

decision trees to improve the overall accuracy of the model. A decision tree is a flowchart-like tree struc-

ture, where an internal node represents a feature (or attribute), the branch represents a decision rule,

and each leaf node represents the outcome. In an RF, many decision trees (also known as base learners

or sub-models) are trained using different subsets of the training data and different subsets of the features.

The final prediction is made by averaging the predictions of all the decision trees in the forest. This com-

bination of multiple decision trees can lead to a decrease in overfitting and an increase in accuracy,

compared to using a single decision tree. We also have used default parameters of this classifier by consid-

ering 100 trees.

For training and validation, due to the small number of samples, it was not possible to use the commonly

used approach that shuffles the data from all samples and then divides them into training, validation, and

test sets. Instead, we have used leave-one-subject-out cross-validation (LOSO-CV). Basically, cross-valida-

tion is a resampling procedure used to evaluate ML models on a limited data sample. This procedure has a

parameter named the number of folds, which represents the number of groups that a given data sample is

to be split into. In our analysis, the number of folds is equal to the number of recording samples. For each

fold, the selected fold will be used as a test and the training will be performed on the other remaining sets.

Therefore, we separated each sample’s spike train manually as a test set, and the training was performed

using all the remaining spike train features. This process was continued until every recording session was

used as a test set. Hence, each recording sample will be considered as a test set one time to give our model

more generalizability and decrease the chance of bias and optimistic results.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mean G SEM is provided for comparing different frequency bands. Statistical testing for frequency band

power, PAC, and spike-train metrics, assumed non-parametric distributions and thus MannWhitney U tests

and JASP toolbox were used to evaluate differences between experimental groups.
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