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Abstract

Surgical interventions on blood vessels bear a risk for intimal hyperplasia and atherosclero-

sis as a consequence of injury. A specific feature of intimal hyperplasia is the loss of vascu-

lar smooth muscle cell (VSMC) differentiation gene expression. We hypothesized that

immediate responses following injury induce vascular remodeling. To differentiate injury

due to trauma, reperfusion and pressure changes we analyzed vascular responses to

carotid artery bypass grafting in mice compared to transient ligation. As a control, the carotid

artery was surgically laid open only. In both, bypass or ligation models, the inflammatory

responses were transient, peaking after 6h, whereas the loss of VSMC differentiation gene

expression persisted. Extended time kinetics showed that transient carotid artery ligation

was sufficient to induce a persistent VSMC phenotype change throughout 28 days. Tran-

sient arterial ligation in ApoE knockout mice resulted in atherosclerosis in the transiently

ligated vascular segment but not on the not-ligated contralateral side. The VSMC phenotype

change could not be prevented by anti-TNF antibodies, Sorafenib, Cytosporone B or N-acet-

ylcysteine treatment. Surgical interventions involving hypoxia/reperfusion are sufficient to

induce VSMC phenotype changes and vascular remodeling. In situations of a perturbed

lipid metabolism this bears the risk to precipitate atherosclerosis.

Introduction

Arteries and veins consist of 3 layers; the adventitia, largely constituted of connective tissue

and fibroblasts, the media mainly containing vascular smooth muscle cells (VSMCs) and the

intima. Separated from the media by the internal elastic lamina, the intima consists of loose

connective tissue intermingled with few VSMCs and a monolayer of endothelial cells (ECs)

resting on a basal membrane forming the interface to the bloodstream. VSMCs of the intima

are known to respond to almost any sort of physical or chemical injury by proliferation and
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migration, resulting in thickening which is termed intimal hyperplasia (IH).[1]. Of note, dis-

tinctions should be made between acute versus chronic injury, the latter occurring with aging;

age-associated vascular remodeling is a risk factor for atherosclerosis in humans.[2–4] Exces-

sive IH can cause morbidity by narrowing the vessel lumen or by priming the vessel for athero-

sclerosis.[5] This is of special importance for patients subjected to coronary revascularization

procedures, such as bypass grafting or stenting since the long term patency is significantly lim-

ited by negative vessel remodeling.[1]

Normally, VSMCs are in a contractile state (i.e., quiescent / non-proliferating) and form

direct contacts with ECs.[6] VSMCs express high levels of cytoskeleton stabilizing proteins,

such as Smooth muscle α-actin (ACTA2), SM22α, SM MHC, Calponin1 (CNN1), Smoothelin

and H-caldesmon. In addition, the contractile state is characterized by very low cell division

rates and a very restricted migratory capacity of VSMCs. The typical response of VSMCs to

any type of injury is a change of their phenotype from contractile to synthetic; they rearrange

their cytoskeleton, proliferate and lose expression of cytoskeleton stabilizing genes such as

Cnn1 and Acta2.[7] The role of VSMC cytoskeleton stabilizing genes is highlighted in patients

with mutations in the Acta2 gene or its promoter, leading to a higher risk for coronary disease.

[8, 9]

The VSMC phenotype switch has already been investigated in cell culture and is readily

induced by growth factors such as PDGF, platelet-derived factors or inflammatory mediators

such as TNF.[7, 10–12] Other mechanisms which are known to stimulate VSMCs in a way to

trigger phenotype conversion are hypoxia and the resulting reactive oxygen species (ROS) gen-

eration.[13] However, simple cell culture approaches such as the culture of VSMCs do not

accuaretly portray vascular injury as vital players of inflammation, platelets and endothelial

cells are not part of the equation.[14]

In vivo experiments mainly have focused on long term outcomes such as restenosis and

therefore do not elucidate the immediate response of blood vessels to injury. In addition, most

models cause severe vascular damage such as constant pressure overload (venous bypass) or

structural damage such as endothelial denudation (wire injury). In these models VSMCs are

exposed to continuous stress over a period of days to weeks, which makes it difficult to analyze

the initial vessel response and its resolution.[15, 16]

In this publication we have compared the responses of blood vessels subjected to bypass

grafting or transient arterial ligation. These diverse surgical techniques yielded surprisingly

comparable results within the first 24h after injury in terms of a transient inflammatory

response and a persistent VSMC phenotype change. Extending the observation period to 28

days showed that temporary arterial ligation was sufficient to induce both, persistent changes

in VSMC morpholgy and mRNA expression. Furthermore, mild IH occured, which was resis-

tant to treatment. Most importantly, transient arterial ligation in a hypercholesteremic envi-

ronment led to overt atherosclerotic lesion formation in the injured segments.

Materials & methods

Mice

8–10 week old, male C57BL/6J mice were housed for 2 weeks on a light/dark (12-hour/

12-hour) cycle at 24˚C and received food and water ad libitum before experimentation. All

experiments were performed according to protocols approved by the Institutional Committee

for Animal Research and Care at the Medical University of Vienna (BMWF-66.009/0266-WF/

V/3b/2014).

13–18 week old, male ApoE knockout mice were housed for 2 weeks on a light/dark (12-

hour/12-hour) cycle at 24˚C and received food and water ad libitum before experimentation. 2
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weeks prior to surgery the diet was changed to a western diet (E15723-34, ssniff Spezialdiäten

GmbH, Germany) which was maintained until 4 weeks after surgery, when the experiment

ended.

Bypass grafting, carotid artery mobilization and transient ligation

procedures

Heparin (6U) was injected subcutaneously 60min prior to surgery. Narcosis was initiated by

intraperitoneally injection of 0,3mg/kg Medetomidine, 1mg/kg Midazolam, 0,03mg/kg Fenta-

nyl and 10mg/kg Ketamine. After surgery, the narcosis was antagonized by subcutaneous

injection of 1mg/kg Atipamezole and 0,1mg/kg Flumazenil. After surgery, Buprenorphine was

injected subcutaneously for analgesic purpose. To maintain body temperature, all surgical pro-

cedures were performed on a heat plate (37˚C). After surgery, mice were placed under a heat

lamp to aid recovery.

Bypass grafting was performed as described previously.[16] Briefly, the carotid artery was

mobilized, double-ligated, cut between the ligations and the ends were pulled through plastic

cuffs, temporarily fixed in place via clamps, flipped over the cuffs and fixed in place. The infe-

rior vena cava, excised from a donor mouse, was pulled over the cuffs and fixed in place. Fol-

lowing removal of the clamps, pulsatile flow was monitored and the wound sutured.

For the ligation procedure, the right common carotid artery was mobilized, care was taken

to leave the adventitia in place and transiently ligated at the most upper and lower accessible

end using removable slip knots made from 8–0 silk thread. Reperfusion was restored by thread

removal after 20min or 60min as indicated. Sham animals were subjected to the same surgical

mobilization procedure, but without ligation of the carotid artery.

For Sorafenib treatment, (CT-SR001, Chemietek, Indianapolis, IN, USA) Sorafenib was sol-

ubilized in Dimethyl sulfoxide (DMSO) and a 1μM Sorafenib solution (in 0.09% NaCl) was

applied to the wound cavity during surgery. After ligation removal, a 20% w/v pluronic gel

(P2443, Sigma-Aldrich, Darmstadt, Germany) containing 1μM Sorafenib/DMSO was placed

around the artery, followed by wound closure. For Cytosporone-B treatment, the same proce-

dure as for Sorafenib was applied with a Cytosporone-B concentration of 3μM in NaCl as well

as 3μM in pluronic gel. For anti-TNF treatment, 100μg anti TNF antibody (MP6-XT3) or

sham antibody (Rat IgG1 kappa Isotype Control, 16-4301-81, Thermo Fisher Scientific) was

injected intraperitoneally 12h prior to surgery as well as 1h prior to surgery. For N-Acetylcys-

teine (NAC) treatment, 400mg/kg NAC/sham (saline) in a volume of 100μl was injected intra-

venously 5min before the 20min ligation period started. Animals were sacrificed at indicated

times.

Histology and immunofluorescence

Excised vascular segments were dissected to exclude regions where ligations were placed or

anastomoses. For samples from ApoE knockout mice, the segment between the ligations, as

well as the zone of bifurcation was analyzed. Vascular segments were fixed in 4% paraformal-

dehyde, embedded in an upright position in paraffin, cut sequentially into 4μm sections and

subjected to hematoxylin and eosin staining (H&E) or immunofluorescence staining. The dis-

tance between sections ranged from 200μm to 300μm. For immunofluorescence, the following

antibodies were used at indicated concentrations: anti-ACTA2 (Abcam, ab21027) (1:1000),

anti-ICAM-1 antibody [YN1/1.7.4] (Abcam, ab119871) (1:200). Secondary antibodies were

Alexa Fluor 546 (Invitrogen, A11056) and Alexa Fluor 647 (Jackson Immuno-research, 712-

606-153), both utilized at a 1:200 dilution.
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Quantification of nuclear sizes was performed by ImageJ on H&E sections. IH and athero-

sclerosis were analyzed on H&E sections.

mRNA expression

Following excision of the venous bypass grafts, the anastomosis zones were removed and the

grafts were subjected to RNA sequencing. Sequencing libraries were prepared by the Core

Facility Genomics at the Medical University of Vienna using the SMARTer Ultra Low Input

RNA for Illumina Sequencing in combination with the Low Input Library Prep Kit (Promega).

Libraries were sequenced on the Illumina HiSeq 2000 platform in the 50 bp SR Modus. fastqc

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (version 0.11.5) was used to

check the quality of reads. Reads were mapped to mouse genome reference (mm9) using

gsnap [17, 18] (version 2013-05-09) with the non-default parameter: max-mismatches (−m)

10. For Expression quantification and differential expression analysis counted reads were

mapped to each gene (counts) using HTSeq-count[19] (version 0.5.4p3) with parameters:—

stranded = no, -a 19 and a mouse GTF file downloaded from UCSC. Differential expression

(DE) analysis was performed using DESeq2[20] (version 1.14.1) package in R. For pathway

analysis, the genes tested for DE were connected with pathways from Reactome pathway

Knowledgebase.[21] For each reactome pathway, which had 20 to 80 genes, a pathway score
was calculated, as an average value of log2fold changes (logarithm with basis 2 of fold changes)

of genes belonging to that pathway, normalized by standard deviation (sd) of these log2fold
changes. Pathways were ranked based on their pathway score (from highest to lowest value).

Significantly up-regulated pathways were defined as the top 10% pathways in the ranked path-

way list. Similarly, significantly down-regulated pathways are the bottom 10% pathways in the

ranked pathway list.

Using the MsigDB_XML_Browser-1.0_beta software[22] (msigdb_v6.1,), from the Curated

and Gene Ontology (GO) collections all those gene sets related to the term “smooth muscle”

were extracted and subjected to further analysis. Human gene symbols were converted to

mouse gene symbols using an in-house bash script based on the Gnu Parallel tool[23] and the

ortholog information (Ensembl Biomart version 87).

As p-value and log fold change (LogFC) is often used to evaluate significant results from

differential expression analysis and the up/down-regulated genes are usually at the top/bottom

of the ranked gene list, we use the signed -log10(p-value) to rank genes, where the sign is from

LogFC, as previously described.[24]

To assess the enrichment of the smooth muscle related gene sets, in the different time

points, GSEA Preranked tool was used.[22, 25] Only gene sets showing a significant change

(FDR� 0.05) in any assessed time point are displayed.

Heat maps were produced either using the R package ggplot2[26], or Morpheus, a matrix

visualization and analysis software developed by the Broad Institute (https://software.

broadinstitute.org/morpheus/). Results of the RNA sequencing analysis are available at the

GEO database by utilizing the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE119549.

For rtPCR, Taqman assays on demand from Thermo-Fischer Scientific were used (E-Selec-
tin [Mm01310197_m1], Icam-1 [Mm00516023_m1], Cnn1 [Mm00487032_m1], Acta2
[Mm01546133_m1], Interleukin1 beta [Mm00434228_m1], Interleukin6 [Mm00446190_

m1], Cxcl1 [Mm04207460_m1], S100a9 [Mm00656925_m1], Cd45 [Mm01293577_m1],

Nr4a1 [Mm01300401_m1], Pdgf β [Mm00440677_m1], Hif1α [Mm00468869_m1] B2m
[Mm00437762_m1]). Fold change was calculated using the 2-ΔΔCT method as described previ-

ously.[27]
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Statistics

Statistical analysis was performed using GraphPad Prism version 5.03 for Windows, GraphPad

Software, San Diego California USA. Respective statistical tests are shown in the legend of

each figure. Data is presented as mean ± SD. A P-value <0,05 was considered as statistically

significant (�) (<0,01 = ��;<0,001 = ���).

Results

Bypass surgery and transient ligation, both induce transient inflammation

and VSMC activation within 24h

To screen for immediate changes in a vessel subjected to bypass grafting, a vein graft model

was used, which consistently induces intimal hyperplasia within 28 days.[16] mRNA sequenc-

ing analysis was performed on bypass grafts obtained 1, 6 and 24h after grafting to monitor the

immediate reaction of the tissue to injury.

Analysing all pathways associated with smooth muscle cell behaviour revealed significant

changes (Fig 1A). Most importantly, the pathway responsible for positive regulation of SMC

proliferation was uniformly upregulated as early as 1h post-surgery. In addition, an individual

assessment of genes associated with the VSMC phenotype switch was performed (Fig 1B).

Transgelin, Cnn1 and Acta2 showed a significant downregulation at 24h post-surgery, which

indicates a phenotypic switch from contractile to synthetic.

Vein grafts are exposed to extracorporeal storage, surgical trauma, reperfusion injury and

persistent pressure overload.[14] To reduce variables, we compared effects of vein grafting

with those induced by transient carotid artery ligation, which exposes the vessel to surgical

trauma, ischemia and reperfusion injury. Importantly, changes in gene expression within the

first 24h post-surgery were comparable to those observed after vein grafting (Fig 1C).

Transient Carotid artery ligation induces a permanent loss of VSMC

quiescence gene expression

Extending the follow-up period after transient carotid artery ligation revealed a persistent

VSMC phenotype switch, as indicated by a significant loss of Acta2 and Cnn1 mRNA expres-

sion after 72h, compared to untreated carotid arteries (Fig 2A). mRNA expression of inflam-

matory genes peaked after 6h, followed by a steep decline close to baseline levels. The amount

of Cd45 mRNA expression, a leucocyte marker, steadily increased. As expected, ligation

increased mRNA expression of the transcription factor Hif1α, which is known to trigger

expression of a multitude of growth factors.[28] Interestingly, expression of Nr4a1 mRNA, an

important gene regulating the homeostasis in the vessel wall was reduced to almost zero.[29,

30]

As a control, carotid arteries were exposed to surgical trauma only (vessel mobilized with-

out ligation). This procedure did not alter the expression of VSMC quiescence gene mRNAs,

but suppressed Nr4a1 mRNA expression (Fig 2B), excluding Nr4a1 as a driver of Acta2 or

Cnn1 expression. To investigate if an altered mRNA expression is followed by an altered pro-

tein expression, immunofluorescence stainings of temporarily clamped carotid arteries were

performed. This confirmed a transient increase in ICAM-1 protein expression and a loss of

ACTA2 protein expression by VSMCs (Fig 3A–3C).

For the 28 day follow-up experiments carotid arteries were clamped for 1h (an ischemia

time frequently encountered during CABG surgery[31]). mRNA expression profiles are dis-

played in Fig 4A. 28 days post-surgery, mRNA expression of inflammatory genes was back to

baseline, whereas Cnn1 mRNA was still significantly downregulated compared to untreated

Hypoxia/reperfusion predisposes to atherosclerosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0205067 October 5, 2018 5 / 19

https://doi.org/10.1371/journal.pone.0205067


Fig 1. Comparison between bypass grafting and transient arterial ligation. RNA sequencing pathway analysis of venous bypass grafts 1, 6,

and 24h after transplantation. Data are expressed as log2 fold change compared to normal vena cava. (A) Analysis of smooth muscle cell

associated pathways in response to bypass grafting. (B) Regulation of mRNA expression of genes related to smooth muscle cell quiescence in

response to bypass grafting. (C) mRNA expression of venous bypass grafts (filled squares) and transiently ligated carotid arteries (transparent

squares; analyzed via qPCR) after indicated reperfusion times. Data are expressed as fold change compared to normal carotid arteries. For

bypass grafts and transiently ligated carotid arteries n�4.

https://doi.org/10.1371/journal.pone.0205067.g001
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control arteries. In case of Acta2 mRNA, the downregulation did not reach the threshold of

significance, however, semi quantitative evaluation by immunofluorescence demonstrated a

significant loss of ACTA2 protein expression after 28 days (Fig 3A and 3B). Cd45 mRNA

remained significantly upregulated, indicating an accumulation of immune cells. Nr4a1
mRNA, remained significantly downregulated.

In controls subjected to surgical mobilization of the carotid artery without ligation, no

effects on VSMC quiescence gene mRNA expression were observed. Unexpectedly, expression

Fig 2. Kinetics of the vascular response following transient ligation. (A) mRNA expression of right carotid arteries in response to 20min

temporary ischemia induced by transient ligation. (B) Analysis of mRNA expression pattern in response to surgical mobilization of the right

carotid artery without ligation. Statistical evaluation was performed by using a one-way ANOVA with Tukey’s multiple comparison post hoc

test; n = each symbol represents one mouse.

https://doi.org/10.1371/journal.pone.0205067.g002
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of Nr4a1 mRNA remained significantly downregulated, indicating that the loss in Nr4a1
mRNA expression is not directly responsible for mRNA expression levels of Acta2 and Cnn1
(Fig 4B).

To assess morphologic consequences of the monitored VSMC phenotype switch, histologic

analysis was conducted to assess vessel remodeling (Fig 5). In 20% of cases, the clamped artery

showed an enlarged intimal layer. In addition, the nuclear area of medial VSMCs was signifi-

cantly enlarged compared to the contralateral carotid artery. We viewed this as an indirect

sign of polyploidy, a repeatedly observed phenomenon after vascular injury.[32] As a control

Fig 3. Transient ligation induces a persistent loss of ACTA2 protein. (A) representative ICAM-1 and ACTA2 stainings of transiently ligated

carotid arteries analyzed after 24h (20 min transient ligation) or 28 days (1h transient ligation). Scale Bar equals 100μm. (B) Quantification of

ACTA2 positive media (n = 3–4 per time point) (C) Quantification of ICAM-1 positive media (n = 3–4 per time point). Statistical analysis was

performed using a one-way analysis of variance with Tukey’s multiple comparison post hoc test.

https://doi.org/10.1371/journal.pone.0205067.g003
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Fig 4. Long term response of arteries subjected to transient clamping. (A) Analysis of mRNA expression patterns of carotid arteries

subjected to 1h transient ligation followed by 28 days of reperfusion. (B) Analysis of mRNA expression patterns of carotid arteries subjected

to surgical mobilization only, followed by 28 days of reperfusion. Statistical analysis was performed using a two-tailed unpaired t-test.

n = each symbol represents one mouse.

https://doi.org/10.1371/journal.pone.0205067.g004
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Fig 5. Morphological analysis of transiently ligated arteries. (A) Examples of carotid arteries subjected to surgical mobilization, to 1h of

transient ligation or to bypass grafting (inferior vena cava grafted into the carotid circulation). 28 days after surgery, blood vessels were

removed and subjected to H&E staining. Scale bars equal 100μm. (B) Quantification of nuclear area of VSMCs within the media of carotid

arteries subjected to 1h transient ligation followed by 28 days of reperfusion, compared to untreated contralateral control arteries. Statistical

analysis was performed using a two-tailed unpaired t-test. (C) Evaluation of the presence of an enlarged intimal layer of carotid arteries

subjected to 1h transient ligation followed by reperfusion for 28 days. As controls, the untreated contralateral arteries were utilized; n = 19.

https://doi.org/10.1371/journal.pone.0205067.g005
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we analyzed arteries subjected to surgical mobilization without ligation, which showed no

morphological alterations. For comparison, a segment of an arterial bypass graft showing mas-

sive IH is also displayed.

Transient vascular ligation is sufficient to precipitate atherosclerosis in

hypercholesteraemic mice

Most patients requiring vascular interventions such as angioplasty or bypass grafting have ele-

vated blood cholesterol levels.[33] We therefore analyzed the effects of vascular ligation in

ApoE-deficient mice which were fed a Western diet 2 weeks before ligation until the end of

experiment, 4 weeks after surgery.

Atherosclerotic plaques were detected at predilection sites such as the carotid artery bifur-

cation in the left and right carotids. In contrast, while the left carotids (control side) remained

free of lesions at regions of laminar flow, in right carotids (transiently ligated areas) atheroscle-

rosis was evident (Fig 6, A gallery of all mice is displayed in S1 Fig).

Pharmacological interventions do not prevent VSMC phenotype changes

Based on the finding that transient ligation but not surgical mobilization alone induces a per-

sistent VSMC phenotype change, we concluded that hypoxia followed by reperfusion is the

most important driver of persistent vascular remodelling. To analyze if pro-inflammatory

cytokines trigger the VSMC phenotype switch, we treated mice with anti-TNF antibodies.

Unexpectedly, this treatment did not prevent the ligation-induced loss of Acta2 or Cnn1
mRNA expression (Fig 7A).To assess the possibility that ROS induced the VSMC phenotype

change we used N-Acetylcysteine (NAC) which is well known for its cytoprotective properties

with regards to ROS-induced cell damage.[34] As displayed in Fig 7A, NAC had no effect on

VSMC quiescence gene mRNA, or on Nr4a1 mRNA expression. NR4A1 is an important tran-

scription factor in maintaining a functional blood vessel.[29, 30, 35] However, an NR4A1 ago-

nist, Cytosporone-B[36], had no effect on VSMC quiescence gene mRNA expression (Fig 7A).

Finally, to test the importance of growth factor signalling, a multi tyrosine kinase inhibitor was

employed. Sorafenib was originally developed as an anti-cancer drug aiming at growth sup-

pression by inhibiting a multitude of different kinases, among which are VEGFR, PDGFR and

Raf family kinases.[37] As shown in Fig 7B, 1μM Sorafenib significantly downregulated

mRNA expression of Il-1 and 6, Cxcl1, S100a9 and Hif1α, but did not prevent the downregula-

tion of Acta2, Cnn1 or Nr4a1 mRNA, and therefore did not prevent the VSMC phenotype

switch.

Discussion

The VSMC phenotype change from contractile to synthetic is a typical response of the vascular

wall to any type of vascular injury. Synthetic VSMCs migrate and proliferate to promote repair.

Under normal conditions they return back to a non-proliferative, contractile phenotype. How-

ever, this plasticity renders VSMCs susceptible to pathological growth resulting in IH.[7] A

prolonged or persistent VSMC phenotype switch contributes to initiation and progression of

vascular pathologies such as atherosclerosis, post-angioplasty re-stenosis, and pulmonary arte-

riole hypertension.[38–40] Even in completely different settings VSMC IH is causative for dis-

ease as seen, e.g., in the development of cerebral vasospasm after subarachnoid hemorrhage or

blast traumatic brain injury.[41–43] Recent observations also link VSMC phenotype changes

to tumor niche formation resulting in an elevated metastatic potential in cancers. Tumor cells

shed mediators inducing a VSMC phenotype conversion which facilitates metastasis into these

areas.[44] Because of this variety of conditions interrelated with abnormal plasticity of VSMCs
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Fig 6. Transient ligation results in atherosclerosis in ApoE deficient mice. Effect of 1h transient carotid artery ligation on carotid arteries of

ApoE deficient mice (fed a western diet), assessed after 28 days of reperfusion. Scale bar equals 200 μm. (A) vascular segment with laminar flow;

(B) vascular segment including the area of bifurcation. Per vascular segment, the area below bifurcation (A) and the area of bifurcation (B), 3–4

H&E sections were analyzed as indicated by the horizontal grey lines in the schematic drawing. n = 8, statistical analysis was performed using a

two tailed paired t-test.

https://doi.org/10.1371/journal.pone.0205067.g006
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Fig 7. Pharmacologic interventions do not prevent the VSMC phenotype switch. (A) mRNA expression of right carotid arteries subjected

to 20min transient ligation and 72h reperfusion. Mice were either treated with TNF scavenging antibody/sham antibody, N-Acetylcysteine/

Saline or Cytosporone B/sham gel. Statistical evaluation was performed by using a one-way ANOVA with Tukey’s multiple comparison post

hoc test. n�9. (B) mRNA expression of right carotid arteries subjected to 20min transient ligation followed by reperfusion periods as

indicated. Arteries were either exposed to 1μM Sorafenib or sham (DMSO) treatment. Statistical evaluation was performed by using a two way

ANOVA with Bonferroni’s post hoc test. n�6.

https://doi.org/10.1371/journal.pone.0205067.g007
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in vivo models are required to understand (i) factors inducing the phenotype switch, (ii) factors

maintaining this pathological condition and (iii) how to therapeutically revert the VSMC phe-

notype back to quiescence.

Based on the diversity of events that may lead to IH we hypothesized that the type of initial

trauma is responsible for the outcome. We first have analyzed molecular changes occurring

within the first 24h after vessel injury in a venous bypass model, which is prone to induce IH.

[14, 16] Surprisingly, the inflammatory response was transient peaking after 6h, whereas the

loss in the expression of VSMC differentiation genes persisted. Since this procedure exposes the

grafted vessel to surgical injury, ex vivo graft storage, endothelial denudation, hypoxia/reperfu-

sion, pressure and flow changes, we next used a model with as little confounding factors as pos-

sible.[14] A carotid artery ligation model which inflicts only very limited vascular damage,

leaving the adventitia in place and not causing endothelial denudation. The transiently ligated

vascular segment is mainly exposed to hypoxia/reperfusion. Surprisingly, RNA expression

changes within the first 24h were very similar to those seen in vein grafts. Extended time kinet-

ics in the ligation model revealed a persistent phenotype change throughout 28 days, which was

not seen in controls, where the carotid artery was subjected to surgical exposure without liga-

tion. This points to the conclusion that hypoxia/reperfusion modulates VSMCs to switch to a

synthetic phenotype. Moreover, this type of injury was sufficient to induce subtle morphologic

changes within the transiently ligated segment of the carotid arteries, namely significant nuclear

size enlargement of medial VSMCs. In addition 20% of the samples displayed mild intimal

hyperplasia/cell accumulations. Nuclear size enlargement may be an indirect sign for polyploidy

since it has been proposed that polyploidization is a normal, controlled, protective mechanism

against oxidative stress.[45, 46] Specifically, the exposure of cells to mitotic stimuli in the pres-

ence of oxidative stress can result in polyploidy.[32, 47] Oxidative stress and ROS are well docu-

mented in situations of ischemia/reperfusion.[48] Together with the development of IH in 20%

of cases and the persistent downregulation of cytoskeleton stabilizing genes after 28days, this

clearly demonstrates that a short-term trigger, such as hypoxia/reperfusion, alone is sufficient to

cause a long lasting VSMC damage despite a fast resolution of the inflammatory reaction.

To test the physiological relevance of this persistent VSMC damage, ApoE knockout mice

were employed. We are aware that the ApoE knockout mouse has several limitations com-

pared to humans. Wild type mice have a low cholesterol level with high-density lipoprotein

being the predominating component and only low amounts of pro atherogenic components

such as low-density lipoprotein or very-low-density lipoprotein. Therefore, the mouse is resis-

tant to atherosclerosis, especially since this favorable cholesterol ratio prevails even under high

fat diet. Humans show higher cholesterol levels and low-density lipoprotein is the major con-

stituent, resulting in a higher risk for atherosclerosis. In comparison, ApoE knockout mice

develop exceedingly high hypercholesteremia under western diet (~1800mg/dl), mainly driven

by an increase in very-low-density lipoprotein.[49, 50] In addition, the ApoE protein does not

only participate in lipoprotein metabolism, but also influences inflammation and anti-oxidant

activities, which are missing in the knockout mouse.[51] However, the absence of a multifacto-

rial scenario as given in this genetic mouse model allows describing effects of a stress signal

(ischemia/reperfusion) with or without hypercholesterinemia.

These mice display a significantly elevated blood cholesterol level which can be further

increased under a western diet.[49] Most patients subjected to revascularization techniques

such as angioplasty or bypass grafting suffer from elevated cholesterol levels, diabetes and an

elevated blood pressure.[33] ApoE knockout mice developed atherosclerotic lesions at the

carotid artery bifurcation in the transiently ligated as well as in the contralateral control arter-

ies. Since the carotid artery bifurcation is prone to formation of atherosclerotic lesions due to

flow changes, this result was expected. The vascular segment below the carotid bifurcation is
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usually not prone to atherosclerotic plaque formation.[52, 53] Indeed, contralateral control

arteries, which were not subjected to temporary ligation were free of lesions. In contrast, arter-

ies transiently ligated for 1h and explanted 4 weeks later showed atherosclerosis. This indicates

that persistent VSMC activation due to transient ligation primes the blood vessel for the for-

mation of atherosclerotic lesions in a hypercholesteremic environment.

Ischemia/reperfusion injury is characterized by hypoxia, triggering expression of hypoxia

inducible genes such as HIF1α and formation of ROS, triggering inflammation.[54] HIF1α acts

as a transcription factor for various growth factors, such as PDGF which is known to induce

VSMC phenotype conversion.[7, 28] To elucidate mechanisms that initiate a synthetic VSMC

phenotype, we employed several treatments. A TNF scavenging antibody did not prevent phe-

notype conversion. To counteract ROS, N-Acetylcysteine was used, which also had no effect on

phenotype switching. The significant and persistent downregulation of Nr4a1 mRNA in

clamped arteries prompted us to use an NR4A1 agonist, Cytosporone B[36], since NR4A1

downregulation promotes a VSMC phenotype switch and NR4A1 knock out mice show an

increased proliferative VSMC behavior in response to pro-proliferative signals.[35, 55] How-

ever, Cytosporone B treatment did not affect the VSMC phenotype switch. The role of NR4A1

in initiating the phenotype switch is also questioned by our control experiment, subjecting the

carotid artery to surgical dissection without ligation. In this model Nr4a1 mRNA was also

downregulated but the VSMC genes Cnn1 and Acta2 were not affected. Finally, we used a com-

pound originally developed as an anti-cancer treatment which inhibits a wide variety of kinases,

mainly growth factor related signaling cascades such as VEGFR, PDGFR and Raf family

kinases.[37] Specifically PDGFR signaling is thought to play an important role in the VSMC

phenotype switch, but Sorafenib did not prevent downregulation of Cnn1 and Acta2, albeit it

significantly downregulated Il-1, Il-6, Cxcl1, S100a9 and Hif1α mRNA.[7] These results point to

the conclusion that single triggers such as growth factors, TNF, ROS or the loss of NR4A1 can

be ruled out as a cause of persistent phenotype conversion of VSMCs, albeit, in cell culture,

each of these triggers induces a loss in expression of VSMC differentiation genes.[7, 35]

Conclusion

The results of our simple and reproducible transient ligation model are unique in several aspects.

The carotid artery is subjected to hypoxia/reperfusion without affecting the vascular architecture,

the adventitia is left in place and there is no endothelial denudation. Nevertheless, this procedure

induces a permanent VSMC phenotype change towards a secretory phenotype. This implies that

(i) reperfusion injury occurs not only in large organs with a complex architecture, but even in such

small “simply built” structures as the carotid arteries; (ii) efforts to prevent IH should not only aim

to suppress inflammation but also need novel strategies to prevent the VSMC phenotype change.

(iii) Sorafenib should be considered as a treatment option in surgical procedures, where the aim is

to suppress inflammation since it can be locally employed at concentrations which are far lower

than required for cancer treatment; (iv) developing strategies to prevent the VSMC phenotype

change may also serve as supplementary therapy in treatment of certain cancer types which utilize

activated VSMCs to generate a favorable metastatic niche. (v) our results demonstrate that any

type of transient vascular ligation/clamping for surgical reasons causes vascular alterations. In situ-

ations of a perturbed lipid metabolism this bears the risk to precipitate atherosclerosis.

Supporting information

S1 Fig. Gallery of transiently ligated and contralateral control carotid arteries of ApoE

knock out mice fed a western diet. H&E stainings; scale bar equals 200μm.

(TIF)

Hypoxia/reperfusion predisposes to atherosclerosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0205067 October 5, 2018 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205067.s001
https://doi.org/10.1371/journal.pone.0205067


Acknowledgments

This work was supported by a grant from the Austrian Science Foundation SFB “F 54”. We

thank Karin Neumüller for technical assistance.

Author Contributions

Conceptualization: Peter Petzelbauer.

Data curation: Richard Finsterwalder.

Formal analysis: Richard Finsterwalder.

Funding acquisition: Peter Petzelbauer.

Investigation: Richard Finsterwalder, Minu Karthika Ganesan, Andreas Habertheuer,

Dominik Wiedemann.

Methodology: Richard Finsterwalder, Minu Karthika Ganesan.
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