1 Article, Review

2 Impact of COVID-19 related maternal stress on fetal brain development: A Multimodal MRI study

3 Vidya Rajagopalan^{1*}, William T. Reynolds², Jeremy Zepeda³, Jeraldine Lopez⁴, Skorn Ponrartana⁵, John Wood⁶,

4 Rafael Ceschin⁷ and Ashok Panigrahy⁸

5	1 Department of Radiology Childrens Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles CA;
6	vrajagopalan@chla.usc.edu
7	2 Department of Biomedical Informatics University of Pittsburgh, Pittsburgh, PA 15206, USA; William.reynolds@pitt.edu
8	3 Department of Radiology Childrens Hospital Los Angeles, Los Angeles CA ; jzepeda@chla.usc.edu
9	4 Neurops ychology Core, The Saban Research Institute, Childrens Hospital Los Angeles, jerlopez@chla.usc.edu
10	5 Department of Pediatric Radiology, Keck School of Medicine University of Southern California, Los Angeles CA sponrartana@chla.usc.edu
11	6 Departments of Radiology and Pediatrics, Childrens Hospital Los Angeles, Keck School of Medicine University of Southern California, Los
12	Angeles CA; jwood@chla.usc.edu
13	7 Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206; rafael.ceschin@pitt.edu
14	8 Department of Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; ashok.panigrahy@chp.edu
15	
16	* Correspondence: vrajagopalan@chla.usc.edu
17	Abstract:
18	Background: Disruptions in perinatal care and support due to the COVID-19 pandemic
19	was an unprecedented but significant stressor among pregnant women. Various
20	neurostructural differences have been re-ported among fetuses and infants born during
21	the pandemic compared to pre-pandemic counterparts. The relationship between ma-
22	ternal stress due to pandemic related disruptions and fetal brain is yet unexamined.

Citation: Lastname, F.; 23 Lastname, F.; Lastname, 24 F. Title. J. Clin. Med. 2022₂₅ 11, x. 26 https://doi.org/10.3390/xx27 XXX 28 Academic Editor: Firstname Lastname 29 30 Received: date 31 Accepted: date 32 Published: date 33

Publisher's Note: MDPI stays neutral with regard4 to jurisdictional claims in5 published maps and in²⁶ stitutional affiliations. 37

38

Copyright: © 2022 by th²⁹ authors. Submitted fo⁴⁰ possible open access publication under the terms and conditions of¹¹

Methods: Pregnant participants with healthy pregnancies were prospectively recruited in 2020-2022 in the greater Los Angeles Area. Participants completed multiple self-report assessments for experiences of pandemic related disruptions, perceived stress, and coping behaviors and underwent fetal MRI. Maternal perceived stress exposures were correlated with quantitative multimodal MRI measures of fetal brain development using multivariate models.

Results: Fetal brain stem volume increased with increased maternal perception of pandemic related stress positively correlated with normalized fetal brainstem volume (suggesting accelerated brainstem maturation). In contrast, increased maternal perception of pandemic related stress correlated with reduced global fetal brain temporal functional variance (suggesting reduced functional connectivity).

Conclusions: We report alterations in fetal brainstem structure and global functional fetal brain activity associated with increased maternal stress due to pandemic related disruptions, suggesting altered fetal programming. Long term follow-up studies are required to better understand the sequalae of these early multi-modal brain disruptions among infants born during the COVID-19 pandemic.

Keywords: fetal brain function, maternal stress, COVID-19 pandemic

1. Introduction

42	The COVID-19 pandemic created many, unprecedented disruptions to everyday life
43	particularly in 2020-2022 before vaccines were widespread. In addition to disruptions
44	around employment, childcare, housing, and nutrition, pregnant women also suffered
45	negative experiences related to support and care during pregnancy and childbirth. Social
46	isolation, reduced access to child and elder care, COVID-19 infection risk, and changes to
47	medical policies around pre and postpartum care were reported to be the most common
48	stressors among pregnant women [1,2]. Pregnant women are particularly vulnerable to
49	mood and anxiety related disorders [3] which are exacerbated during natural disasters or
50	stressful events [4,5]. Unsurprisingly, pregnant women indicated elevated levels of stress
51	during the COVID-19 pandemic [6]. In addition to health consequences for the mother,
52	increased maternal stress has an intergenerational impact on fetal development [7,8]. In-
53	creased maternal stress during pregnancy is known to alter the fetal brain and adversely
54	impact postnatal neurodevelopmental outcomes [9–12].
55	Studies of infants born during the COVID-19 pandemic have reported reduced cognitive,
56	motor, and emotional development compared to those born pre-pandemic [7,8], with
57	increased prenatal stress directly associated with adverse effect and temperament [13,14].
58	Simultaneously, changes to brain structure and function have also been reported in in-
59	fants born during the pandemic [15]. Lu et al.[16] reported volumetric reductions in the
60	brain among fetuses of women pregnant during the pandemic compared to a
61	pre-pandemic cohort. Their findings showed a negative relationship between general
62	ma-ternal stress and fetal brain volumes. However, their cohort did not show an increase
63	in maternal stress or anxiety during a pandemic, and they did not measure maternal
64	stress or anxiety specifically linked to the pandemic. Additionally, there is no data on if
65	or how emerging functional networks in the fetal brain, which are known to be sensitive
66	to ma-ternal stress, were impacted by pandemic related maternal stress. Early aberrations
67	to functional organization of the brain are well known to have deleterious downstream
68	ef-fects in brain and behavioral development. As such, a multimodal imaging study is
69	im-portant to better understand how prenatal maternal stress sets up the offspring's
70	brain for a trajectory of compounding aberrant development.
71	Understanding the impact of pandemic related maternal stress on fetal development
72	al-lows us to identify risk and resilience factors to mitigate maternal stress and conse-
73	quently minimize the intergenerational effect of pandemic related stress. Coping behav-
74	iors, in response to stressful events, are known to be modifiable targets to mitigate ma-
75	ternal stress and anxiety [17,18]. Given the extraordinary nature of pandemic related
76	stressors, there is little information on various coping behaviors that pregnant women
77	have adopted during the pandemic [19–21]. Despite its observational nature, information
78	on coping behaviors to pandemic related stressors allow clinical care teams to design and
79	implement support programs aimed at improving maternal mental health during preg-
80	nancy and child out-comes.
81	In this work, we investigated the impact of maternal stress due to pandemic related
82	dis-ruptions in pregnancy support and care on structural and functional development of
83	the human fetal brain. Our primary hypothesis is that increased maternal stress would
84	pre-dict quantitative alterations in structural and functional characteristics of the fetal
85	brain. Secondarily, we compared coping behaviors between pregnant women reporting
86	high vs low levels of pandemic related stress.
87	2. Materials and Methods
88	2.1 Subject Demographics
89	Pregnant mothers, living in the greater Los Angeles area were recruited using flyers, so-
90	cial media ads, and referrals from community partner clinics at Children's Hospital Los
91	Angeles (CHLA) from November 2020 – November 2021. Enrollment eligibility included

92	healthy, pregnant women between 18 – 45 years with singleton, uncomplicated preg-
93	nancies (confirmed by ultrasound) between 21 – 38 gestational weeks (GW). Exclusion
94	criteria were multiple gestation, fetal or genetic anomalies, congenital infection, and
95	maternal contraindication to MRI. Informed consent for the study was obtained under a
96	protocol approved by the Institutional Review Board at CHLA. Demographics, perinatal
97	health history, and self-assessment surveys of consented participants were gathered via
98	online survey within 24 hours prior to MRI.
99	2.2 Stress and Coping Behavioral Assessments
100	Participants were asked to complete the Coronavirus Perinatal Experiences - Impact
101	Survey[22] (COPE-IS) . This is a self-assessment questionnaire, available in multiple
102	lan-guages, to assess feelings and experiences of pregnant women and new mothers in
103	rela-tion to disruptions caused by the COVID-19 pandemic. Questions in this assessment
104	were adapted from multiple validated questionnaires such as the Brief Symptom Inven-
105	tory[23] PTSD checklist from DSM-5 [24], and the Johns Hopkins Mental Health Working
106	Group. In this study, we only included questions pertinent to the prenatal period. Per-
107	ceived maternal stress was computed as described here [21,22] and will be referred to as
108	COPE-Stress going forward. Participants also completed the Brief COPE question-
109	naire[25], which is an abbreviated form of the COPE (Coping Orientation to Problems
110	Exposed) questionnaire[26]. This is a self-assessment of a wide range of coping behaviors
111	including both maladaptive coping (includes substance use, venting, behavioral disen-
112	gagement, denial, self-blame, and self-distraction)[27] and adaptive coping (includes
113	humor, planning and seeking social support, use of emotional and instrumental support,
114	positive reframing, religion, and acceptance)[28,29]. This questionnaire has been vali-
115	dated in multiple languages and cultural contexts to be correlated to perceived stress and
116	mental well-being.
117	2.3 Child Opportunity Index (COI)
118	Neighborhood socio-economic environment (SEE) is a known modifier of overall
119	maternal stress during pregnancy[30], pandemic related stress[31], and offspring
120	out-comes[32]. Family income is often used to measure SEE. However, the quality of life
121	associated with absolute income number varies regionally based on cost of living, social
122	policies, environmental factors, etc. To overcome these limitations, we chose to represent
123	SEE using childhood opportunity index (COI). COI is a multi-dimensional, nationally
124	normed measure of the quality of social, environmental, health, and educational re-
125	sources available at each zip code[33]. We extracted maternal COI using self-reported zip
126	code at the time of the MRI visit and will be referred to as COI-SEE going forward.
127	2.4 Image Acquistion
128	Pregnant mothers were prospectively recruited between 24-38 GW and imaged on 3.0 T $$
129	Philips Achieva scanner (Netherlands). Multiplanar single-shot turbo spin echo imaging
130	was per-formed (TE = 160 ms, TR = 9000-12,000 ms, 3 mm slice thickness, no interslice
131	gap, 1×1 mm in plane resolution). Fetal brains were scanned in each of three planes for
132	three times resulting in nine images per subject and images were repeated if excessive
133	motion was present. Echo-planar imaging (EPI) BOLD images were also collected with
134	the following parameters: $FOV = 300 \text{ mm} \text{ TR} = 2000 \text{ ms}$, $TE = 31-35 \text{ ms}$ (set to shortest), flip
135	angle = 80o, with an in-plane resolution of $3x3$ mm2, slice thickness of 3.0 mm and 0.0
136	mm intra-slice gap. 150 timepoints were recorded for each BOLD image and two images
137	were collected for each subject.
138	
139	2.5 Image Processing
140	251 Brain Structure
+ +··	Lion Diant di actare

> All structural brain images were verified as being typical for gestational age by a board certified neuroradiologist (SP). For each subject, various 2D stacks of the T2 images were visually assessed to identify and discard stacks with large, spontaneous fetal motion. In each stack, the fetal brain was localized from surrounding tissue. For each subject, multiple 2D stacks were motion corrected and reconstructed, using a slice-to-volume reconstruction [34] into a 3D volumetric T2 image with an isotropic resolution of 1 mm³. Reconstructed fetal brains were processed through a bespoke, automated fetal segmentation pipeline. Each fetal brain was normalized (affine followed by non-rigid) to a probabilistic atlas [35] of equivalent gestational age using Advanced Normalization tools[36]. Segmentations were manually inspected for accuracy and subjects with failed segmentations were discarded. The resulting segmentation maps were subsequently refined. To ensure consistency across different gestational ages, transient structures only present in the tissue atlas from 21 - 30 weeks of gestation such as the subplate, intermediate zone, and ventricular zone were combined with the corpus collosum and labeled as developing WM (WM). Cerebrospinal fluid (CSF) segmentation was refined as intra-ventricular (within lateral ventricles) and extra-axial CSF. Due to the small size and relative difficulty in segmenting the hippocampus and amygdala, both structures were combined into a hippocampus-amygdala complex. Deep grey tissue was defined as the combination of the caudate, putamen, thalamus, fornix, internal capsule, subthalamic nucleus, and hippocampal commissure. Right and left hemispheric labels were combined into a single volume for each structure. The final segmentation yielded volumes of the following structures: cortical plate, developing white matter, intra-ventricular CSF, extra-axial CSF, deep gray tis-sues, cerebellum, hippocampal-amygdala complex, and brainstem. A total brain volume (TBV) was generated for each subject as the sum of all tissues.

2.5.2 Brain Function

141

142 143

144

145

146

147

148

149

150

151

152

153 154

155

156

157

158 159

160

161

162

163

164

165

166

167

168

169

170

171 172

173

174

175

176 177

178

179

180 181

182

183

184

185

186

BOLD imaging of the fetal brain is prone to spontaneous fetal motion which is com-pounded by lower signal to noise ratio and spatial resolution. While modern motion cor-rection algorithms effectively attenuate the effects of subject motion on the temporal data, they are limited in effect beyond small degrees of motion. Any robust voxel-wise approach to functional fetal imaging would yield a prohibitively low number of subjects with usable data. We therefore chose to implement a whole-brain temporal signal approach to fetal functional imaging. Resting state images were first motion corrected using FSL's MCFLIRT routine, using the first frame as the registration target, and a mean framewise displacement threshold > 0.2 mm to eliminate frames with excessive motion. As the intent of this study was to use minimally processed data using framewise measures, as opposed to voxelwise measures, we made no prior assumptions on physiological or nuisance frequency thresholds in fetal functional imaging, and did not apply any bandpass filtering. A mean brain signal image was then generated by averaging across every frame in the sequence. This mean signal image was used as the source image for brain extraction to generate a brain mask. Brain extraction was done by using an adaptive routine that iterated between using FSL's Brain Extraction Tool (BET)[37] and AFNI's Skullstrip, using decreasingly smaller thresholds for brain tissue [38]. This approach yielded a good approximation of the fetal brain, with a minimal manual correction step required for final brain masking. The brain mask was then propagated across each frame in the temporal sequence to extract only fetal brain voxels.

187Using the mask generated above, we averaged the whole brain BOLD signal in each188frame and generated statistical measures across time. The measures generated were189temporal mean (average of the mean signal across frames), temporal variability (average190of the standard deviation of the signal across frames), variance of the mean (variance of191the mean signal in each frame), kurtosis of the mean (kurtosis of the mean signal in each192frame). Finally, to test for any signal or physiological drift, we calculated the autocorre-

193	lation of the mean signal in each frame, and the kurtosis and autocorrelation of the nor-
194	malized signal across frames.
195	
196	2.6 Statistical Analysis
197	2.6.1 Brain Structure
198	Regression analysis was performed in Python (3.7) using the Statsmodel.api v0.13.2. We
199	used multiple, linear regression to model the relationship of COPE-Stress Score,
200	COI-SEE, and their interaction on TBV after adjusting for gestational age at MRI. Nested
201	models of the covariates without interaction were also tested. Models were deemed to be
202	significant if one or more of the covariates were statistically significant, and models
203	in-cluding the interaction term were only selected over the simpler counterpart if they
204	had a higher explained variance (R-squared) and/or lower Bayes' Information Criteria
205	(BIC). Using similar regression models, we individually tested the relationship of
206	COPE-Stress score and COI-SEE for each tissue volume listed in Section 2.4.1 (as a de-
207	pendent variable). Secondarily, we also tested the relationship of COPE-Stress score and $COESEE$ on tissue volumes normalized by TBV after adjusting for gestational age
200	COPSEE on assue volumes normalized by TDV after adjusting for gestational age.
209	2.6.2 Brain Function
210	Statistical analysis for brain functional metrics was similar to Section 2.5.1. A separate
211	regression model was tested for each, individual functional metric (Section 2.4.2) with
212	COPE Stress, COI-SEE, and their interaction as predictor variables after accounting for
213	GA at MRI.
214	2.6.3 Comparison of Coping Behaviors
215	Coping behaviors, both the Brief-COPE and COVID specific, were analyzed for differ-
216	ences between low and high stress mothers. Mothers were split into low, medium, and
217	high stress categories based on tertiles of COVID Stress scores. Using Fischer Exact test,
218	we compared if mothers reporting low and high stress used each coping behavior at sig-
219	nificantly different amounts.
220	
221	3. Results
222	3.1 Subject Demographics
223	Pregnant mothers were recruited prospectively for this study with a total of 45 moth-
224	er-fetal dyads completed the MR imaging session. Three subjects had missing zip code
225	information, and which resulted in missing COI-SEE data and was thus excluded from
226	any analysis. After imaging, three subjects failed brain segmentation resulting in 39
227	sub-jects for structural regression results. A total of 43 subjects of the original 45 subjects
228	had analyzable BOLD imaging and were used for the functional regression results (Table
229	1).
230	3.2 Brain Structure
231	There were no significant associations between absolute volumes of the various brain
232	structures and perceived maternal stress, COI-SEE, or their interaction (Table 2). How-
233	ever, there was a significant positive association between normalized brain stem volume
234	and perceived maternal stress ($p = 0.03$) but not with COI-SEE and the interaction of
235	COI-SEE and maternal stress (Table 3) There were no significant associations between
236	normalized volumes of other structures with COPE-Stress or COI-SEE.
237	3.3 Brain Function

238	Lack of significant relationship between autocorrelation metrics and the predictor varia-
239	ble confirmed the absence of any systematic signal or physiological drifts. We found a
240	significant negative relationship between temporal variability and COPE Stress (p <
241	0.028) (Table 4). The temporal variability model including the interaction term between
242	Cope Stress Score and COI SES had a slightly improved R-squared (0.267) but lower BIC
243	and reduced statistical significance of the covariates, likely due to co-linearity. We
244	there-fore report the original model without the interaction term. We found no other
245	statistically significant relationships between fetal brain functional characteristics with
246	COPE Stress or COI SEE.
247	3.4 Comparison of Coping Behaviors
248	We compared coping behaviors between participants reporting high and low stress in
249	our cohort. Among general coping behaviors measured by Brief-COPE, humor (p-value =
250	0.025) and venting (p-value = 0.048) were used more commonly by participants re-
251	port-ing low stress compared to those reporting high stress (Figure 1). Among COVID
252	specific coping behaviors that showed access to a mental health provider (p-value =
253	0.038), and information about how to reduce stress (p-value = 0.038) were chosen as being
254	'Very Important' to women reporting low stress at a high amount than in women re-
255	porting high stress (Figure 2). No other behaviors were found to be significantly different
256	between high and low stress mothers. A full summary of the results can be seen in Fig-
257	ures 1 and 2 .
258	
259	3.5. Figures and Tables
260	
261	Table 1. Study participant demographics including maternal parity and maternal
262	race/ethnicity.

Characteristic	Total	
Total Participants	45	
Sex of fetus		
Female	18	
Male	20	
Unknown	7	
Total MRIs	45	
GA, median (range), wk		
At MR	31.57	(22.57 to 38.42)
At Birth	39.14	(33 to 41.86)
Maternal age at MRI, median, yr	32	(18 to 43)
Maternal parity		
Pri mi parous	18	
Multiparous	22	
Unknown	5	
Infant Weight, median, kg	3.54	
Mother's race/ethnicity		
Cau casian	8	
Hispanic or Latino	28	
Asian/Pacific Islander	7	
African American	1	
Middle Eastern	0	
Ot her or unknown	1	

¥7.1	COVID Stress Score		COI Nationally Nor	med Value	COI Stress Interaction		
Volume		D.V. I		N 1 7 1		P-Valu	
(cm3)	β (CI)	P-Value	β (CI)	P-Value	β (CI)	е	
Brainstem	3.89E+00,		-2.81E-01,		4.0(E.01./110E.00		
	(-7.62E+01,	0.97	(-1.41E+01,	0.99	4.00E-01, (-1.18E+00,	0.86	
	8.40E+01)		1.35E+01)		1.99E+00)		
Cerebellum	1.54E+02,		2.000.01 (4.120.01		-1.95E+00,		
	(-4.84E+01,	0.61	3.28E+01, (4.13E-01,	0.49	(-5.79E+00,	0.73	
	3.56E+02)		6.32E+01)		1.89E+00)		
Cortical Plate	-7.33E+02,		-3.78E+00,		1.23E+01,		
	(-1.35E+03,	0.42	(-1.59E+02,	0.99	(-1.43E+00,	0.55	
	-1.18E+02)		1.52E+02)		2.60E+01)		
Deep Grey	1.93E+01,		2.76E+00,		1.65E+00,		
	(-1.83E+02,	0.95	(-3.17E+01,	0.96	(-2.28E+00,	0.78	
	2.22E+02)		3.73E+01)		5.58E+00)		
Extra Axial	-7.29E+02,		-9.28E+01,		1.76E+01,		
CSF	(-1.74E+03,	0.63	(-3.06E+02,	0.77	(-5.28E+00,	0.60	
	2.81E+02)		1.21E+02)		4.04E+01)		
Hippocam-	-1.31E+00,		-7.62E-01,		0.17E 01 (0.00E 01		
pus amygda-	(-2.72E+01,	0.97	(-6.21E+00,	0.92	2.1/E-01, (-3.33E-01,	0.79	
la complex	2.46E+01)		4.69E+00)		7.68E-01)		
Intra ventric-	2.59E+01,		1.23E+01,		-5.07E-01,		
ular CSF	(-7.98E+01,	0.87	(-1.15E+01,	0.73	(-2.81E+00,	0.88	
	1.32E+02)		3.60E+01)		1.79E+00)		
White Matter	-5.17E+02,		-8.47E+01,		1.19E+01,		
	(-1.69E+03,	0.77	(-2.99E+02,	0.79	(-1.25E+01,	0.74	
	6.58E+02)		1.30E+02)		3.63E+01)		
Total Brain	-2.51E+03,		-2.27E+02,		5.92E+01,		
Volume	(-6.81E+03,	0.69	(-1.05E+03,	0.85	(-3.03E+01,	0.66	
	1.80E+03)		5.96E+02)		1.49E+02)		

266

265

267

268

269

Table 3. Brain structure volumes', after normalization to total brain volume, relationship to COVID stress, COI-SEE, and their interaction

Volume normal- ized by Total	Covid Stress		Overall COI by zip code		Covid Stress and COI in- teraction	
brain volume	β (CI)	P-Value	β (CI)	P-Value	β (CI)	P-Value
Brainstem	1.30E-04, (9.00E-05, 1.70E-04)	0.03*	1.00E-05, (0.00E+00,	0.65	0.00E+00, (0.00E+00,	0.31

			2.00E-05)		0.00E+00)	
			7.00E-05,		-1.00E-05,	
Cerebellum	3.40E-04, (1.50E-04,	0.24	(4.00E-05,	0.12	(-1.00E-05,	0.26
	5.40E-04)		1.10E-04)		0.00E+00)	
	1 405 00 (0 105 00		-1.00E-05,		1.00E-05,	
Cortical Plate	-1.42E-03, (-2.10E-03,	0.16	(-2.20E-04,	0.97	(-1.00E-05,	0.64
	-7.40E-04)		2.00E-04)		3.00E-05)	
	1.00E.04 (2.00E.0E		2.00E-05,		0.00E+00,	
Deep Grey	1.90E-04, (3.00E-05,	0.42	(-3.00E-05,	0.82	(0.00E+00,	0.90
	3.60E-04)		6.00E-05)		1.00E-05)	
	1.10E-04, (-7.00E-05, 2.80E-04)		-5.00E-05,		0.00E+00,	
Extra Axial CSF		0.68	(-1.20E-04,	0.61	(0.00E+00,	0.60
			2.00E-05)		1.00E-05)	
Hippocampus	4 00E 05 (0 00E 05		0.00E+00,		0.00E+00,	
amygdala com-	4.00E-05, (2.00E-05,	0.22	(-1.00E-05,	0.94	(0.00E+00,	0.99
plex	6.00E-05)		1.00E-05)		0.00E+00)	
Intra ventricular	1.20E-04, (-4.00E-05,	0.61	5.00E-05,	0.55	0.00E+00,	0.64
CSF	2.80E-04)		(-1.00E-05,		(-1.00E-05,	
			1.00E-04)		0.00E+00)	
White Matter	3.80E-04, (-1.60E-04,	0.63	-3.00E-05,	0.89	-1.00E-05,	0.62
	9.20E-04)		(-1.80E-04,		(-3.00E-05,	
			1.20E-04)		0.00E+00)	

270

271

272

Table 4. Brain functional metrics' relationship to COVID stress and COI-SEE using linear modeling.

	Covid Stress		Overall COI by zip code		
	β(CI)	P-Value	β (CI)	P-Value	
Temporal mean of					
BOLD Signal	135.369, (-509.52, 38.1)	0.09	316.9634, (-604.97, 1238.9)	0.49	
Temporal variability					
of BOLD Signal	-113.94, (-215.18, -12.71)	0.03*	-19.5173, (-360.388, 321.354)	0.91	
Variance of					
framewise mean					
BOLD signal	-5336.81, (-2.87e+04, 1.81e+04)	0.65	-5191.57, (-8.4e+04, 7.36e+04)	0.9	
Kurtosis of framewise					
mean BOLD signal	0.329, (-0.144, 0.802)	0.17	0.457, (-1.135, 2.049)	0.57	
Autocorrelation of					
framewise mean					
BOLD	-6.828e+06, (-1.41e+07, 4.89e+05)	0.07	1.005e+07, (-1.46e+07, 3.47e+07)	0.41	

Figure 1. Comparison of general coping behaviors grouped by usage and analyzed for differences in incidence using a
 Fischer Exact Test.

Figure 2. Analysis of COVID specific coping behaviors grouped by usage and analyzed for differences in incidence using a Fischer Exact Test.

4. Discussion

Our findings show that perceived maternal stress, in the setting of COVID-19 related care disruptions, impacts with structural and functional developmental of the fetal brain. Higher maternal stress was associated with increased brainstem volume (suggesting accelerated brainstem maturation) and globally decreased temporal variability of function (suggesting reduced functional connectivity) in the fetal brain. Additionally, we also found differences in the prevalence of specific coping behaviors between pregnant women who reported high stress compared to those who reported low stress.

We found that increased levels of maternal stress correlated with increased normalized brainstem volume suggesting relatively increased acceleration of brainstem maturation relative to cortical/supratentorial cerebral regions. Importantly, these results are con-sistent with prior studies that have correlated prenatal maternal stress and neonatal brainstem auditory evoked potentials (the speed at which the brainstem auditory evoked potential is conducted through the auditory nerve serves as a proxy for greater neural maturation)[39,40]. These studies have found significant relations between higher maternal prenatal distress and faster conductance, suggesting that greater maternal prenatal stress is associated with accelerated subcortical/brainstem neural maturation in neonates [41]. Our results are also consistent with the recent study by De Asis-Cruz et al. [42] which found that altered functional connectivity between brainstem and sensorimotor regionals were associated with high maternal anxiety scores.

277 278 279

280

281

282

283

284

285

286

287

288

289

290

291

292

293 294

295

296

297

298

299

300

301

302	We found that higher perceived maternal stress was associated with lower temporal
303	variability in the fetal brain suggesting aberrations to foundational characteristics of
304	con-nectivity and organization of emerging brain networks[43]. It has been
305	well-established that such perturbations to early brain connectivity architecture, during
306	the critical fetal period, has long-standing effects on behavioral and psychiatric devel-
307	opment among these children[44–46]. Our findings of altered brain connectivity agree
308	with previous findings of altered brain connectivity in infants of mothers who reported
309	higher stress during the pandemic[15]. Behavioral and functional deficits particularly in
310	the motor, cognitive and temperamental domain have been widely reported in various
311	studies investigating the impact of maternal stress during the pandemic on child out-
312	comes [7,8,13,14]. Increased maternal stress and anxiety traits (outside the setting of the
313	pandemic) have been shown to alter functional architecture of the fetal brain[47]. Collec-
314	tively, our and prior findings suggest that in utero alterations to brain architecture, asso-
315	ciated with maternal stress during the pandemic, could underlie developmental deficits
316	reported in these children. Further meta studies are needed to investigate the trajectory of
317	brain development in children conceived and born during the pandemic.
	······································
318	Our findings suggest key differences in coping behaviors between pregnant women who
319	reported low and high stress. Increased use of adaptive coping behaviors (particularly
320	humor and venting) was more common among pregnant women who reported lower
321	stress compared to those who reported higher stress. This association between in-creased
322	use of adaptive active coping and lower stress perception was reported across multiple
323	studies of mental health in peripartum women during COVID-19 pandemic [21 48 49]
324	Our findings are also in agreement with generalized findings of positive rela-tionship
325	between active coping behaviors and improved mental well-being in pregnant wom-
325	en[50] In questions regarding COVID-19 specific coping behaviors, pregnant mothers
320	reporting low stress endorsed access to mental health information and providers as being
222	kay to wallness. Routing scrooping for propatal stross, provision of stross manage mont
220	information and improved access to prenatal mental health care provide potential ave
229	nuos for improving montal health and associated outcomes in program women
221	re-gardless of nandemic conditions
551	re-gardress of paracritic conditions.
332	This study's limitations include small sample size and recruitment limited to a single
333	geographical area in the USA during the pandemic. Since the greater Los Angeles area
334	was disproportionately affected by pandemic related disruptions, comparison to a mul-
335	ti-site cohort will provide greater statistical power thereby increasing the generalizability
336	of our findings. The cross-sectional nature of prenatal stress assessment limits our ability
337	to associate time-varying stress levels and fetal outcomes. But all participating women
338	became pregnant after pandemic-related restrictions were put in place. Lack of a
339	pre-pandemic cohort limits our ability to pin-point if the differences in coping behaviors
340	between pregnant women reporting low and high stress are specific adaptations to stress
341	experienced during the pandemic.
342	5. Conclusions
343	Here, we reported the first multi-modal study of the impact of COVID-19 pandemic re-
344	lated maternal stress on fetal brain development. Our findings showed that increased
345	maternal stress due to pandemic related disruptions was associated with structural and
346	functional disruptions to fetal brain development and is suggestive of altered fetal
347	pro-gramming. Comparing coping behaviors between pregnant women reporting higher
348	and lower stress, our study provides insight into potential avenues for improved stress
349	management and mental health outcomes among pregnant women.

350	6. Patents
351	This section is not mandatory but may be added if there are patents resulting from
352	the work reported in this manuscript.
353	1 1
354	Author Contributions: Conceptualization, VR, RC, and WR; methodology, VR, RC, and
355	WR; validation, RC, SP, and WR.; resources, VR; data curation, VR, JZ, and JL; writ-
356	ing—original draft preparation, VR, RC, WR, and JZ; writing—review and editing, VR,
357	WR, JZ, JW, RC, SP, JW and AP; visualization, VR, RC, WR and JZ.; supervision, AP and
358	VR; funding acquisition, VR, AP. All authors have read and agreed to the published ver-
359	sion of the manuscript.
360	Funding: This work was funded NIH/NHLBI K01HL153942 and the Saban Research In-
361	stitute Research Career Development Award to VR. Funding for WR was provided by
362	the National Library of Medicine T15 Training program grant; award number
363	2T15LM007059-36. AP reported receiving grants from the Department of Defense
364	(W81XWH-16-1-0613), the National Heart, Lung and Blood Institute (R01 HL152740-1,
365	R01 HL128818-05), and Additional Ventures.
366	Institutional Review Board Statement: The study was conducted in accordance with the
367	Declaration of Helsinki and approved by the Institutional Review Board (or Ethics
368	Committee) of Childrens Hospital Los Angeles (protocol code CHLA-17-00292 and
369	9/14/2017).
370	Informed Consent Statement: Any research article describing a study involving humans
371	Written informed consent to include deidentified data has been obtained from the pa-
372	tient(s) to publish this paper
373	
374	Data Availability Statement: Due to limitations of informed consent, data from the
375	study cannot be shared. But Methodologies and techniques from the study will be made
376	available via direct email to the corresponding author.
377	
378	Acknowledgments: We would like to acknowledge all the women and families who
379	participated in the study during an unprecedented global pandemic. We would like to
380	thank Rosa Rangel, Teddy Aguilar, and Veronica Gonzalez for their help with the study.
381	Conflicts of Interest: The authors declare no conflict of interest. The funders had no role
382	in the design of the study; in the collection, analyses, or interpretation of data; in the
383	writing of the manuscript; or in the decision to publish the results.
384	
385 References	

- Zhou, J.; Havens, K.L.; Starnes, C.P.; Pickering, T.A.; Brito, N.H.; Hendrix, C.L.; Thomason, M.E.; Vatalaro, T.C.;
 Smith, B.A. Changes in Social Support of Pregnant and Postnatal Mothers during the COVID-19 Pandemic.
 Mid-wifery 2021, 103, 103162, doi:10.1016/J.MIDW.2021.103162.
- Barbosa-Leiker, C.; Smith, C.L.; Crespi, E.J.; Brooks, O.; Burduli, E.; Ranjo, S.; Carty, C.L.; Hebert, L.E.; Waters, S.F.;
 Gartstein, M.A. Stressors, Coping, and Resources Needed during the COVID-19 Pandemic in a Sample of Perinatal Women. BMC Pregnancy Childbirth 2021, 21, 1–13, doi:10.1186/S12884-021-03665-0/TABLES/4.
- Shorey, S.; Chee, C.Y.I.; Ng, E.D.; Chan, Y.H.; Tam, W.W.S.; Chong, Y.S. Prevalence and Incidence of Postpartum
 Depression among Healthy Mothers: A Systematic Review and Meta-Analysis. J Psychiatr Res 2018, 104, 235–248,
 doi:10.1016/J.JPSYCHIRES.2018.08.001.
- King, S.; Dancause, K.; Turcotte-Tremblay, A.M.; Veru, F.; Laplante, D.P. Using Natural Disasters to Study the
 Ef-fects of Prenatal Maternal Stress on Child Health and Development. Birth Defects Res C Embryo Today 2012,
 96, 273–288, doi:10.1002/BDRC.21026.
- Salm Ward, T.; Kanu, F.A.; Robb, S.W. Prevalence of Stressful Life Events during Pregnancy and Its Association 398 5. 399 with Postpartum Depressive Symptoms. Arch Womens Ment Health 2017, 20, 161-171, doi:10.1007/S00737-016-0689-2. 400

- Motrico, E.; Domínguez-Salas, S.; Rodríguez-Domínguez, C.; Gómez-Gómez, I.; Rodríguez-Muñoz, M.F.;
 Gómez-Baya, D. The Impact of the COVID-19 Pandemic on Perinatal Depression and Anxiety: A Large
 Cross-Sectional Study in Spain. Psicothema 2022, 34, 200–208, doi:10.7334/PSICOTHEMA2021.380.
- Bianco, C.; Sania, A.; Kyle, M.H.; Beebe, B.; Barbosa, J.; Bence, M.; Coskun, L.; Fields, A.; Firestein, M.R.; Goldman,
 S.; et al. Pandemic beyond the Virus: Maternal COVID-Related Postnatal Stress Is Associated with Infant
 Tem-perament. Pediatric Research 2022 2022, 1–7, doi:10.1038/s41390-022-02071-2.
- Shuffrey, L.C.; Firestein, M.R.; Kyle, M.H.; Fields, A.; Alcántara, C.; Amso, D.; Austin, J.; Bain, J.M.; Barbosa, J.;
 Bence, M.; et al. Association of Birth During the COVID-19 Pandemic With Neurodevelopmental Status at 6
 Months in Infants With and Without In Utero Exposure to Maternal SARS-CoV-2 Infection. JAMA Pediatr 2022,
 176, e215563–e215563, doi:10.1001/JAMAPEDIATRICS.2021.5563.
- Schuurmans, C.; Kurrasch, D.M. Neurodevelopmental Consequences of Maternal Distress: What Do We Really
 Know? Clin Genet 2013, 83, 108–117, doi:10.1111/CGE.12049.
- Talge, N.M.; Neal, C.; Glover, V. Antenatal Maternal Stress and Long-Term Effects on Child Neurodevelopment:
 How and Why? J Child Psychol Psychiatry 2007, 48, 245–261, doi:10.1111/J.1469-7610.2006.01714.X.
- Wu, Y.; Lu, Y.C.; Jacobs, M.; Pradhan, S.; Kapse, K.; Zhao, L.; Niforatos-Andescavage, N.; Vezina, G.; du Plessis, 415 11. A.J.; Limperopoulos, C. Association of Prenatal Maternal Psychological Distress With Fetal Brain Growth, 416 Me-tabolism, and Cortical Maturation. JAMA Netw Open 2020, 3. e1919940-e1919940, 417 doi:10.1001/JAMANETWORKOPEN.2019.19940. 418
- van den Heuvel, M.I.; Hect, J.L.; Smarr, B.L.; Qawasmeh, T.; Kriegsfeld, L.J.; Barcelona, J.; Hijazi, K.E.; Thomason,
 M.E. Maternal Stress during Pregnancy Alters Fetal Cortico-Cerebellar Connectivity in Utero and Increases Child
 Sleep Problems after Birth. Scientific Reports 2021 11:1 2021, 11, 1–12, doi:10.1038/s41598-021-81681-y.
- Griffin, M.; Ghassabian, A.; Majbri, A.; Brubaker, S.G.; Thomason, M. Evaluating the Association Between
 Ma-ternal Peripartum Care Interruptions and Infant Affect: A Longitudinal Study. Am J Obstet Gynecol 2022, 226,
 S310, doi:10.1016/J.AJOG.2021.11.521.
- Provenzi, L.; Grumi, S.; Altieri, L.; Bensi, G.; Bertazzoli, E.; Biasucci, G.; Cavallini, A.; Decembrino, L.; Falcone, R.;
 Freddi, A.; et al. Prenatal Maternal Stress during the COVID-19 Pandemic and Infant Regulatory Capacity at 3
 Months: A Longitudinal Study. Dev Psychopathol 2021, 1–9, doi:10.1017/S0954579421000766.
- Manning, K.Y.; Long, X.; Watts, D.; Tomfohr-Madsen, L.; Giesbrecht, G.F.; Lebel, C. Prenatal Maternal Distress
 During the COVID-19 Pandemic and Associations With Infant Brain Connectivity. Biol Psychiatry 2022,
 doi:10.1016/J.BIOPSYCH.2022.05.011.
- Lu, Y.-C.; Andescavage, N.; Wu, Y.; Kapse, K.; Andersen, N.R.; Quistorff, J.; Saeed, H.; Lopez, C.; Henderson, D.;
 Barnett, S.D.; et al. Maternal Psychological Distress during the COVID-19 Pandemic and Structural Changes of the
 Human Fetal Brain Plain Language Summary., doi:10.1038/s43856-022-00111-w.
- Varescon, I.; Leignel, S.; Poulain, X.; Gerard, C. Coping Strategies and Perceived Stress in Pregnant Smokers
 Seeking Help for Cessation. J Smok Cessat 2011, 6, 126–132, doi:10.1375/JSC.6.2.126.
- 18. Razurel, C.; Kaiser, B.; Sellenet, C.; Epiney, M. Relation between Perceived Stress, Social Support, and Coping
 Strategies and Maternal Well-Being: A Review of the Literature. Women Health 2013, 53, 74–99,
 doi:10.1080/03630242.2012.732681.
- Rimal, S.P.; Thapa, K.; Shrestha, R. Psychological Distress and Coping among Pregnant Women during the
 COVID 19 Pandemic. J Nepal Health Res Counc 2022, 20, 234–240, doi:10.33314/JNHRC.V20I01.4063.
- 20. Kinser, P.A.; Jallo, N.; Amstadter, A.B.; Thacker, L.R.; Jones, E.; Moyer, S.; Rider, A.; Karjane, N.; Salisbury, A.L. 441 Depression, Anxiety, Resilience, and Coping: The Experience of Pregnant and New Mothers during the First Few 442 Months the COVID-19 of Pandemic. J Womens Health 2021, 30, 654-664, 443 doi:10.1089/JWH.2020.8866/ASSET/IMAGES/LARGE/JWH.2020.8866_FIGURE1.JPEG. 444
- Werchan, D.M.; Hendrix, C.L.; Ablow, J.C.; Amstadter, A.B.; Austin, A.C.; Babineau, V.; Anne Bogat, G.; Cioffredi,
 L.A.; Conradt, E.; Crowell, S.E.; et al. Behavioral Coping Phenotypes and Associated Psychosocial Outcomes of
 Pregnant and Postpartum Women during the COVID-19 Pandemic. Scientific Reports 2022 12:1 2022, 12, 1–12,
 doi:10.1038/s41598-022-05299-4.
- Thomason, M.; Graham, A.; Sullivan, E.; Heuvel, M.I. van den COVID-19 and Perinatal Experiences Study
 Available online: https://osf.io/uqhcv/ (accessed on 28 August 2022).
- 45123. BriefSymptomInventory-PsycNETAvailableonline:452https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft00789-000 (accessed on 16 September 2022).
- 453 24. Blevins, C.A.; Weathers, F.W.; Davis, M.T.; Witte, T.K.; Domino, J.L. The Posttraumatic Stress Disorder Checklist
- for DSM-5 (PCL-5): Development and Initial Psychometric Evaluation. J Trauma Stress 2015, 28, 489–498, doi:10.1002/JTS.22059.

- 25. Carver, C.S. You Want to Measure Coping but Your Protocol's Too Long: Consider the Brief COPE. Int J Behav 456 Med 1997, 4, 92–100, doi:10.1207/S15327558IJBM0401_6. 457
- 458 26. Carver, C.S.; Scheier, M.F.; Weintraub, J.K. Assessing Coping Strategies: A Theoretically Based Approach. J Pers Soc Psychol 1989, 56, 267–283, doi:10.1037//0022-3514.56.2.267. 459
- Connor-Smith, J.K.; Flachsbart, C. Relations between Personality and Coping: A Meta-Analysis. J Pers Soc Psychol 460 27. 2007, 93, 1080-1107, doi:10.1037/0022-3514.93.6.1080. 461
- García, F.E.; Barraza-Peña, C.G.; Wlodarczyk, A.; Alvear-Carrasco, M.; Reyes-Reves, A. Psychometric Properties of 462 28. the Brief-COPE for the Evaluation of Coping Strategies in the Chilean Population. Psicologia: Reflexao e Critica 463 2018, 31, 1-11, doi:10.1186/S41155-018-0102-3/TABLES/7. 464
- Carver, C.S.; Scheier, M.F.; Weintraub, J.K. Assessing Coping Strategies: A Theoretically Based Approach. J Pers 29. 465 Soc Psychol 1989, 56, 267–283, doi:10.1037//0022-3514.56.2.267. 466
- 467 30. Lefmann, T.; Combs-Orme, T. Prenatal Stress, Poverty, and Child Outcomes. Child and Adolescent Social Work Journal 2014 31:6 2014, 31, 577-590, doi:10.1007/S10560-014-0340-X. 468
- 469 31. Silverman, M.E.; Medeiros, C.; Burgos, L. Early Pregnancy Mood before and during COVID-19 Community Re-strictions among Women of Low Socioeconomic Status in New York City: A Preliminary Study. Arch Womens 470Ment Health 2020, 23, 779, doi:10.1007/S00737-020-01061-9. 471
- 472 32. Sandel, M.; Faugno, E.; Mingo, A.; Cannon, J.; Byrd, K.; Garcia, D.A.; Collier, S.; McClure, E.; Jarrett, R.B. Neigh-borhood-Level Interventions to Improve Childhood Opportunity and Lift Children Out of Poverty. Acad 473 474 Pediatr 2016, 16, S128–S135, doi:10.1016/J.ACAP.2016.01.013.
- 33. Acevedo-Garcia, D.; McArdle, N.; Hardy, E.F.; Crisan, U.I.; Romano, B.; Norris, D.; Baek, M.; Reece, J. The Child 475 Opportunity Index: Improving Collaboration between Community Development and Public Health. Health Aff 476 2014, 33, 1948–1957, doi:10.1377/HLTHAFF.2014.0679/ASSET/IMAGES/LARGE/2014.0679FIGEX5.JPEG. 477
- Ebner, M.; Wang, G.; Li, W.; Aertsen, M.; Patel, P.A.; Aughwane, R.; Melbourne, A.; Doel, T.; Dymarkowski, S.; de 34. 478 479 Coppi, P.; et al. An Automated Framework for Localization, Segmentation and Super-Resolution Reconstruction of Fetal Brain MRI. Neuroimage 2020, 206, 116324, doi:10.1016/J.NEUROIMAGE.2019.116324. 480
- Gholipour, A.; Rollins, C.K.; Velasco-Annis, C.; Ouaalam, A.; Akhondi-Asl, A.; Afacan, O.; Ortinau, C.M.; Clancy, 481 35. S.; Limperopoulos, C.; Yang, E.; et al. A Normative Spatiotemporal MRI Atlas of the Fetal Brain for Automatic 482 Segmentation and Analysis of Early Brain Growth. Scientific Reports 2017 7:1 2017, 7, 1–13, 483 doi:10.1038/s41598-017-00525-w. 484
- Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A Reproducible Evaluation of ANTs 485 36. 486 Similari-ty Metric Performance in Brain Image Registration. Neuroimage 2011, 54, 2033-2044, doi:10.1016/J.NEUROIMAGE.2010.09.025. 487
- Smith, S.M. Fast Robust Automated Brain Extraction. Hum Brain Mapp 2002, 17, 143–155, doi:10.1002/HBM.10062. 488 37.
- 38. Cox, R.W. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. 489 Computers and Biomedical Research 1996, 29, 162–173, doi:10.1006/cbmr.1996.0014. 490
- Amin, S.B.; Orlando, M.S.; Dalzell, L.E.; Merle, K.S.; Guillet, R. Morphological Changes in Serial Auditory Brain 39. 491 Stem Responses in 24 to 32 Weeks' Gestational Age Infants during the First Week of Life. Ear Hear 1999, 20, 492 410-418, doi:10.1097/00003446-199910000-00004. 493
- Jiang, Z.D.; Xiu, X.; Brosi, D.M.; Shao, X.M.; Wilkinson, A.R. Sub-Optimal Function of the Auditory Brainstem in 40. 494 495 Term Infants with Transient Low Apgar Scores. Clinical Neurophysiology 2007, 5, 1088–1096, doi:10.1016/J.CLINPH.2007.01.018. 496
- 41. DiPietro, J.A.; Kivlighan, K.T.; Costigan, K.A.; Rubin, S.E.; Shiffler, D.E.; Henderson, J.L.; Pillion, J.P. Prenatal 497 An-tecedents of Newborn Neurological Maturation. Child Dev 2010, 81, 115-130, 498 doi:10.1111/J.1467-8624.2009.01384.X. 499
- 500 42. de Asis-Cruz, J.; Krishnamurthy, D.; Zhao, L.; Kapse, K.; Vezina, G.; Andescavage, N.; Quistorff, J.; Lopez, C.; Limperopoulos, C. Association of Prenatal Maternal Anxiety With Fetal Regional Brain Connectivity. JAMA Netw 501 Open 2020, 3, e2022349-e2022349, doi:10.1001/JAMANETWORKOPEN.2020.22349. 502
- Garrett, D.D.; Kovacevic, N.; McIntosh, A.R.; Grady, C.L. The Importance of Being Variable. J Neurosci 2011, 31, 503 43. 4496-4503, doi:10.1523/JNEUROSCI.5641-10.2011. 504
- 505 44. Rogers, C.E.; Lean, R.E.; Wheelock, M.D.; Smyser, C.D. Aberrant Structural and Functional Connectivity and Neurodevelopmental Impairment in Preterm Children. J Neurodev Disord 2018, 506 10. doi:10.1186/S11689-018-9253-X. 507
- 45. Evans, T.M.; Kochalka, J.; Ngoon, T.J.; Wu, S.S.; Qin, S.; Battista, C.; Menon, V. Brain Structural Integrity and 508 In-trinsic Functional Connectivity Forecast 6 Year Longitudinal Growth in Children's Numerical Abilities. J 509 510
- Neuro-sci 2015, 35, 11743-11750, doi:10.1523/JNEUROSCI.0216-15.2015.

- 46. Barch, D.M.; Belden, A.C.; Tillman, R.; Whalen, D.; Luby, J.L. Early Childhood Adverse Experiences, Inferior
 Frontal Gyrus Connectivity, and the Trajectory of Externalizing Psychopathology. J Am Acad Child Adolesc
 Psychiatry 2018, 57, 183–190, doi:10.1016/J.JAAC.2017.12.011.
- 47. Thomason, M.E.; Hect, J.L.; Waller, R.; Curtin, P. Interactive Relations between Maternal Prenatal Stress, Fetal
 Brain Connectivity, and Gestational Age at Delivery. Neuropsychopharmacology 2021 46:10 2021, 46, 1839–1847,
 doi:10.1038/s41386-021-01066-7.
- 48. Han, L.; Bai, H.; Lun, B.; Li, Y.; Wang, Y.; Ni, Q. The Prevalence of Fear of Childbirth and Its Association With
 In-tolerance of Uncertainty and Coping Styles Among Pregnant Chinese Women During the COVID-19 Pandemic.
 Front Psychiatry 2022, 13, doi:10.3389/FPSYT.2022.935760.
- 49. Anderson, M.R.; Salisbury, A.L.; Uebelacker, L.A.; Abrantes, A.M.; Battle, C.L. Stress, Coping and Silver Linings:
 How Depressed Perinatal Women Experienced the COVID-19 Pandemic. J Affect Disord 2022, 298, 329–336,
 doi:10.1016/J.JAD.2021.10.116.
- 523 50. Giurgescu, C.; Penckofer, S.; Maurer, M.C.; Bryant, F.B. Impact of Uncertainty, Social Support, and Prenatal
- 524 Cop-ing on the Psychological Well-Being of High-Risk Pregnant Women. Nurs Res 2006, 55, 356–365,
- 525 doi:10.1097/00006199-200609000-00008.

Brief Cope Coping Behaviors Percentages within Different Categories of Covid Stress

Humor*

Venting*

12.5

80

33.3%

10.3%

12.5%

20.0%

5.6%

100

COVID Specific Coping Behaviors Percentages within Different Categories of Covid Stress

Help With Planning For Potential Changes In My **Pregnancy Birth Plan And Postpartum Care**

Examples Of How Other Women Are Planning For Potential Changes In Their Pregnancy Birth And Postpartum Care

Information About How To Reduce Stress*

More One-On-One Conversations With My Prenatal Care Provider

Interaction With Other Pregnant People