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Abstract Although cardiovascular magnetic resonance
allows the non-invasive and radiation free visualization of
both the coronary arteries and veins, coronary vessel wall
imaging is still undergoing technical development to im-
prove diagnostic quality. Assessment of the coronary vessels
is a valuable addition to the analysis of cardiac function,
cardiac anatomy, viability and perfusion which magnetic
resonance imaging reliably allows. However, cardiac and
respiratory motion and the small size of the coronary vessels
present a challenge and require several technical solutions
for image optimization. Furthermore, the acquisition proto-
cols need to be adapted to the specific clinical question. This
review provides an update on the current clinical applica-
tions of cardiovascular magnetic resonance coronary angi-
ography, recent technical advances and describes the
acquisition protocols in use.
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CT computed tomography

CcvV coronary veins

EPI echo planar imaging

ICAM-1 intercellular adhesion molecule - 1

LAD left anterior descending (coronary artery)
LCX left circumflex (coronary artery)

MMP matrix metalloproteinase

MRA magnetic resonance angiography

MTC magnetization transfer contrast

RCA right coronary artery

SAR specific absorption rate

SENSE sensitivity encoding

SMASH  simultaneous acquisition of spatial harmonics
SNR signal-to-noise ratio

SSFP steady state free precession

USPIO ultra-small super paramagnetic iron oxide
VCAM-1 vascular adhesion molecule — 1
Introduction

Despite substantial improvements in prevention and treat-
ment [1], coronary artery disease (CAD), myocardial infarc-
tion and heart failure constitute the leading cause of death in
the western world [2]. The current gold standard for the
diagnosis of CAD is invasive coronary angiography, but
the increasing prevalence of CAD and the relatively reduced
diagnostic yield of invasive assessment [3] clearly indicate
the need for noninvasive tests that could directly assess the
integrity of the coronary lumen [4].

Cardiovascular magnetic resonance (CMR) theoretically
provides a combined approach allowing the assessment of
coronary arteries, cardiac function, viability, perfusion and
cardiac anatomy. Moreover, magnetic resonance angiography
(MRA) can potentially be used to directly visualize the coro-
nary vessel wall [5], providing valuable integrated informa-
tion for patients with coronary artery disease. Additionally,
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coronary MRA techniques allow the visualization of the
anatomy of the coronary veins (CV), providing information
for the optimal placement of pacemaker leads in cardiac
resynchronization therapy in patients with heart failure
[6, 7]. This review provides an update on current technical
developments and clinical utilization of coronary MRA.

Indications for Coronary MRA

Clinically accepted indications of coronary MRA are cur-
rently limited to the assessment of anomalies of the coronary
arteries (class I indication) and aorto-coronary bypass grafts
(class II indication). The use of MRA for the diagnosis of
CAD on native coronary arteries has not yet entered clinical
routine [8, 9].

Coronary Anomalies and Aneurysms (Class I Indication)

Coronary MRA can accurately visualize the origin and the
path of anomalous coronary vessels, as well as the presence
and location of coronary aneurysms. Aneurysms are found,
for example, in Kawasaki disease. The usually larger caliber
of the vessels and the location of the aneurysms in proximal
or ectatic segments facilitate their visualization. An important
added benefit of coronary MRA is the absence of ionizing
radiation, particularly important in younger patients, children
and young women [8, 10].

Coronary Bypass-Grafts (Class II Indication)

Bypass grafts can be visualized by coronary MRA with
good image quality, benefiting from their stationary posi-
tion, straight and known course, and large diameter com-
pared to the coronary arteries. Several different approaches
for the visualization of coronary bypass grafts were pub-
lished in the literature, including spin echo [11-14] and
gradient echo techniques. Moreover, the use of contrast
agents for the enhancement of the blood signal [15, 16]
allowed sensitivities for the detection of graft stenoses
between 95 % and 100 %.

However, the presence of metallic clips along the course
of the graft, causing signal voids due to susceptibility arti-
facts, is a common limitation of coronary bypass MRA.
According to current guidelines, coronary MRA may be
used at specialized centers to identify stenoses in coronary
arterial bypass grafts [8].

Coronary Artery Angiography for the Detection of CAD
Coronary MRA can visualize the proximal segments of the

coronaries in nearly 100 % of cases. The best results are
obtained with the left anterior descending (LAD) and the
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right coronary artery (RCA), while the left circumflex
(LCX), which runs in the direct vicinity of the myocardium
and at a larger distance from the coil elements, is frequently
visualized with lower image quality and for a shorter course.

Previous studies reported an average visible length of
50 mm for the LAD, 80 mm for the RCA and 40 mm for
the LCX [17-23]. There was an excellent agreement be-
tween the diameters of the proximal vessels measured by
MRA and by invasive angiography [24].

The spatial resolution of coronary MRA is still lower
than that of invasive coronary angiography, which limits
the visualization of small branches and affects diagnostic
accuracy concerning stenosis detection. This limitation
explains the low specificity demonstrated in a recent inter-
national multicenter study [4], whereby coronary MRA was
shown to have a high sensitivity (92 %) and a low specific-
ity (59 %) for the detection of CAD. The diagnostic perfor-
mance was much improved in a subanalysis of left main or
three vessel disease (sensitivity 100 %; negative predictive
value 100 %). A series of smaller single-center studies
support these findings [17, 25-33].

A recent meta-analysis compared coronary MRA and
multi-slice computed tomography (CT) for ruling out sig-
nificant CAD in adults [34¢]. CT was more accurate than
MRA and therefore the authors concluded that CT, in its role
of screening for CAD, can be considered as the preferred
non-invasive alternative method to coronary catheterization.
However, the advantage of coronary MRA is that it could be
part of an integrated clinical protocol (including function,
structure, perfusion and viability scans), allowing a more
accurate evaluation of patients with known or suspected
CAD.

Moreover, a more recent multicenter study from Japan
showed that non-contrast-enhanced whole-heart coronary
MRA at 1.5 T can detect significant CAD with high sensi-
tivity (88 %) and moderate specificity (72 %). In particular,
a negative predictive value (NPV) of 88 % indicates that
whole heart coronary MRA can effectively be used to rule
out CAD [35¢¢]. Of note, the NPV reported by this multi-
center trial is identical to the NPV of the CORE-64 CTA
multicenter study [36], demonstrating the value of coronary
MRA in ruling out coronary artery disease in patients with a
pre-test probability of <20 % [37].

In a direct comparison between coronary MRA and CTA
no significant difference was shown for the detection of
coronary artery stenosis between 3 T MR and 64-slice
CTA, although CTA showed a favorable trend toward higher
diagnostic performance [38e¢].

Coronary Vein Imaging

With the advent of resynchronization therapy, the assess-
ment of the anatomy of the coronary venous system has
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become increasingly important, particularly for the pre-
interventional identification of optimal placement site for
the left ventricular lead of resynchronization devices. The
same techniques used for coronary (artery) MRA can be
used to visualize the coronary veins. Three-dimensional MR
coronary vein angiograms can be overlaid onto real-time
time acquired x-ray images, to improve guidance for
catheter implantation [39, 40].

The integration of coronary venous anatomy and myo-
cardial scar information may also guide left ventricular lead
implantation remote from areas of scanned myocardium.
Contrast agent enhanced MR can be used for the assessment
of the course of the coronary sinus, the great cardiac vein,
and their tributaries [6, 7, 41].

Coronary Vessel Wall Imaging

The first magnetic resonance images of the coronary vessel
wall were obtained by 2D fat saturated fast spin echo
techniques [42, 43]. A double inversion recovery prepara-
tion is applied to obtain black-blood images improving the
contrast between blood and vessel wall [44].

Recently, the double inversion recovery prepulse has been
combined with fast gradient echo readout techniques [45],
with spiral [46] and with radial acquisition trajectories [47].

Clinical studies demonstrated the ability of vessel wall
imaging to detect outward positive remodeling with relative
lumen preservation in patients with CAD and increased vessel
wall thickness in patients with type I diabetes and renal dys-
function [48, 49]. As shown by Jansen and colleagues, non-
contrast enhanced T1-weighed MR allows direct thrombus
visualization in patients with acute myocardial infarction [50].

It is of particular interest that there are approaches that
may allow visualization of inflamed plaques by means of
delayed gadolinium enhancement techniques. Clinically
approved contrast agents showed non-specific uptake in
plaques both in patients with chronic angina [51] and in
patients with acute coronary syndromes [52] and also in
patients with systemic lupus erythematosus as sign of
coronary inflammation or vessel wall activity [53]. Contrast
uptake in patients with stable angina was associated with
calcified or mixed plaques on MSCT while contrast uptake
in patients with ACS the contrast uptake was transient and
so most likely related to inflammation.

Several novel target specific contrast agents have been
developed and tested in animal models. The accumulation of
albumin binding blood-pool CA is associated with increased
endothelial permeability and/or increased neovasculariza-
tion [19, 54]. Furthermore, increased accumulation of iron-
oxide particles (USPIO) also indicates increased endothelial
permeability and vessel wall inflammation due to the pres-
ence of intraplaque macrophages [55, 56].

Such molecules and cells are providing targets for recently
developed novel molecular contrast agents. These CA allow
the selective visualization of inflammatory markers such
as intercellular adhesion molecule-1 (ICAM-1), vascular
adhesion molecule-1 (VCAM-1) or matrix metalloprotei-
nase (MMP) [57, 58]. Additionally, the specific labeling of
thrombi by a fibrin-specific contrast agent [59, 60] and the
detection of extracellular matrix remodeling by targeting
elastin has become an area of interest [61, 62]. Thus, mo-
lecular contrast agents may provide new opportunities for
the identification of early atherosclerotic lesions as well as
for the assessment of plaque vulnerability.

Coronary MRA: Technical Considerations

The small caliber of the coronary vessels, as well as the
elevated anatomical variability, cardiac and respiratory mo-
tion pose major challenges to coronary MRA and require
dedicated techniques for image quality optimization.

Ensuring Sufficient Image Contrast: Sequences,
Spin Preparation and Contrast Agents

Sequences

The first approaches to coronary artery angiography were
attempted by Edelman [63] and Manning [20] by 2-
dimensional (2D) gradient-echo techniques. One slice was
acquired in 16 heartbeats during a single breath-hold.
Patients could breathe between acquisitions. 3D techniques
adopting a whole heart or target volume approach became
feasible after the introduction of navigator techniques. 3D
sequences allow an increase of signal-to-noise ratio (SNR),
enabling higher spatial resolutions. The main disadvantage
is the reduced contrast between blood and the myocardium
due to the reduction of in-flow effects. Hence there is a need
for contrast enhancing spin preparations techniques [17, 64]
to be used in combination with 3D gradient echo (GRE) or
steady-state-free-precession (SSFP) sequences [65]. At 1.5
Tesla, the latter are preferred to T1 —weighted gradient echo
sequences due to the higher SNR and improved contrast
between blood and myocardium [65-67]. The use of SSFP
sequences at 3 T is significantly limited by the prolongation
of repetition times due to SAR limitations, the increased
sensitivity to off-resonance effects and the need for higher
flip angles. Gradient echo techniques appear as promising
alternative [68].

Contrast-Enhancing Spin Preparations

For non-contrast enhanced imaging, spin preparation usually
include fat suppression and T2-preparation. Fat saturation
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reduces the signal generated by the epicardial fat tissue,
allowing a better delineation of the lumen of the coronaries
[63, 64, 69]. In order to improve the contrast between the
coronary lumen and the underlying myocardium, T2-
preparation techniques can be used [17, 69] to reduce the
myocardial signal, as blood and myocardium have similar
T1 but different T2.

T2-preparation also suppresses deoxygenated venous
blood due to the shorter T2 of deoxygenated hemoglobin.
Contrast enhanced techniques are therefore preferred for
coronary vein imaging.

Other solutions, such as spin-locking [70] and magne-
tization transfer techniques (MTC) [64], have also been
proposed to improve the contrast between the vessel
lumen and the myocardium. In particular, MTC does
not affect the signal from venous blood and can therefore
be used to visualize the coronary venous system without
administration of CA [71]. The application of CA can
further improve the contrast between blood and the sur-
rounding tissues.

Contrast Agents

Different types of CA have been tested for coronary MRA,
ranging from extracellular CA [72] to blood-pool CA
[73-76], and CA with weak albumin binding [77, 78]. The
decision about the CA to use depends on the availability
of different CA, as well as on the balance between lumen-
enhancing properties and the ability to provide information
about myocardial scar as part of a combined ischemia/
CAD diagnostic imaging protocol. Extracellular CA gen-
erates limited contrast between the vessel lumen and the
myocardium due to the rapid extravasation in the intersti-
tial space. Blood-pool contrast agents offer the highest
contrast between the vessel lumen and the surrounding
tissues but may face limitations for late enhancement
imaging [9].

Spin preparation for CA enhanced MRA usually includes
a saturation [79] or inversion prepulse [80] instead of the T2
preparation. The difference in T1 recovery between blood
and myocardium after CA administration allows the gener-
ation of high contrast images.

Improving Image Quality: Compensation of Cardiac
and Respiratory Motion

Compensation of Cardiac Motion: ECG Triggering

To freeze cardiac motion, the acquisition of the k-space has
to be synchronized with the cardiac cycle and needs to be
limited to periods of minimal cardiac movement [81] occur-
ring in end-systole (approximately 280-350 ms after the R
wave) and in mid-diastole (immediately prior to atrial systole).
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The choice of the trigger delay and the duration of the
acquisition window depend on the patient’s heart rate, on the
sequence used and on the structure to visualize (arteries or
veins). A free breathing high temporal resolution cine scan
in the 4-chamber view can be used to determine the resting
period [81]. This is generally longer for the left compared to
the right coronary system. For this reason, the resting period
of the RCA should be selected for the acquisition of
whole-heart scans.

Compensation of Respiratory Motion: Navigator

Since three-dimensional (3D) acquisitions take a long period
of time to complete, they require the synchronization of
image acquisition with the respiratory cycle. Respiratory
motion artifacts can be minimized by prospective real-time
navigator gating and correction techniques [82, 83], in
which a pencil beam one-dimensional (1D) navigator is
used to monitor the craniocaudal motion of the right
hemidiaphragm [84] immediately prior to coronary image
acquisition. If the position of the diaphragm falls within a
certain acceptance window (usually 3—-5 mm wide), the
acquired data acquired is used, otherwise is rejected and
has to be re-measured in the subsequent cardiac cycle. An
acceptance window of 5 mm usually allows an efficiency
approaching 50 % [85-87].

However, respiratory motion remains the major imped-
iment in a substantial amount of patients undergoing
coronary MRA. Usually, 1D navigator techniques assume
a constant linear relationship between diaphragmatic and
cardiac motion. This assumption is not correct in a sig-
nificant percentage of subjects, leading to suboptimal
results. Recently, the use of 2D navigator has been pro-
posed, allowing for the prospective correction of transla-
tional motion both in craniocaudal and left-right direction
[88] (Fig. 1).

The use of image based navigators that directly track
cardiac motion, navigators that monitor the movement of
epicardial fat [89], scanning in prone position [90, 91] and
the use of abdominal or thoracic banding [32, 91] have also
been proposed.

Of note, a lower sensitivity to motion and better image
quality can also be obtained by improving the speed of
image acquisition because of a shorter acquisition window
or shorter overall data acquisition time [9]. To this purpose,
different approaches have been proposed, such as faster
encoding of k-space by echo planar imaging (EPI) [92,
93], or more efficient k-space sampling using spiral [94] or
less motion sensitive k-space sampling using radial trajec-
tories [95]. However, none of these solutions have become
an established technique for coronary MRA due to off-
resonance sensitivity (EPI, spiral) or signal-to-noise penalty
(radial).
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Fig. 1 (A) Sequence diagram of the 2D navigator (2Dnav) used for
prospective motion correction (Adapted from Henningsson et al. [88]).
The 2Dnav is acquired from the startup profiles of the sequence and
uses fat suppression (spectrally selective inversion recovery, FAT SUP)
and fold-over suppression to suppress signal from epicardial fat and
to reduce fold-over artifacts. Reconstruction and image registration
are performed immediately after 2Dnav acquisition, which yields

Parallel imaging techniques such as SENSE [96] or
SMASH [97] can reduce the overall MRA acquisition time
while maintaining image quality.

Coronary Vein Imaging: Technical Considerations

T2 preparation is not suitable for coronary vein imaging due
to the shorter T2 values of deoxygenated venous blood.
Current approaches to coronary vein MRA include non
contrast-enhanced imaging by magnetization transfer
(MTC) preparation [71, 98] or contrast enhanced MRA
performed using blood-pool [6, 7, 41], extracellular [99],
and CAs with weak albumin binding [100]. A slow infusion
of a high relaxivity contrast agent during coronary vein
MRA acquisition allows a good contrast between the vessel
lumen and the surrounding tissues, with the possibility to
acquire late gadolinium enhancement images after the redis-
tribution of the contrast agent [100].

The optimal acquisition window for coronary vein
imaging, as demonstrated by Nezafat and co-authors, is
in end-systole, when the coronary vein diameter is max-
imal [71]. However, tachycardia and orthopnea cause
difficulties with the ECG triggering and the asynchronous
contraction of the LV makes the resting period different
in independent segments of the chamber. In these
patients, the acquisition parameters should therefore be
adapted and data acquisition in end-diastole might be an
alternative.

displacement information in FH and LR direction and is used for
slice tracking. The 2Dnav can be combined with 2D or 3D gradient
echo-based imaging sequences. The trailing 1D navigator is used for
respiratory gating. The scanner gradients in measurement (M), phase
encoding (P), and slice selection (S) are shown for the sequence,
along with the radiofrequency pulses. (B,C,D,E) Examples of right
and left coronary artery visualized with the 2Dnav sequence

Coronary Vessel Wall Imaging: Technical
Considerations

Utilizing black-blood techniques allows the latest clinical
MR scanners to provide a detailed visualization of the
coronary artery wall, either in cross-section or along the
path of the vessel. Partial volume effects are minimized in
cross-sectional view, providing images suitable for accurate
quantification of the vessel wall thickness. A long-axis
view of the vessel wall provides instead a more extensive
visualization and typically allows assessment of the proximal
5 cm [9].

CA can be used for selective plaque visualization and
delayed enhancement images can show focal or diffuse
uptake of contrast agent indicating either a fibrous plaque
or inflammation.

The current application of coronary vessel wall im-
aging is restricted to research purposes but with devel-
opments such as plaque-targeting agents used for
clinical purposes it may become part of routine CAD
risk assessment and monitoring of treatment response,
especially if plaque-targeting agents become available
for clinical use.

Conclusions

Cardiovascular magnetic resonance allows non-invasive and
radiation free visualization of both the coronary arteries and
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veins, with the possibility of coronary vessel wall imaging.
A major comparative advantage of MR is the possibility of a
combined scanning protocol, investigating the anatomy of
the coronaries as well as cardiac function, viability, stress
perfusion and cardiac anatomy in the same study, providing
valuable integrated information for patients with coronary
artery disease and heart failure.

Coronary MRA may be indicated for the visualization of
anomalies of the origin and course of the coronaries (class I
indication) as well as to visualize coronary bypass grafts
(class II indication) and may potentially be used to exclude
CAD in selected populations of patients.

Ongoing technical developments continue to improve the
robustness of the techniques.
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