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Our life is closely linked to microorganisms, either through a parasitic or symbiotic relationship.
Themicrobiome contains more than 1,000 different bacterial species and outnumbers human
genes by 150 times. Worryingly, during the last 10 years, it has been observed a relationship
between alterations in microbiota and neurodegeneration. Several publications support the
hypothesis that amyloid structures formed by microorganisms may trigger host proteins
aggregation. In this review, we collect pieces of evidence supporting that the crosstalk
between human and microbiota amyloid proteins could be feasible and, probably, a more
common event than expected before. The combination of their outnumbers, the long periods
of time that stay in our bodies, and thewidespread presence of amyloid proteins in the bacteria
Domain outline a worrying scenario. However, the identification of the exact microorganisms
and the mechanisms through with they can influence human disease also opens the door to
developing a new and diverse set of therapeutic strategies.
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INTRODUCTION

In 2009 the composition of the human microbiome (~1013 microbial cells) was published (Figure 1).
The largest microbial community resides in the gut, where microbial cells outnumber human cells by
about 10:1 and their genes by about 100:1(NIH Human Microbiome Project—HMRGD, 2022; Qin
et al., 2010). Most of these cells are bacteria, and fungi just represent between 1% and 2% of the
biomass (Iliev and Cadwell, 2021). According to these estimations, the microbiota has been
designated as the largest “diffuse organ system” in the human body. But more important than
its size is its metabolic activity, which is larger than the liver and supports many vital processes (Hill
and Lukiw, 2015). Gut microbiota contributes to carbohydrate fermentation and absorption,
competes with pathogens, metabolizes and neutralizes dietary carcinogens, and takes part in
innate immunity supporting infection and disease resistance (Bhattacharjee and Lukiw, 2013).
Thanks to the gut-brain bidirectional communication system, it also influences neuroinflammation,
neuromodulation, and neurotransmission (Zhao et al., 2015). In parallel, microorganisms can also
colonize our bodies through parasitic and pathogenic mechanisms (Hill et al., 2014).

Microbiota composition can be affected by several factors such as age, gender, environment, diet,
or medical treatments (Hill et al., 2014; Miller et al., 2021). These compositional changes can lead to
dysbiosis and the consequent disturbance of human health. As follows, microbiota imbalance has
been associated with autoimmune and inflammatory disorders (inflammatory bowel disease, asthma,
allergies) and with the acceleration of chronic diseases such as cardiovascular disease, obesity,
diabetes or cancer (Wilkins et al., 2019; Miller et al., 2021; Liu et al., 2022). Also, several recent studies
have identified microbiota dysbiosis in patients affected by different neurodegenerative diseases
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pointing to a possible connection between the gut microbiota and
the origin of neurological disorders (Figure 1) (Rogers et al.,
2016; Friedland and Chapman, 2017).

The accumulation of amyloid fibrils in the brain is a common
hallmark associated with neurodegenerative diseases, such as
Alzheimer’s or Parkinson’s. Despite that in each disorder the
aggregates are composed of different proteins, the biophysical
properties that define the amyloid structure are the same
(Tjernberg et al., 2016; Walker et al., 2016). Interestingly,
amyloid fibrils are highly resistant and organized and their
conformation can be transmitted, in a prion-like manner, to
other proteins even without sequential similarities (Table 1)
(Zhou et al., 2012; Kosolapova et al., 2020; Subedi et al., 2022).

These special properties have been exploited for different
biological functions in all kingdoms of life (Iglesias et al.,
2015; Cámara-Almirón et al., 2018). However, the amyloid
structure entails an inherent risk that, without control, could
lead to a succession of tragic events able to cross the species
barrier, such as in the case of the transmissible spongiform
encephalopathies (Zhou et al., 2012; Revilla-García et al., 2020;
Sampson et al., 2020).

The long periods that the microorganisms stay in the body,
due to infection or symbiosis, could facilitate amyloid cross-
seeding events between host and microorganism (Otzen and
Nielsen, 2008; Iglesias et al., 2015). Moreover, recent studies
have demonstrated that bacterial amyloid structures can

FIGURE 1 |Microbiome impact on amyloidogenesis. The gut microbiome is composed of approximately 1014 bacteria and contains 4.67 bacterial genes. The prion
prediction tools have measured approximately 0.3% prions per genome. In the microbiome, this can result in approximately 1.385 genes coding for prion-like domains.
The expression of these genes can produce a large number of polypeptide sequences with the potential to form amyloid fibrils. These aggregates may have the ability to
interfere with and cross-seed human proteins. The gut and the brain are interconnected by a bidirectional axis. In addition, it has been reported that changes in
microbiota composition are related to neurodegenerative diseases. Overall, the administration of probiotics could be a potential therapeutic strategy to treat these
disorders.

TABLE 1 | Examples of interspecies interactions between amyloid proteins. List of exogenous amyloid proteins, that can be in the gut, and that interfere with the aggregation
of unrelated human amyloid proteins.

Exogenous protein Organism Human protein Interaction effect References

FapC Pseudomonas α-synuclein Accelerates Christensen et al. (2019)
FapC Pseudomonas Amyloid-β peptide Accelerates Javed et al. (2020)
CsgA Escherichia coli α-synuclein Accelerates Sampson et al. (2020)
CsgA, CsgB Escherichia coli PAP Accelerates Hartman et al. (2013)
CsgA, CsgB Escherichia coli Amyloid-β peptide Accelerates Hartman et al. (2013)
CsgA, CsgB Escherichia coli IAPP Accelerates Hartman et al. (2013)
LPS endotoxin Gram-negative bacteria α-synuclein Accelerates and induces distinct strains Kim et al. (2016)
Sup35 Saccharomyces cerevisiae Amyloid-β peptide Accelerates Koloteva-Levine et al. (2021)
β-parvalbumin Fish α-synuclein Inhibits Werner et al. (2018)
β-lactoglobulin Bovine milk α-synuclein Accelerates Vaneyck et al. (2021)
Lysozyme Chicken egg white α-synuclein Accelerates Vaneyck et al. (2021)
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initiate the formation of amyloid aggregates upon interaction
with human proteins (Table 1) (Otzen and Nielsen, 2008;
Christensen et al., 2019; Revilla-García et al., 2020; Sampson
et al., 2020; Vaneyck et al., 2021). Therefore, it is crucial to
identify the microorganisms and precise mechanisms that can
influence the aggregation of host proteins. This will help to
understand their link with human disease and to design new
therapeutic strategies, such as microbiome manipulation with
probiotics or antibiotics.

BACTERIA PRODUCE AMYLOIDS TO DEAL
WITH THE SURROUNDING WORLD

To understand how human amyloidogenesis could be affected by
coexisting with a huge and diverse community of
microorganisms, we first should learn about their potential to
produce and manipulate amyloid fibrils. In an early work, Larsen
and co-workers performed a systematic screening in several
habitats (seawater, sludge, and drinking water) and, in all of
them, they detected between 5% and 40% of amyloid-positive
bacteria, demonstrating that amyloid-forming proteins are
widespread in this Domain (Larsen et al., 2007). Later,
sequential and structural analyses provided enough
information to generate computational tools capable to screen,
in whole proteomes, for amyloid-forming proteins and prion-like
domains (PrLDs), with potential to propagate the amyloid
conformation (Espinosa Angarica et al., 2014; Lancaster et al.,
2014; Iglesias et al., 2015; Iglesias et al., 2021; Yuan and
Hochschild, 2017; Harrison, 2019). These data show that
prion-like proteins are conserved across multiple phyla
(Harrison, 2019) and that at least 0.3% of all known bacteria
genes encode for PrLDs. However, for certain species, especially
pathogenic bacteria such as Staphylococcus aureus, Enterococcus
faecalis, Enterococcus faecium, or Staphylococcus epidermidis, this
percentage could be higher and achieve 18% (Espinosa Angarica
et al., 2013; Iglesias et al., 2015; Yuan and Hochschild, 2017).

A more detailed analysis shows that bacteria functional
amyloids are mainly extracellular (Blanco et al., 2012). This
could reduce the potential intracellular toxicity decreasing the
cost associated to control it. But more importantly, at this
location amyloid-forming proteins can interact with the
sounding environment and develop roles of sensing and
adaptation. As a result, bacterial amyloid proteins tend to be
associated with adhesion, biofilm formation, and invasion (Elliot
et al., 2003; Gebbink et al., 2005; Barnhart and Chapman, 2006).
Prokaryotes also use the amyloid conformation to regulate toxins
activity by inactivating or storing them. An example of this is
Microcin E492 (Mcc), a pore-forming bacteriocin produced by
Klebsiella pneumoniae. When exported, the monomers and
oligomers create cytotoxic pores that induce the lysis of
neighbouring bacteria. On the contrary, the amyloid structures
act as inactive reservoirs able to sense environmental changes and
to identify the right moment to release the monomers
(Shahnawaz and Soto, 2012).

Adhesins acquire macromolecular structures to bind external
elements and to build biofilms, three-dimensional matrices

involved in host colonization (Barnhart and Chapman, 2006;
Larsen et al., 2008; Dueholm et al., 2010). Importantly, biofilm
formation enhances bacteria resistance to antibiotics. This is a big
problem that increases the risk of mortality and health economic
costs (Matilla-Cuenca et al., 2021; Sikora and Zahra, 2021). These
infections are mainly caused by opportunistic bacteria such as
Enterococcus faecium, Staphylococcus aureus,
Klebsiellapneumoniae, Acinetobacter baumannii, or
Pseudomonas aeruginosa (Ma et al., 2019; Matilla-Cuenca
et al., 2021). Between them, S. aureus is one of the most
common causes of hospital-acquired bacteremia (Jensen et al.,
1999). Remarkably, this specie is equipped with a diverse set of
biofilm-forming proteins able to accomplish multiple functions
(Kosolapova et al., 2020; Zaman and Andreasen, 2020; Miller
et al., 2021). For example, Bap protein develops a dual role,
sensing environmental changes and scaffolding biofilm structures
in response (Valle et al., 2020).

The expression of functional amyloid-forming proteins entails
risk and bacteria must equip themselves with security
mechanisms: chaperones that protect from aggregation, spatial
compartmentalization, and temporal control. A clear example of
this are the extracellular curli fibers that help in cell-to-cell
contacts for community behaviour and host colonization
(Gophna et al., 2001). Curli extracellular matrix formation is
the result of a coordinated action between several structural and
scaffolding components. In E. coli these proteins are encoded by
seven different genes (csg) divided in two different operons
(csgBAC and csgDEFG) (Bhoite et al., 2019). Curli fibrils
production follows a precise and specific process, the type VII
secretion system also known as the nucleation-precipitation
pathway (Desvaux et al., 2009; Bhoite et al., 2019). Another
key element are the chaperones CsgC and CsgE that impede
the amyloid assembly until the csg proteins are transported
outside (Nenninger et al., 2011; Evans et al., 2015; Otzen and
Riek, 2019).

MICROBIOTA AND AMYLOID DISEASES

Amyloid diseases are characterised by the aggregation of proteins
into amyloid fibrils and their deposition into plaques and
intracellular inclusions (Guerreiro and Hardy, 2014; De Groot
and Burgas, 2015; Walker et al., 2016). They are the consequence
of genetic and environmental factors, together with aging (Pang
et al., 2019). During the last 10 years, several works also pointed
out that one of these factors could be an altered microbiota (Chen
et al., 2021). In fact, microbiome composition also changes with
environmental factors and over time (Finlay et al., 2019; Badal
et al., 2020; Bosco and Noti, 2021).

Recently, several publications reported altered gut populations
in patients with neurodegenerative diseases (Hill-Burns et al.,
2017; Peterson, 2020). The gut and the brain are interconnected
by a bidirectional axis. Indeed, the gut contains around 100
million neurons, more than the spinal cord or the peripheral
nervous system (Uesaka et al., 2016). It has also been identified as
the main entrance of prions into the central nervous system in
diseases such as bovine spongiform encephalopathy and kuru
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(Kujala et al., 2011). And it is also the route that allows microbiota
and their products (lipopolysaccharides, amyloids, and other
metabolites) to bypass the circulatory system (Braniste et al.,
2014; Friedland and Chapman, 2017). This, together with the fact
that human amyloid proteins such as amyloid-β-peptide (Aβ) can
be found in the peripheral circulation and in the cerebrospinal
fluid (Tublin et al., 2019; Wang et al., 2021), can favour
interspecies encounters and amyloid protein cross-seeding. It
is also important to note that Aβ may be specifically designed to
interact with microorganisms, acting as an antimicrobial peptide
in host immune response. It can form fibrils that trap pathogens
and disrupt their membranes (Kumar et al., 2016; Moir et al.,
2018).

Recently, Chen et al. (2016) reported a very original study of
how bacterial amyloid aggregates affect rat models of Parkinson’s
disease. They studied rats with guts colonised by two E. coli
strains just differentiated by encoding for curli proteins with
different capacity to form amyloid aggregates. Those bacteria
expressing the aggregation-prone variant grew in rats with
increased alpha-synuclein accumulation and enhanced cerebral
inflammation, thus linking the formation of bacteria amyloid
with exacerbated neurodegenerative symptoms. Sampson and
colleagues transferred different human microbiotas to mice;
and observed greater motor impairment in those animals with
intestinal microbes from Parkinson’s patients than in those with
microorganisms obtained from healthy persons (Sampson et al.,
2016). Instead, Harach and co-workers studied the microbiota of
mice models of Alzheimer’s disease (Harach et al., 2017). Their
results indicate that the overexpression of Aβ generates a mixture
of microbes that when transferred into germ-free mice
exacerbates the Alzheimer’s pathology. Overall, there is much
evidence that microbiota can influence the development of
human disease, but how it happens at the molecular level
remains elusive.

HOW DO MICROBIOTA PRODUCED
AMYLOIDS AFFECT AMYLOIDOGENESIS

Amyloid fibrils have the intrinsic potential to self-propagate
their β-sheet structure and template it on other soluble
molecules (Table 1) (Morales et al., 2010). This seeding has
been also detected between bacterial and host amyloid
proteins (Friedland, 2015; Chen et al., 2016; Eisenberg and
Sawaya, 2017). For example, Pseudomonas FapC protein
forms amyloid fibrils for biofilm scaffolding, but in the
body, these fibrils can trigger Aβ aggregation and influence
the development of neurodegenerative diseases (Javed et al.,
2020). In addition, curli fibrils from different bacterial species
can seed human proteins aggregation both in vitro and in vivo
(Lundmark et al., 2005; Zhou et al., 2012). Intriguingly,
seeding reactions with heterologous sequences (also called
cross-sending) can lead to alternative amyloid strains, fibrils
with different conformational properties, that can cause
different clinical severities of the same neurodegenerative
disease (Chaudhuri et al., 2019; Javed et al., 2020; Ivanova
et al., 2021).

The process of amyloid seeding can be influenced by both
structural conformation and sequence. On one hand, the cross-
seeding is enhanced when more than 70% of the sequence is
shared (Wright et al., 2005). On the other hand, there is an
increasing number of examples where fibrils, from unrelated
sequences, accelerate the aggregation of a protein target more
efficiently than its own fibrils (Wright et al., 2005; Dubey et al.,
2014; Koloteva-Levine et al., 2021). The common structure
responsible for the conformation propagation is thought to be
cross-β-sheet, however, in heterologous seeding, these
interactions may vary depending on the proteins involved
(Ivanova et al., 2021). Amyloid seeding is achieved when the
addition of preformed fibrils, in the aggregation reaction,
provides compatible nuclei (or seeds) from which new fibrils
can grow exponentially. Without seeds, fibrils growth is delayed
until the protein monomers achieve to self-assemble and build de
novo nuclei, this is a critical phase that can last from minutes to
days (Ivanova et al., 2021).

Despite that there are still many questions to be solved at a
molecular level, different mechanisms have been proposed to explain
the amyloid seeding between heterologous sequences. Two of the
most accepted mechanisms are the template-assisted and the
conformational selection and population shift. In both cases, the
heterologous amyloid fibrils provide an electrostatic environment
and hydrophobic surfaces that favour the nucleation and growth of
new aggregates (Ren et al., 2019; Koloteva-Levine et al., 2021; Subedi
et al., 2022). At the template-assisted mechanism the protein that
grows amyloid fibrils faster, or at least the one withmore fibrils, seeds
the molecules of the other amyloid protein. And at the
conformational selection and population shift mechanism, both
proteins have a similar number of seeds, and both types of
amyloid fibrils adjust their conformations to bind each other and
cross-seed (Ren et al., 2019; Ivanova et al., 2021; Subedi et al., 2022).

MICROBIOME MANIPULATION AS A
THERAPEUTIC STRATEGY

The link between gut dysbiosis and neurodegenerative diseases is
inspiring new therapeutic strategies based on microbiota
manipulation (Figure 1) (Peterson et al., 2015; Peterson, 2020).
This can be achieved with dietary treatments such as probiotics or
faecal transplantation. Probiotics consumption can increase the levels
of fatty acids in the brain, supporting brain function, learning,
memory, and neurogenesis (Strandwitz, 2018; Peterson, 2020). It
also can decrease psychological stress, recover immune response, and
improve anxiety in patients with chronic fatigue syndrome (Rao et al.,
2009; Messaoudi et al., 2011). However, gut microbiota can also be
manipulated with antibiotics. In 2016, Minter et al. (2016) showed
that the administration of antibiotics, to mouse models of AD, can
reduce gut microbial diversity and decrease amyloidosis and
neuroinflammation.

In patients with Alzheimer’s disease, probiotics have anti-oxidant
and anti-inflammatory effects that ultimately can cause cognitive
recovery (Rao et al., 2009; Messaoudi et al., 2011; Bonfili et al., 2017;
Kobayashi et al., 2017; Abraham et al., 2019; Deng et al., 2020).
Recently, Govindarajan and co-workers studied for 12 weeks the
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effect of a probiotic milk containing Lactobacillus acidophilus,
Lactobacillus casei, Bifidobacterium bifidum, and Lactobacillus
fermentum. In this trial, the AD patients presented several
improvements including cognitive performance but without a
decrease in inflammation or oxidative stress (Leblhuber et al.,
2018). Studies on mice models of AD support that transplantation
of faecal microbiota from healthy people to patients can improve the
composition of the intestinal microbiota and alleviate the disease
symptoms (Rogers et al., 2016). Also in mice models, the
administration of certain bacteria strains, such as Lactobacillus
plantarum or Bifidobacterium breve A1, decreases Aβ deposition
and improves the behavioural deficits (Bonfili et al., 2017; Kobayashi
et al., 2017; Lee et al., 2018).

Finally, there are also interesting strategies that focus on
interfering with the aggregation-prone protein or even use
amyloid peptides as therapeutic agents. Recently, Henning-
Knechtel et al. (2020), (Abdelrahman et al., 2020), combined
the sequence of different amyloid proteins (Prion Protein, Aβ,
and NCAM1 glycoprotein), to design cell-penetrating peptide
inhibitors of Aβ fibrillation (Tjernberg et al., 1996; Soto et al.,
1998; Lowe et al., 2001; Österlund et al., 2019; Abdelrahman et al.,
2020). These peptides also prevent the formation of toxic
oligomers and can bind both extra- and intracellular Aβ.
Therefore, not just microbiota but also its metabolites (such as
their amyloid proteins) can be targeted by therapeutic strategies.

DISCUSSION

With a regular and strong structure, amyloid fibrils are produced
to develop functional roles in all kingdoms of life. However, their

propagation capacity also entails a risk that without control can
have fatal consequences. Relevantly, our bodies contain around
2 Kg of microorganisms (Pagliari et al., 2015) encoding in their
genes at least 0.3% of potential prion-like sequences (Iglesias
et al., 2015). Moreover, these microbes can reside in our bodies
for very long periods. All these facts support that interspecies
cross-sending may happen more often than previously expected
and could be the origin of several health disturbances (Figure 1).

The study of the microbiome is starting to reveal information
about our relationship with microorganisms (NIH Human
Microbiome Project—HMRGD). However, there are still lots
of unsolved questions about how microbiota and their
metabolites influence human health and disease. This is a
promising area with a broad range of possible strategies that
can be based not only on microbiota manipulation but also on
interfering with their metabolites.
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