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Abstract: The aim of the study was to evaluate the effects of polymeric computer-aided
design/computer-aided manufacturing CAD/CAM materials on antagonistic primary tooth wear.
Five CAD/CAM polymeric materials were examined: Vipi Block Monocolor (VBM), Yamahachi
polymethylmethacrylate (PMMA) (YAP), Mazic Duro (MZD), Vita Enamic (ENA), and Pekkton (PEK).
All of the specimens were tested in a thermomechanical loading machine with the primary canine as
the antagonist (50 N, 1.2 x 10° cycles, 1.7 Hz, 5/55 °C). The wear losses of the antagonist tooth and
the restorative materials were calculated using reverse modelling software and an electronic scale.
VBM and ENA showed significantly higher antagonist tooth wear than PEK (p < 0.05), but there was
no significant difference observed among VBM, YAP, MZD, and ENA (p > 0.05). PEK showed the
largest value in both material volumetric and weight losses. In terms of material volumetric losses,
there was no significant difference between all of the groups (p > 0.05). In terms of material weight
losses, PEK was significantly larger than ENA (p < 0.05), but there was no significant difference
between VBM, YAP, MZD, and ENA (p > 0.05). Volumetric and weight losses of materials showed
similar wear behaviour. However, the wear patterns of antagonists and materials were different,
especially in PEK.

Keywords: CAD/CAM,; resin nano ceramic; polymer infiltrated ceramic network; PEKK; primary
tooth; wear

1. Introduction

Computer-aided design/computer-aided manufacturing (CAD/CAM) technology was introduced
to the dental field in the 1980s, and over the past decade, its importance and popularity have rapidly
increased. CAD/CAM dental restorations meet the requirements of standardised manufacturing
processes that ensure uniform quality and restoration reproducibility [1]. As the demand for
non-metallic restorations continues to increase in the dental field, several CAD/CAM polymers have
been introduced as alternatives for ceramics with faster and lower cost-processing characteristics [2,3].

Ceramics are biocompatible, strong, aesthetically pleasing, and mimic the structural characteristics
of teeth [4], but they also exhibit high fracture resistance and low material wear [5]. However, due to
the abrasive effect and brittleness of ceramic, failure rates are high [6]. On the other hand, polymers
have low elasticity moduli, which allow them to absorb stresses by deformation [7]. Previous studies
on the wear behaviour of CAD/CAM polymers and ceramics have reported that the polymers cause
less antagonistic enamel wear and cracking than ceramics [7,8]. However, polymeric CAD/CAM
materials, such as composites and polymethylmethacrylate (PMMA)-based materials are inferior to
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ceramics in terms of material loss, biocompatibility, and mechanical properties [9]. As a result, a variety
of polymer materials have been introduced that overcome these shortcomings and combine aesthetic
and functional properties [10,11].

Ceramic—polymer composites combine the advantages of ceramics and composites [12].
Mazic Duro (Vericom, Anyang, Korea) and Vita Enamic (VITA Zahnfabrik, Bad Sickinge, Germany)
are representative examples of such materials. Mazic Duro (MZD) is a resin/nano ceramic composite
consisting of 80 wt % ceramic and 20 wt % resin matrix. The manufacturers of these products claim
that ceramic polymer composite materials exhibit the advantages of high elasticity and malleability
due to the presence of the reinforcing matrix, as well as the advantages of ceramics, that is, strength,
resistance to discoloration, and aesthetics. Vita Enamic (ENA) has a structure similar to that of a
polymer-infiltrated ceramic network. Its dominant ceramic is reinforced by a polymer network, and it
has an interpenetrating network of appropriately incorporated ceramic and composite resin [13].
Materials with microstructures composed of interpenetrating networks have been reported to exhibit
high flexural strengths and strains at failure [14], and have properties similar to those of natural
teeth [11].

The high performance thermoplastic polyetherketoneketone (PEKK), a member of the
polyaryletherketone (PAEK) polymer family, was recently introduced as a dental material.
High performance polymers are considered dental materials that can replace metal and glass ceramics
due to their acceptable fracture resistances, excellent stress distributions, and shock absorbing
abilities [15]. In the dental field, PAEK polymers are used for temporary implant abutments,
implant-supported bars, dental implants, dental clasps, and as frameworks for removable partial
dentures [16,17]. Due to its wide processing parameters, PEKK can be used to fabricate crowns and
fixed dental prostheses (FDPs) [18].

Primary tooth wear is a common phenomenon caused by the loss of enamel and dentin
from occlusal surfaces [19]. Furthermore, the abrasiveness of primary and permanent teeth differ,
presumably due to different physical characteristics [20], morphologies [21], and biting forces [22].
In a comparative study on the wear of primary and permanent teeth, it was reported that tooth wear
was greater for primary teeth than permanent teeth, and that incisal/occlusal surfaces were most
affected by tooth wear for both permanent and primary teeth [23]. Stainless steel crowns (SSCs) provide
one of the most effective methods for restoring primary teeth, but are non-aesthetic [24]. In recent years,
developments of CAD/CAM systems in pediatric dentistry have been applied to CAD/CAM ceramics
for restorative restoration [25]. However, some of these CAD/CAM materials require additional
processing after milling and specific equipment for firing and glazing [10]. In contrast, CAD/CAM
polymeric materials can be produced easily and quickly using devices suitable for use in dental offices,
and do not require additional processing [10].

The purpose of this study is to provide information on the possible use of various CAD/CAM
materials for primary teeth restoration based on evaluations of wear relationships between CAD/CAM
polymeric resins and primary teeth.

2. Materials and Methods

2.1. Fabrication of the Antagonists

The antagonists used in this study were primary canines with no cusp wear that were naturally
dropped during transition to permanent dentition. They were collected under the approval of the
Institutional Review Board of Pusan National University Dental Hospital (IRB no. PNUDH-2017-029).
The collected teeth were washed with ultrasonic cleaner before use and stored in deionised water at
37 °C for 24 h. The cusps of the primary canine teeth were exposed by 5 mm using a mold of height
10 mm, width 20 mm, and depth 10 mm, and fixed using an acrylic resin (Orthodontic resin, Dentsply,
PA, USA). Severely worn or broken teeth and teeth with caries were excluded (Figure 1a).
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2.2. Fabrication of the Material Specimens

In this study, five CAD/CAM polymeric resin blocks were used: two of PMMA-based CAD/CAM
materials: Vipi Block Monocolor (VBM) and Yamahachi PMMA (YAP), two of ceramic—polymer
composite materials: Mazic Duro (MZD) and Vita Enamic (ENA), and one of a high performance
polymer: Pekkton (PEK) (Table 1). A cylindrical stereolithography (STL) file (diameter 11 mm and
height 13 mm) was designed by AutoCAD. The generated STL file was transferred to a milling
machine to prepare 10 cylindrical specimens for each material. Specimens were ultrasonically cleaned
in distilled water, and fixed with acrylic resin using a uniform mold in the same manner as antagonists
(Figure 1b). All of the specimens were produced by a single dental technician.

(@)

(b)

Figure 1. Preparation of the specimens. (a) Antagonistic primary teeth; (b) Materials specimens
(from left, Vipi Block Monocolor: VBM, Yamahachi polymethylmethacrylate (PMMA): YAP, Mazic
Duro: MZD, Vita Enamic: ENA and Pekkton: PEK).
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Table 1. Characteristics of products used.
o - Flexural Modulus of
Type Brand Abbreviation Composition Strength (MPa)  Elasticity (GPa) Manufacturers
Vipi Block Monocolor VBM High Cmss'lmkedlf’&ll\y/[‘:ahylmetha“ylate 100 22 Dental VIPI Ltda, Sao Paulo, Brazil
PMMA-based CAD/CAM materials ( )
Yamahachi PMMA YAP Polymethymetacrylate (PMMA) N/A N/A Yamahachi Dental, Aichi, Japan
Resin nano ceramic Mazic Duro MZD 20 wt % of remfor'ced mafrlx and 80 wt % 219.26 13.2 Vericom, Anyang, Korea
ceramic nanofillers
0, - o
Hybrid ceramic Vita Enamic ENA 4wt / o acrylate-polymer and 86 w Vo of 150-160 30 VITA Zahnfabrik, Bad Sackinge, Germany
fine structure feldspar ceramic
High performance polymer Pekkton PEK Polyeterketoneketone (PEKK) 200 5.1 Cendres + Métaux, SA, Switzerland
2.3. Wear Simulation

Material specimens and antagonists were mounted on a computer-supported chewing simulator (Chewing Simulator CS-4.8, SD Mechatronics,
Feldkirchen-Westerham, Germany) (Figure 2a). The specimens were tested using a vertical load of 50 N, a frequency of 1.7 Hz, and a sliding movement of 0.7 mm

for 120,000 cycles [26,27]. During the wear test, thermal stress was applied in distilled water at temperatures of 5 °C and 55 °C using 60 s cycles (Figure 2b).

Figure 2. Set-up wear simulation. (a) Chewing simulator; (b) Specimens fixed in test chamber.
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2.4. Wear Measurements

Three-dimensional (3D) data of antagonists and material specimens were obtained before and
after the experiment using a blue-light scanner (Identica blue, Medit, Seoul, Korea). The Model Creator
module of the CAD software (Exocad Dental CAD, Exocad GmbH, Darmstadt, Germany) was used to
delete 3D data corresponding to non-cusp areas of antagonists before and after the experiment to reduce
errors in the scanning process. For this purpose, the 3D data of the antagonists before the experiment
were placed in the position where only the exposed cusp areas of antagonists could be obtained from
the CAD software (Exocad Dental CAD, Exocad GmbH, Darmstadt, Germany). Afterwards, the 3D
data of the antagonists from after the experiment were imported and superimposed onto the 3D data
of the antagonists from before the experiment. As a result, the two antagonists were placed in the
same position on the CAD software, and the 3D data from before and after experiment corresponding
to the cusp tip of the canine were obtained using the model creator module. Volumetric losses were
analysed by importing newly obtained 3D data from reverse modelling software (RapidForm 2006;
INUS Technology, Seoul, Korea) (Figure 3). Material specimens were also measured in the same manner
as above. In addition, weight losses of material specimens before and after testing were measured
using an electronic scale (Pioneer, Ohaus Co., Parsippany, NJ, USA).
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Figure 3. Volume measurements using a three-dimensional (3D) scanned image. (a) Before wear;
(b) after wear.

2.5. Scanning Electron Microscopy (SEM)

To qualitatively evaluate the wear patterns of the antagonists and materials, specimens were
observed by scanning electron microscopy (5-3500, Hitachi Ltd., Tokyo, Japan) at magnifications of
35x,150%, and 1000 at 15 keV.

2.6. Statistics

The significance of changes in tooth volumes and material weights were evaluated using SPSS
(version 23.0, IBM Corp, Armonk, NY, USA). The Shapiro-Wilk test and Levene’s test were used to
check distribution normality and variance homogeneity. Data were analysed using the Kruskal-Wallis
test, followed by the Mann-Whitney U-test using Bonferroni’s correction (e« = 0.05/10 = 0.005).
Statistical significance was accepted at p values < 0.05.

3. Results

3.1. Wear Loss

After the experiment, the mean values and standard deviations of volume changes of the
antagonists (V,), restorative materials (Vp,), materials and corresponding antagonists (Vi), and weight
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changes of materials (Vy) in each group are shown in Table 2. VBM (1.4261 =+ 1.6156 mm?) showed
the greatest amount of antagonist wear, followed in decreasing order by ENA (1.3983 = 0.9264 mm?),
YAP (1.2833 + 19111 mm?), MZD (0.7260 + 0.5786 mm?), and PEK (0.2621 4 0.2707 mm?).
The mean volume losses in the VBM and ENA groups were significantly greater than those in
the PEK group (p < 0.05), but there was no significant intergroup difference observed between
the VBM, YAP, MZD, and ENA groups (p > 0.05). PEK (1.7617 £ 1.4097 mm?) showed the most
material volume losses, followed by VBM (1.0306 4+ 0.8135 mm?), YAP (0.8857 + 0.5807 mm?),
MZD (0.7432 £ 0.6296 mm?), and ENA (0.7197 + 0.4958 mm?), but no significant intergroup difference
was found (p > 0.05). VBM (2.4567 4 1.9720 mm?) showed the most total wear, followed in decreasing
order by YAP (2.1690 + 1.7496 mm?), ENA (2.1180 + 1.2189 mm?), PEK (2.0238 + 1.4974 mm?),
and MZD (1.4692 + 0.6006 mm?3), but no significant difference was observed between groups
(p > 0.05). In terms of material weight losses, PEK (0.0008 £ 0.0003 g) lost the most, followed
by YAP (0.0006 £+ 0.0005 g), VBM (0.0005 £+ 0.0002 g), MZD (0.0005 £+ 0.0002 g), and ENA
(0.0003 + 0.0003 g). The PEK group also lost significantly more material than the ENA group (p < 0.05),
but no significant difference was observed between weight losses in the VBM, YAP, MZD, and ENA
groups (p > 0.05).

Table 2. Means and standard deviations (SDs) of volumetric losses of antagonists (V,), materials (Vi),
antagonists and materials (V¢), and the weight losses of materials (V) after wear.

Mean + SD

Group n V. (mm?3) Vi (mm?) V¢ (mm?®) Vw (g)
VBM 10 1.4261 + 1.61562 1.0306 £ 0.81352 24567 + 197202 0.0005 + 0.0002 ab
YAP 10 1.2833 + 1.9111 @ 0.8857 + 0.5807 @ 21690 + 1.7496 2 0.0006 &+ 0.0005 ab
MZD 10 0.7260 + 0.5786 b 0.7432 + 0.6296 2 14692 + 0.6006 @ 0.0005 =+ 0.0002 2P
ENA 10 1.3983 + 0.9264 @ 07197 + 0.4958 @ 21180 + 1.21892 0.0003 &+ 0.0003 @
PEK 10 0.2621 + 0.2707 b 1.7617 + 1.4097 2 2.0238 + 1.49742 0.0008 + 0.0003 b

14 - 0.021 0.682 0.900 0.024

Note: Values followed by the same letter were not significantly different, as determined by the Mann-Whitney
U-test with Bonferroni’s correction (p < 0.05/10 = 0.005). VBM: Vipi Block Monocolor; YAP: Yamahachi PMMA;
MZD: Mazic Duro; ENA: Vita Enamic; and PEK: Pekkton.

3.2. Scanning Electron Microscopy (SEM)

SEM images of material wear surface areas are shown in Figure 4. The occlusal surface image of
VBM showed debris caused by wear and partial spallation, which produced a crater-like appearance.
In the abraded area, large cracks and minor pitting were observed perpendicular to the sliding
direction. YAP showed a large number of fragments, wear debris particles, partial spallation, and
step-like fracturing of material along the sliding direction in the abraded area. MZD showed parallel
grooves along the wear tracks, but generally smooth surfaces. ENA showed distinctive grooves,
numerous microcracks, and pitted surfaces. PEK had the smoothest surface, with no cracks, spalling,
pitting, or fractures.
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Wear surface (x35)

PEK

Figure 4. Scanning electron micrographs of restorative material specimens after 120,000 chewing
cycles (VBM: Vipi Block Monocolor; YAP: Yamahachi PMMA; MZD: Mazic Duro; ENA: Vita Enamic;
PEK: Pekkton; N: non-abraded surface; and A: abraded surface).

4. Discussion

Tooth wear in the oral cavity is a complex process caused by many factors, such as the
abrasive nature of food, parafunctional habits, antagonistic materials, enamel thickness and hardness,
neuromuscular force, and chewing patterns [28-30]. Excessive wear can lead to the damage of
occluding surfaces, loss of vertical dimensions of occlusions, functional path changes of masticatory
movements, and fatigue of masticatory muscles [31]. It is desirable that the wear characteristics of
restorative materials match those of natural teeth to protect opposing tooth surfaces and minimise
occlusal disturbances [32,33]. In recent years, as aesthetic demands have increased, dental CAD/CAM
systems in combination with machinable CAD/CAM materials have been used to produce restorations
with excellent physical properties [14]. In the present study, the effects of cost-effective and time-saving
CAD/CAM polymeric resins on primary tooth wear were investigated in order to suggest an innovative
treatment method for restoring primary teeth.

The wear resistances of dental materials are important characteristics in clinical applications [8].
The physical properties of enamel, parafunctional habits, eating habits, and antagonist materials have
all been reported to affect clinical wear [28-30,34]. Certainly, clinical studies provide the best means of



Materials 2017, 10, 1410 8 of 12

establishing tooth wear, but they are costly and time consuming, and are disadvantaged by a lack of
control over important variables such as chewing forces and environmental factors [35]. The results
of in vitro studies are usually difficult to interpret directly into clinical practice, but these studies are
cost effective and highly effective at achieving experimental goals [36]. The two-axes wear test device
used in the present study reproduces the closure movement of the mandible during mastication by
performing a sliding motion after occlusal contact [25]. The main types of wear occurring in the oral
cavity are abrasive wear (two-body wear and three-body wear), fatigue wear, and corrosive wear [37].
In the present study, two-body wear tests were performed during which two surfaces were rubbed
together without an intervening slurry of abrasive particles as a third medium [31]. In previous studies,
when standardised antagonists of cusp shape and size (radius of 0.6 mm) were compared with natural
and non-standardised antagonists, standardisation resulted in significantly different results for both
antagonists and restorative materials, and did not reduce variations in resulting wear [38]. Thus, in the
present study, tooth enamel cusp was not standardised. Several quantitative analysis methods of
measuring the in vitro wear of dental materials have been described, which include measuring the
surface roughness of worn specimens [39], specimen thickness differences before and after wear [40],
and weight losses of worn specimens [41]. Heintze et al. [42] compared the abilities of 3D laser,
mechanical, and optical methods to analyse the wear of dental materials, and concluded that all three
methods were suitable, but that the laser-based method was faster and easier to use. In the present
study, errors associated with the use of replicas were eliminated because volume losses were directly
measured in antagonists and material specimens, rather than through indirect techniques using cast
replicas [43], and 3D wear was measured using a non-contact scanner, which has been shown to be
more effective and accurate [43]. Furthermore, the weight and volume losses of material specimens
were measured to obtain objective data on material wear [25].

In the present study, CAD/CAM polymeric resins—that is, PMMA-based materials, hybrid
ceramics, and high performance thermoplastic PEKK—were selected. Previous studies have shown
that FDPs made from CAD/CAM polymeric resins have better fracture resistance than those produced
from manually polymerised resins, and that they are less affected by ageing than polymerised resins
and glass ceramics [3,44]. Also, CAD/CAM polymeric resins have colour stabilities and mechanical
properties (e.g., flexural strengths) similar to those glass ceramics [8,45]. Therefore, CAD/CAM
polymeric resins are regarded as being suitable for long-term restorations and as alternatives to glass
ceramics in some patients [8].

In terms of antagonist wear, VBM and YAP (both PMMA-based materials) were found to cause
more wear than MZD and PEK, which contrasts with the results of previous studies [2]. ENA, a hybrid
ceramic, showed the second highest wear, and this high antagonist wear of ENA concurs with that
found previously [46]. These results were explained by SEM images, which showed the presence of
wear debris and rough surfaces on the worn surfaces of VBM, YAP, and ENA. Wear debris created
during the wear process may be embedded between sliding surfaces, which not only increases the
contact area, but also acts as a wear medium and generates a three-body wear mechanism and greater
antagonist wear [47,48].

The high-performance polymer PEK showed the greatest material wear, while the hybrid ceramic
ENA showed the least. The volume losses and weight losses of tested materials showed similar patterns.
In general, material wear is closely related to mechanical properties, and increasing the flexural strength
and hardness reduced the material abrasion [49,50]. Dupriez et al. [47] stated that material surface
hardness and fracture resistance are essential for predicting material abrasion resistance, whereas
Ferracane [50] reported that flexural strength and surface hardness are useful for predicting the abrasion
degrees of composite resins. In the present study, material wear was smaller for MZD and ENA,
which are hybrid composites with higher flexural strengths than VBM and YAP (both PMMA-based
CAD/CAM materials with low flexural strengths). In addition, the wear resistance of composite resin
teeth was found to be greater than that of acrylic resin teeth, which concurs with the findings of previous
studies on various artificial teeth against enamel antagonists [31,51,52]. This finding can be explained
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by composite material composition and the presence of interpenetrating microstructures [51,52].
During wear testing, inorganic fillers distributed in MZD can increase the overall wear resistance by
protecting the matrix, and nanosized fillers and reduced interparticle spacings also improve abrasion
resistance [21]. Unlike traditional composites, which are continuous only in the matrix phase, ENAs
with 3D interconnected dual network structures exhibited improved resistance to distinct modes of
damage and have better physical properties than conventional composites [11,53]. These effects were
supported by our SEM images, as MZD and ENA exhibited smoother wear surfaces than VBM or
YAP [31]. On the other hand, although the flexural strength of PEK was higher than that of the other
four materials examined, it also exhibited the greatest wear, which contradicts the manufacturer’s
claim. However, VBM, YAP, and PEK have low elastic moduli, and thus can be easily deformed and
irregularly displaced by stress.

Tooth morphological differences also affect wear rates [2], and dental material and lost dental
tissue should possess similar mechanical properties to ensure restoration longevity and functional
compatibility [54]. The limitation of this study is that primary tooth wear and severe, dynamic
conditions in the oral cavity, such as temperature variations, pH fluctuations, and microbiota, were not
investigated [54-56]. In addition, since the material specimens were not polished after CAM processing,
it is unreasonable to directly compare the results with the clinical situation. Thus, clinical evaluation
ought to be performed to confirm the results obtained in the present study.

5. Conclusions

Within the limits of this study, the volumetric and weight losses of materials exhibited similar
patterns. PEK caused the least antagonist wear, but the greatest material wear. VBM and ENA caused
significantly more antagonist wear than PEK, and ENA showed significantly less material weight loss
than PEK. Since the wear patterns of antagonists and materials differed, it is evident that appropriate
restorative materials selection should be based on considerations of specific clinical situations.
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