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Dynamic properties of calcium-
activated chloride currents in 
Xenopus laevis oocytes
Ildefonso M. De la Fuente1,2, Iker Malaina2, Alberto Pérez-Samartín3, María Dolores Boyano4, 
Gorka Pérez-Yarza4, Carlos Bringas4, Álvaro Villarroel5, María Fedetz6, Rogelio Arellano7, 
Jesus M. Cortes4,8,9 & Luis Martínez2

Chloride is the most abundant permeable anion in the cell, and numerous studies in the last two 
decades highlight the great importance and broad physiological role of chloride currents mediated 
anion transport. They participate in a multiplicity of key processes, as for instance, the regulation of 
electrical excitability, apoptosis, cell cycle, epithelial secretion and neuronal excitability. In addition, 
dysfunction of Cl− channels is involved in a variety of human diseases such as epilepsy, osteoporosis 
and different cancer types. Historically, chloride channels have been of less interest than the cation 
channels. In fact, there seems to be practically no quantitative studies of the dynamics of chloride 
currents. Here, for the first time, we have quantitatively studied experimental calcium-activated 
chloride fluxes belonging to Xenopus laevis oocytes, and the main results show that the experimental 
Cl− currents present an informational structure characterized by highly organized data sequences, long-
term memory properties and inherent “crossover” dynamics in which persistent correlations arise at 
short time intervals, while anti-persistent behaviors become dominant in long time intervals. Our work 
sheds some light on the understanding of the informational properties of ion currents, a key element to 
elucidate the physiological functional coupling with the integrative dynamics of metabolic processes.

Chloride (Cl−) is thought to be the most abundant free anion in the cell1, and its movement through the cellular 
membranes is mainly mediated by Cl− channels, which seem to be widespread in nearly all cellular organisms, 
from bacteria to mammals2,3.

Chloride-conducting anion channels are localized both in the plasma membrane and in intracellular orga-
nelles such as the endoplasmic reticulum, the Golgi apparatus, the nucleus, the mitochondria, the lysosomes, the 
endosomes and the cell vesicles4–7. They participate in a multiplicity of key functions like, for instance, the stabili-
zation of the membrane potential, the regulation of cell volume and electrical excitability, and the acidification of 
intracellular organelles4,8. In addition, different studies have recognized the Cl− channels’ contributions to apop-
tosis9, signal transduction10, cell cycle11, cell adhesion and motility12, among other complex cellular processes.

Intracellular chloride currents also play important roles in a variety of physiological processes13, including 
epithelial secretion14, neuronal excitability15, repolarization of the cardiac action potential16, modulation of light 
responses17 and olfactory transduction18. It can be noted that, under physiological conditions, certain types of 
Cl− channels participate in the regulation of the action potentials and synaptic responses, which are important 
for learning and memory19. In fact, dramatic changes in intracellular Cl− currents occur both during development 
and in response to synaptic activity20,21.
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At a protein metabolism level, there are numerous examples of proteins whose activity is dependent on, or 
regulated by Cl− 22–24. For instance, the Na+-K+-2Cl− cotransporter NKCC1 is activated by low intracellular Cl− 
via a Cl−-sensitive protein kinase25.

The importance of chloride channels was also evidenced through studies of human diseases. In fact, the dys-
function of certain types of chloride channels is involved in a variety of diseases such as epilepsy, male infertility, 
cystic fibrosis, myotonia, lysosomal storage disease, deafness, kidney stones, and osteoporosis1,26,27.

Moreover, different oncogenic processes such as the high rate of proliferation, active migration, and invasive-
ness of malignant cells into normal tissue have been shown to require the involvement of determined chloride 
channel activity in a variety of cancer types22,23.

In general, some chloride channels are activated only by voltage i.e., voltage-gated, while others are acti-
vated by various ions e.g., H+ (pH), or Ca2+, or by the phosphorylation of intracellular residues by several 
protein kinases4,28. Based on these and other characteristics, chloride channels have been classified into five 
main functional groups: (i) extracellular ligand-gated channels, (ii) calcium-activated chloride channels, (iii) 
volume-regulated anion channels, (iv) cAMP-PKA activated channels, and (v) voltage-gated chloride channels29.

Calcium-activated chloride channels (CaCCs) are a key family of chloride channels that regulate the flow of 
chloride and other monovalent anions across cellular membranes in response to intracellular calcium levels30. 
These channels are ubiquitously expressed, in both excitable and non-excitable cells31.

Currents mediated by CaCCs were first observed in 1981 in Rana pipiens eggs where the injection of Ca2+ 
initiated a transient shift to positive membrane potentials in a Cl−-dependent manner32. Later studies in Xenopus 
laevis oocytes and salamander photoreceptors characterized these calcium-activated chloride currents33,34.

The relationship between chloride currents and intracellular calcium fluctuations gives CaCCs a crucial role in 
many cellular processes, and numerous studies show the great importance and broad physiological role of these 
channels35.

Historically, chloride channels have been less studied than cation channels. Considerable progress has been 
made in the knowledge of their molecular structures and functions30, but there seems to be practically no quan-
titative studies of the dynamics of chloride currents. On the contrary, there are a significant number of studies 
made from the perspective of systems biology on free cations such as calcium. For instance, from the perspective 
of systems biology, different studies have shown that information might be encoded in the amplitude, the fre-
quency, the duration, the waveform or the timing of the calcium oscillations36,37. Moreover, the mutual informa-
tion method was used to calculate the amount of information transferred through a calcium signaling channel38 
and long-term correlations were also observed in calcium-activated potassium channels39.

Here, we present a pioneer quantitative study of the dynamic properties of the chloride currents belonging 
to calcium-activated chloride channels (CaCCs) of Xenopus laevis oocytes, analyzed under different external pH 
environments (acid, neutral and basic). Xenopus oocytes have long been a model system for studying CaCCs 
because these channels are the predominant channels expressed at extremely high levels (0.5 mA/cm2)40.

The calcium-activated chloride currents were measured by the patch-clamp technique and the experimental 
series were analyzed by means of non-linear approaches. Our main result shows that the currents present a struc-
ture characterized by highly organized data sequences, long-term memory and inherent “crossover” dynamics 
with transitions from persistent to anti-persistent behaviors. In this dynamic structure, short memory time peri-
ods with a mean of 7.6 seconds arise from the experimental data, which correspond to non-trivial correlations 
that encompass around 4,000 experimental chloride values.

In this paper, for the first time, we have addressed essential aspects of calcium-activated chloride channels 
(CaCCs), and the informational properties herein analyzed seem to be intrinsic characteristics of the dynamics 
involved in these physiological ion currents.

Results
In order to study some of the dynamic properties of the chloride channels we have recorded calcium-activated 
chloride currents in Xenopus laevis oocytes, which have been evoked by serum under different external pH 
stimuli (pH = 0.5, pH = 0.7 and pH = 0.9). Thus, we had 21 time series in total, each one of them formed by 
130,000 discrete data points. Figure 1 shows three representative experimental signals obtained by means of the 
patch-clamp technique, under three different pH conditions, Ringer’s solution at pH 5.0, 7.0 and 9.0 (acid, neutral 
and basic pH).

To confirm that oscillations monitored in Xenopus oocytes by application of Fetal Bovine Serum corresponded 
with Ca2+-dependent Cl− currents, three different experiments were performed. First, oocytes generating oscilla-
tions were voltage-clamped at 4 different voltages (either −60, −40, −20 or at 0 mV). As it is illustrated in Fig. 2a, 
currents reversed near to −20 mV, in accordance with the reversal potential of Cl− in oocytes. Second, the reversal 
potential observed was shifted toward more positive potentials when the external Cl− concentration was reduced, 
this is shown in Fig. 2b. In this case, oocytes were held to either −30 mV (first column) or 0 mV (second column), 
while they were superfused with solutions containing 100%, 50% or 0% of Cl− (NaCl was substituted proportion-
ally by Na2SO4 in Ringer solution and, osmolarity compensated adding sucrose). It is clear that reversal potential 
is close to −30 mV in 100% Cl−, while in 0% Cl− oscillations continued being in inward direction at 0 mV, indicat-
ing that reversal potential in this condition is more positive. An intermediate case occurs with 50% Cl− solution, 
where the shift in reversal potential by reducing external Cl− is predicted by the Nernst equation. And finally, it 
was demonstrated that Cl− currents were Ca2+-dependent. Intraoocyte injection of the calcium chelator ethyl-
ene glycol-bis(2-aminoethylether)N,N,N’,N’,-tetraacetic acid (EGTA) abolished completely oscillatory currents, 
according to Ca2+-dependent Cl− currents.

First, to test for the presence of long-term correlations in the experimental chloride data we have used the 
root-mean square (rms) fluctuation F(l). For uncorrelated data, the exponent α for the relationship F(l) ~ lα is 
equal to 0.5; in contrast α > 0.5 indicates the presence of positive long-range correlations and α < 0.5 implies 



www.nature.com/scientificreports/

3Scientific Reports | 7:41791 | DOI: 10.1038/srep41791

long-term anti-correlations. According to this method, we have divided the 130,000 data points of each time 
series in 6 non-overlapping windows with k = 5, performing the rms fluctuation method on every window for 
each of the 21 experimental chloride series and fitting F(l) within the range l = 1, …, lmax (see Methods for more 
details). The values of lmax were systematically increased in 100 points, which correspond to 1 second, and the 
reliability of the rms correlation exponent α was calculated by means of the R2 parameter, which measures the 
goodness fit (also called the coefficient of determination).

Second, in order to discern whether the experimental Cl− currents exhibit non-trivial correlations, we have 
fixed a threshold criterion of R2 ≥ 0.99. The obtained α values were calculated for every window on each time 
series, and the results ranged between 0.75 and 1, being 0.927 ± 0.048 (mean ± SD) the global mean α of all the 
experimental chloride series. These non-trivial correlations encompassed between 1,500 and 6,500 evoked chlo-
ride values (mean of 3,809.5 ± 1,298.8), which correspond to periods of time ranging between 3 and 13 seconds 
(mean of 7.66 ± 2.6). Boundary times where achieved on the series n17 (experiment 6, pH = 7.0) and n2 (exper-
iment 1, pH = 7.0) respectively. The mean rms correlation coefficients (α), as well as the number of evoked chlo-
ride values under the non-trivial correlation regimen (N), with their respective correlation times (Tc) for all the 
experimental series are given in Table 1. Figure 3 shows an example of rms fluctuation analysis applied to three 
calcium-activated chloride responses of the same oocyte (n1, n2 and n3 time series belonging to the experiment 
1) for their Tc times on a single window. In all three cases, the obtained α values were significantly different to 0.5, 
and for at least 10, 13 and 12 seconds respectively, the evoked chloride dynamics presented non-trivial long-term 
correlations. Alternatively, long term correlations were also observed by calculating the autocorrelation function 
from the time series (Supplementary Information).

Next, we have studied the long-range correlations for α ≥ 0.6. The analysis showed exponents ranging between 
0.6008 and 0.9718, which respectively correspond to the time series n1 (pH = 5.0, lmax = 2,200) and n17 (pH = 7.0, 

Figure 1.  Calcium-activated chloride currents in Xenopus laevis oocyte. Three prototype experimental 
Cl− currents obtained from the same cell at different conditions: (a) pH 5.0 (n10), (b) pH 7.0 (n11), (c) pH 9.0 
(n12). Each chloride time series has 130,000 points (sampling interval 2 milliseconds), which correspond to a 
period of time of 260,000 milliseconds duration. The vertical axis (Φ) corresponds to the measures of currents 
in nanoampers (nA).
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lmax = 1,200). The global average α was 0.774 ± 0.108. All the means of α values, R2 adjustments, and the lmax are 
given in Table 2. It can be observed that the values of α decrease slowly as lmax increases. This behavior is illus-
trated in Fig. 4a, where the average α for the 21 time series, as a function of lmax, are represented; all the corre-
sponding values of the Fig. 4 are displayed on Table 3.

Figure 2.  Ca2+-dependent Cl− current validation. (a) Xenopus oocyte held at either −60, −40, −20 or 0 mV. 
Reversal potential of oscillatory currents corresponded to a value close to −23 mV. (b) Oscillatory current 
reversal potential were dependent on external Cl− concentration, traces show currents in oocytes held at  
−30 mV or 0 mV in 3 different solutions containing 100%, 50% or 0% Cl−, reversal potential shifted toward 
more positive potentials as external Cl− concentration decreased. (c) Cytoplasmic injection of EGTA, a Ca2+ 
chelator, completely eliminated the oscillatory Cl− current.

Experiment Stimulus Number α N Tc

1

pH5.0 n1 0.9137 ± 0.051 5,000 10

pH7.0 n2 0.9286 ± 0.009 6,500 13

pH9.0 n3 0.9118 ± 0.053 6,000 12

2

pH5.0 n4 0.9339 ± 0.035 4,500 9

pH7.0 n5 0.9177 ± 0.031 5,000 10

pH9.0 n6 0.9182 ± 0.056 5,000 10

3

pH5.0 n7 0.9226 ± 0.032 3,500 7

pH7.0 n8 0.9002 ± 0.041 5,500 11

pH9.0 n9 0.9471 ± 0.078 3,500 7

4

pH5.0 n10 0.9364 ± 0.030 3,500 7

pH7.0 n11 0.9300 ± 0.037 4,000 8

pH9.0 n12 0.9295 ± 0.050 2,500 5

5

pH5.0 n13 0.9301 ± 0.036 4,000 8

pH7.0 n14 0.9199 ± 0.083 4,000 8

pH9.0 n15 0.9096 ± 0.096 2,000 4

6

pH5.0 n16 0.9420 ± 0.049 3,000 6

pH7.0 n17 0.9480 ± 0.062 1,500 3

pH9.0 n18 0.9372 ± 0.049 3,000 6

7

pH5.0 n19 0.9372 ± 0.023 2,500 5

pH7.0 n20 0.9208 ± 0.021 2,500 5

pH9.0 n21 0.9433 ± 0.043 3,500 7

Table 1.   The first column shows the number of the experiment, each one corresponding to a single oocyte. 
The second column contains the pH stimuli applied to each specific experiment. The third one shows the 
number assigned to each obtained chloride series. The rest of the data corresponds to the values of mean rms 
correlation coefficient (α), number of concentration measurements under the correlation regimen (N), and 
regime correlation time in seconds for non-trivial correlations (Tc).
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In addition, we have observed a critical transition around lmax = 28 seconds, where the behavior of the Cl− cur-
rents changes from positive to negative correlations (Fig. 4b). It can be observed that as lmax increases, all the α 
exponent values decreased, and for the maximum window length (lmax = 40, corresponding to 20,000 time 
points), the α values were lower than 0.5 (α = −0.051 ± 0.283) indicating anti-correlations in all cases; concretely, 
α values ranged between −0.885 and 0.349, which belong to n2 (experiment1, pH = 7.0) and n7 time series 
(experiment 3, pH = 5.0) respectively.

Finally, we performed a rms fluctuation analysis without the separation of the data in shorter windows, thus 
considering all the points for each experimental time series, observing anti-correlations for all the cases 
(α = −0.01 ± 0.1).

Moreover, we have examined whether the chloride currents are described by a fractional Gaussian noise (fGn) 
or a fractional Brownian motion (fBm) by calculating the slope of the Power Spectral Density plot41. The signal 
exhibits power law scaling if the relationship between its Fourier spectrum and the frequency is approximated 
asymptotically by S(f) ≈ S(f0)/fβ, where S(f0) and β are constant values. If −1 < β < 1 the signal corresponds to an 
fGn. In particular, when β = 0, the power spectrum is flat, as is the case for white noise in which the time series is 
composed of a sequence of independent random values. If 1 < β < 3 the signal corresponds to a fBm. The analysis 
of the Power Spectral Density plot revealed that the experimental series are characterized by a power-law scaling 
with β ranging within 1.507 and 2.991, which suggests that all the series are described by fBm (β values are given 
in Table 4).

Additionally, an analysis of the classical descriptive statistics of the experimental data has been included in the 
Supplementary Information).

Next, we have checked whether the chloride time series show persistent or anti-persistent long-term mem-
ory by calculating the Hurst exponent. Although several tools exist for estimating the long-term memory from 

Figure 3.  Root mean square fluctuation analysis applied to experiment 1 on a single window. Log-log plot 
of the rms fluctuation F versus l step. The red points depict the results of the original data for each value of l, 
while the black lines represent the regression lines. (a) α = 0.88 (n1), (b) α = 0.92 (n2) and (c) α = 0.83 (n3). 
Corresponding (respectively) R2 adjustment coefficients were 0.9915, 0.9921 and 0.9976. The high values of α 
and R2 indicate non-trivial long-term correlations for each chloride time series during 10, 13 and 12 seconds 
respectively.
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fBm time series, one of the most reliable methods is the bridge detrended Scaled Windowed Variance analysis 
(bdSWV) (see Methods for more details). After bdSWV analysis, the resulting Hurst exponents had a mean value 
of 0.191 ± 0.101, implying long-range memory and an anti-persistence effect in all the experimental data sets 
(Table 4). In addition, an ANOVA test revealed that Hurst exponent values were significantly different for time 
series corresponding to pH = 9.0 in comparison to pH = 7.0 (p-value = 10−5) and pH = 5.0 (p-value = 10−4), but 
no significant distinction was found between pH = 7.0 and pH = 5.0 (p-value = 0.42). Notice that the obtained 
values of H are very low, showing a high degree of anti-persistence (strong trend-reversing), so that an increasing 
trend in the experimental data values will tend markedly to be followed by a decreasing trend, or a decrease on 
average will be followed by a robustly increasing trend.

In order to estimate the significance of our results, we have performed a shuffling procedure that defines the 
null-hypothesis. If the original time series exhibits a memory structure (H ≠ 0.5), after the shuffling such struc-
ture will disappear, thus re-applying a new Hurst analysis on the shuffled data should provide values of H close to 
0.5. According to this procedure, for each experimental time series (21 in total), we performed a thousand ran-
dom permutations, which allowed building the null-hypothesis of no correlations. In total, we generated 21,000 
random series from the original data belonging to the seven experiments with Xenopus laevis oocytes. After 
shuffling, the results show a mean Hurst exponent of 0.499 ± 0.01, indicating the absence of long-term memory 
i.e., the informational memory structures in all shuffled series was completely lost. Notice that after shuffling, the 
series became Gaussian white noise (fGn series with β = − . ± .0 0006 0 004, and for this case the use of bdSWV 
is not justified. Instead, Dispersion Analysis is the most recommendable tool for this kind of series41,42 (for more 
details see Methods).

Figure 5a illustrates the regression lines of a bdSWV process applied to an example of experimental series 
giving H = 0.104 (experiment 5, n13, pH = 5.0), which indicates a strong anti-persistent memory. After randomly 
permuting all the 130,000 points contained in this time series n13, the Dispersion Analysis gave H = 0.492, which 
indicates a breakdown for the long-term memory (Fig. 5b). In Fig. 5c, we represent 100 Hurst exponent values 
corresponding to 100 shuffled series, obtained from shuffling the experimental data. It can be observed that, after 
shuffling, the long-term memory disappears completely in all the time series (H = 0.498 ± 0.01). For illustration 
purposes, Fig. 5c shows, rather than the 21,000 obtained values of Hurst exponent, only 100 of them. The infor-
mational memory structures in all shuffled series were completely broken-down, and therefore, the memory 
structure that characterizes the experimental data could not be found by chance. Finally, in order to calculate the 
values of Hurst exponent from short data periods, we used the Detrended Fluctuation Analysis (DFA), because 
the bdSWV is recommended for data sizes greater than 212, whilst for data sets with less than 28 points bdSWV 
has been shown to be unreliable43. The DFA analysis showed that for time periods ranging between 2 and 5 sec-
onds all the experimental time series exhibit persistent behavior with H > 0.5 being the global mean of 
H = 0.697 ± 0.11, which indicates that the properties of persistent memory dominate at short time intervals of the 
calcium-activated chloride currents in Xenopus laevis oocytes.

Experiment Stimulus Number α R2 max lmax

1

pH5.0 n1 0.7094 ± 0.100 0.8896 ± 0.070 2,200

pH7.0 n2 0.7587 ± 0.092 0.8844 ± 0.120 2,200

pH9.0 n3 0.7145 ± 0.080 0.8730 ± 0.107 2,300

2

pH5.0 n4 0.7245 ± 0.093 0.8955 ± 0.085 2,200

pH7.0 n5 0.7638 ± 0.107 0.9243 ± 0.084 2,000

pH9.0 n6 0.7390 ± 0.103 0.9085 ± 0.059 2,000

3

pH5.0 n7 0.7974 ± 0.089 0.9430 ± 0.084 1,300

pH7.0 n8 0.7614 ± 0.081 0.9315 ± 0.066 2,000

pH9.0 n9 0.8474 ± 0.133 0.9721 ± 0.033 1,500

4

pH5.0 n10 0.7918 ± 0.111 0.9288 ± 0.099 1,400

pH7.0 n11 0.7543 ± 0.128 0.8913 ± 0.113 1,600

pH9.0 n12 0.7406 ± 0.142 0.9309 ± 0.050 1,500

5

pH5.0 n13 0.7905 ± 0.110 0.9313 ± 0.077 1,500

pH7.0 n14 0.7792 ± 0.111 0.9551 ± 0.028 1,800

pH9.0 n15 0.8190 ± 0.136 0.9784 ± 0.034 1,000

6

pH5.0 n16 0.8550 ± 0.119 0.9675 ± 0.061 1,200

pH7.0 n17 0.8734 ± 0.138 0.9836 ± 0.030 900

pH9.0 n18 0.7264 ± 0.079 0.9206 ± 0.051 2,000

7

pH5.0 n19 0.7262 ± 0.067 0.9142 ± 0.048 1,300

pH7.0 n20 0.7837 ± 0.066 0.9435 ± 0.054 900

pH9.0 n21 0.8137 ± 0.107 0.9549 ± 0.055 1,500

Table 2.   The first column shows the number of the experiment, each one corresponding to a single 
oocyte. The second column contains the pH stimuli applied to each specific experiment. The third one shows 
the number assigned to each obtained Cl− series. The rest of the data corresponds to the values of mean rms 
correlation coefficient (α), coefficient of adjustment (R2), and maximum regime correlation points (max lmax).
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Figure 4.  Long-term correlations across different windows lengths. (a) Global average α versus different 
values of lmax (varying from 1 to 24 seconds). (b) α as a function of lmax (varying from 25 to 40 seconds). The 
error bars represent the standard deviation at each step. It can be observed that all Cl− time series change from 
positive to negative correlation near lmax = 28 seconds.

lmax (sec) α lmax (sec) α

1 0.967 ± 0.04 21 0.647 ± 0.18

2 0.970 ± 0.03 22 0.624 ± 0.18

3 0.966 ± 0.03 23 0.600 ± 0.18

4 0.959 ± 0.04 24 0.577 ± 0.18

5 0.950 ± 0.04 25 0.553 ± 0.18

6 0.939 ± 0.05 26 0.528 ± 0.18

7 0.928 ± 0.06 27 0.502 ± 0.18

8 0.915 ± 0.06 28 0.474 ± 0.18

9 0.901 ± 0.07 29 0.446 ± 0.19

10 0.885 ± 0.08 30 0.416 ± 0.19

11 0.868 ± 0.09 31 0.385 ± 0.20

12 0.849 ± 0.10 32 0.351 ± 0.21

13 0.830 ± 0.11 33 0.316 ± 0.22

14 0.808 ± 0.13 34 0.278 ± 0.23

15 0.786 ± 0.14 35 0.238 ± 0.24

16 0.764 ± 0.15 36 0.193 ± 0.25

17 0.741 ± 0.16 37 0.146 ± 0.26

18 0.717 ± 0.17 38 0.094 ± 0.27

19 0.693 ± 0.17 39 0.034 ± 0.27

20 0.670 ± 0.18 40 −0.051 ± 0.28

Table 3.   The first and third columns represent different values of lmax, ranging from 1 to 40 seconds. The 
second and forth columns show the values of global mean rms correlation coefficients (α) for each lmax values.
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Discussion
Chloride (Cl−) thought to be the most abundant permeable anion in the cell; it participates in a wide variety of 
important local and systemic physiological processes, while also being involved in a variety of human diseases. 
Historically, chloride anions have been of less interest than most other free cations. In fact, many molecular 
aspects of the chloride channels have been well studied, but the characterization of their dynamic properties is 
still unknown.

Experiment Stimulus Number β H

1

pH5.0 n1 2.0248 0.2455 ± 0.0012

pH7.0 n2 1.9723 0.1744 ± 0.0016

pH9.0 n3 2.3749 0.0950 ± 0.0019

2

pH5.0 n4 1.8460 0.2501 ± 0.0009

pH7.0 n5 1.6835 0.3521 ± 0.0007

pH9.0 n6 1.5669 0.1076 ± 0.0017

3

pH5.0 n7 1.8741 0.1830 ± 0.0012

pH7.0 n8 1.5075 0.2681 ± 0.0010

pH9.0 n9 1.7512 0.1071 ± 0.0015

4

pH5.0 n10 1.5834 0.2962 ± 0.0012

pH7.0 n11 1.6043 0.3174 ± 0.0011

pH9.0 n12 1.9086 0.0616 ± 0.0023

5

pH5.0 n13 2.0533 0.1040 ± 0.0019

pH7.0 n14 2.0738 0.1725 ± 0.0016

pH9.0 n15 1.8572 0.0589 ± 0.0022

6

pH5.0 n16 2.3889 0.3339 ± 0.0009

pH7.0 n17 2.4520 0.2949 ± 0.0011

pH9.0 n18 2.1698 0.0526 ± 0.0022

7

pH5.0 n19 2.8441 0.2174 ± 0.0016

pH7.0 n20 2.5817 0.2718 ± 0.0013

pH9.0 n21 2.9913 0.0621 ± 0.0026

Table 4.   The first column shows the number of the experiment, each one corresponding to a single oocyte. 
The second column contains the pH stimuli applied to each experiment. The third one shows the number 
assigned to each obtained chloride series. The rest of the data corresponds to the values of Power Spectral 
Density slope (β) and Hurst exponent (H) calculated by the bdSWV method.

Figure 5.  Hurst exponents obtained by the bdSWV analysis. (a) The slope of a log-log plot of the SD n( ) 
versus the window size for a bdWSV applied to an evoked chloride series (n13, experiment 5, pH = 5.0) gives 
H = 0.104, indicating the presence of long-term memory. (b) The slope of a log-log plot of the SD(n) versus the 
window size for a Dispersion Analysis applied to shuffled time series obtained by randomly permuting all the 
130,000 time points for each Cl− time series (n13). After shuffling, H was close to 0.5, indicating the 
disappearance of the memory structure. (c) In red, Hurst exponent values of all the experimental chloride time 
series; in blue, 100 Hurst exponent values obtained from shuffled series.
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Here, we have quantitatively studied experimental Ca2+-dependent Cl− currents belonging to Xenopus laevis 
oocytes, which have been evoked by serum under different external pH environments. These Cl− currents were 
measured by the patch-clamp technique and the data series have been mainly analyzed by means of non-linear 
dynamic tools.

First, we have applied an analysis based on the root mean square fluctuation and the results revealed 
non-trivial correlations in all experimental time series. The α exponent has a mean of 0.927 (R2 ≥ 0.99) and these 
strong long-range correlations encompasses concentration values between 1,500 and 6,500, which correspond to 
time periods ranging between 3 and 13 seconds (with a mean of 7.66 sec). Therefore, the chloride currents present 
a dynamical structure characterized by long range correlations, and this occurred independently of the experi-
mental condition (here defined by the pH of the cellular external medium).

In addition, transitions from negative to positive correlations were found in the Ca2+-dependent Cl− data. 
Positive long-range correlations arise in short time intervals while negative correlations become dominant over 
longer ones. This dynamic behavior has been observed in all experimental chloride series.

Moreover, we have calculated the slope of the Power Spectral Density plot concluding that the Cl− data sets 
can be categorized as fractional Brownian motion i.e., non-stationary series with time-dependent variance.

To test the presence of persistent or anti-persistent memory properties for long time intervals in the exper-
imental data, we have applied the bridge detrended Scaled Windowed Variance analysis, a specific method to 
obtain Hurst exponent values in fBm signals. We have found that the Hurst exponents satisfy 0.05 < H < 0.35, 
indicating the existence of anti-persistent long-term memory during long time intervals, in all the series. Values 
of H < 0.5 have been interpreted as a characteristic for “trend-reversing”, which means that a decreasing trend 
in the past usually implies an increasing trend (on average) in the future and vice versa, an increase over a set of 
values in the past is likely to be followed by a decrease in the future.

Our obtained Hurst exponent values are very small (H = 0.191 ± 0.101), which shows a high degree of nega-
tive dependence between experimental values, indicating strong “trend-reversing”. The strength of this reversion 
tendency increases as H approaches 0; consequently, when the evoked calcium values spike in one direction, there 
is a very strong probability that they will subsequently revert back. This important anti-persistent property indi-
cates a self-correcting effect in the experimental data, which describes a situation where tendencies to increase or 
decrease will tend to reverse themselves.

The high reliability of our Hurst analysis for long time intervals was tested by applying a shuffling procedure 
(21,000 shuffled time series in total), showing that the Hurst exponent values measured from the original experi-
mental series (H  = 0.191 ± 0.101) were significantly different from the ones obtained after shuffling 
(H = 0.498 ± 0.01), implying that the correlation structure in all shuffled series was completely broken-down, and 
therefore, the memory structure that characterizes the original experimental data could not be found by chance.

Finally, in agreement with the observed transitions from negative to positive correlations in the rms fluc-
tuation analysis, we have verified that persistent memory properties arise for short time intervals in all the 
experimental data sets, while anti-persistent behaviors become dominant in longer intervals. This “crossover 
phenomenon”, a dynamical property characterized by transitions from persistent to anti-persistent behaviors at a 
physiological level, seems to show a highly complex regulation of the intracellular chloride currents which exhibit 
persistence at short time scales (i.e., a trend to increasing in the past will likely be followed by an increasing trend 
in the future and, vice versa, a trend to decreasing in the past will likely be followed by a decreasing trend in the 
future), while strong anti-persistence arises in long time scales (when the chloride currents present a determinate 
trend in the past, there is a high probability to subsequently revert back); this “trend-reversing” behavior suggest 
that, at long time intervals, the intracellular chloride dynamics are bounded, and reflects the consequences of an 
inherent self-correcting effect in the system44. Similar crossover phenomena have also been observed in some 
other numerical and experimental physiological processes44.

Long-term memory properties found in the calcium-activated chloride behaviors might be related to the 
dynamic metabolic memory recently proposed to exist in the Cellular Metabolic Structure (CMS in short)45,46. 
At a systemic level, cells seem to display a CMS, which behaves as a very complex decentralized information pro-
cessing system with the capacity to store metabolic memory. According to this framework, the CMS exhibits an 
essential dynamic informational mechanism by which Hopfield-like attractor dynamics regulate the enzymatic 
activities. These attractors have the capacity to store functional catalytic patterns that can be correctly recovered 
by specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term 
functional memory45,46.

Moreover, since the beginning of the neuronal network modeling of associative memory, the connectivity 
matrix in the Hopfield network was assumed to result from a long-term memory learning process, occurring over 
a much slower time scale than neuronal dynamics47–49. Therefore, it is well accepted that the attractors emerging 
in neuronal dynamics described by Hopfield networks are the result of a long-term memory process. Besides, 
extensive physiological recordings of neuronal processes have revealed the presence of long range correlations in 
plasticity dynamics for measured synaptic weights. For instance, long tails in the synaptic distribution of weights 
have been interpreted as short-term memory in neural dynamics50.

These studies and others support the thesis that neuronal dynamics exhibit both long-term and short-term 
memory, and the same may happen with the metabolic processes. In fact, long-term correlations (mimicking 
short-term memory in neuronal systems) have also been analyzed in different metabolic processes not belong-
ing to the neuronal lineage. One of the most studied is the calcium-activated potassium channels, existing in 
Leydig cells51, kidney Vero cells52 and human bronchial epithelial cells53. Other biochemical processes also pres-
ent long-term correlations for example, the intracellular transport pathway of Chlamydomonas reinhardtii54, the 
NADPH series of mouse liver cells55, and the mitochondrial membrane potential of cardiomyocytes56. Similar 
to what happens in the brain, we believe that the observed long-term memory in the calcium-activated chloride 
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responses might correspond to the short-term memory of the metabolic system involved in these physiological 
dynamics, and in accordance with our analysis for the non-trivial correlation regimes, this short-term memory 
could correspond to times around 7 seconds.

In brief, here, we have addressed some essential aspects of calcium- activated chloride currents, in which the 
concentration dynamics are strongly conditioned by previous concentration measurements over time. Indeed, 
non-trivial correlations were observed within time-windows of 4,000 experimental concentration values, which 
correspond approximately to time memory periods with a mean of 7.6 seconds. The analyzed experimental series 
exhibit fractional Brownian motion, with an informational structure characterized by highly organized data 
sequences, memory properties and inherent “crossover” dynamics, in which persistent behaviors exist within 
short time intervals, while anti-persistent dynamics become dominant within long time intervals. In addition, 
the anti-persistent behavior that encompasses all the points of the time series suggests self-correcting effects in 
the experimental data. These properties seem to be intrinsic characteristics of the dynamics involved in these 
physiological processes.

Our work opens up new perspectives for quantitative analysis of the dynamics involved in the dysfunction of 
calcium-activated chloride channels and sheds some light on the understanding of the informational properties 
of intracellular signals, a key element to elucidate the physiological functional coupling of the cell with the inte-
grative dynamics of metabolic processes.

Methods
Calcium-activated chloride currents in Xenopus laevis oocytes.  Adult Xenopus laevis frogs were 
obtained from Blades Biological (Cowden, Kent, UK). Oocytes at stage V were plucked from the ovaries and 
defolliculated by collagenase treatment (type 1, Sigma-Aldrich Quimica, S.A., Madrid, Spain) at 80–630 units/ml 
in frog Ringer’s solution (115 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 5 mM HEPES at pH 7.0) for 20 min in order to 
remove the surrounding follicular and epithelial cell layers. Oocytes were maintained at 18 °C in sterile unsupple-
mented modified Barth’s medium containing (mM): 88 NaCl, 0.2 KCl, 2.4 NaHCO3, 0.33 Ca(NO3)2, 0.41 CaCl2, 
0.82 MgSO4, 0.88 KH2PO4, 2.7 Na2HPO4, with gentamicin 70 μg/ml and adjusted to pH 7.4.

Xenopus oocytes have long been a model system for the study of calcium-activated chloride currents because 
they express extremely high levels of chloride channels whose activation depends on Ca2+ 40.

For this activation we have used Fetal Bovine Serum (FBS). Serum is known to promote oscillations due to 
alterations of Ca2+ concentrations in the cytoplasm, which, as a consequence, evoke Cl− movements across the 
oocyte membrane57 through different calcium-activated chloride channels. According to this procedure, FBS 
(Sigma-Aldrich) diluted 1:1000 in Ringer’s solution was used for the oocytes’ perfusion to achieve the generation 
of chloride currents oscillations. The membrane was usually voltage clamped at −60 mV, and in the experiments, 
three different pH conditions were considered, Ringer’s solution at pH 5.0, 7.0 and 9.0. The sampling interval time 
scale in the experiments was 2 milliseconds.

All the procedures followed the guidelines of regulation 1201/2005 of Ministerio de Agricultura, Pesca y 
Alimentacion and the experimental protocols were approved by the University of the Basque Country (UPV/
EHU) ethics committee (code: CEBA/8/2009).

Root mean square fluctuation.  An important measure for quantifying long-range correlations in time 
series is the root mean square (rms) fluctuation58, a technique initially developed for random walk studies59. 
Before calculating it, we define the move-step length at time point i; here, for the evoked calcium-activated chlo-
ride time series, it simply corresponds to electrical current variations, i.e., uk(i) ≡ Φ(i + k) − Φ(i) which are given 
in nanoampers (nA). Without loss of generality, hereon, we denote for a fixed k, uk(i) ≡ u(i). Next, defining the 
net displacement after l steps as

∑≡
=

y l u i( ) ( ),
(1)i

l

1

the rms fluctuation of the average displacement is given by:

≡ ∆ − ∆F l y l y l( ) ( ) ( ) , (2)
2 2

where Δy(l) ≡ y(l + l0) − y(l0), and brackets denote average over all possible values of l0. Thus, F(l) is defined as the 
square root of the difference between the average of the square of Δy(l) minus the square of its average.

For many processes, F(l) scales asymptotically with l, i.e., F(l) ~ lα 58, and the relationship can be observed by 
representing F as a function of l in a log-log plot, fitting F(l) in the range l = 1, …, lmax. Here, three important 
regimes can be distinguished, depending on the exponent α (rms correlation coefficient)58; when α = 0.5 the 
random walk is time uncorrelated and no memory exists. Markov processes initially decay exponentially with l, 
but also give α = 0.5 for sufficiently large l. If α > 0.5, it indicates the presence of positive long-range correlations 
and α < 0.5 implies long-term anti-correlations.

When the method is applied directly to large data sets, there is a risk of concluding that there are no correla-
tions from long-term correlated data. To avoid this issue, data can be subdivided into smaller windows. In our 
case, the chloride data consisted of 130,000 time points, which we divided into 6 non-overlapping windows of 
20,000 points each, leaving the last 10,000 values out of the analysis. The final α was calculated averaging over the 
6 individual values of α, each one calculated within a different window. To estimate the duration of the long-term 
correlation regime (Tc), we increased lmax systematically until the value of R2 (the goodness fit in the log-log scale) 
was smaller than 0.99.
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Hurst exponent Scaled Windowed Variance Analysis.  The calculation of the Hurst exponent is a clas-
sical method to detect long-term memory in time series introduced by the hydrologist H.E. Hurst in 1951 to study 
the annual discharges of the Nile River60. Afterwards, this method was developed by Mandelbrot in order to apply 
it to different dynamic processes61.

The Hurst exponent, H, is referred to as the index of long-range dependence, which characterizes how the 
variance depends on a time interval, and also provides information about autocorrelations. The H exponent is 
also related to the fractal dimension for self-affine series62, and for one-dimensional series, H = 2 − D, where D is 
the fractal dimension and satisfies 1 < D < 263.

The Hurst exponent H satisfies 0 ≤ H ≤ 1. For a random process with independent increments, H is 0.5. When 
H differs from 0.5, the process is properly fractional and indicates the existence of long-term memory, in which 
future events have long-term correlations with past events. If H > 0.5, it indicates a biased random process which 
exhibits persistent behavior. In this case, for several previous transitions, an increment on the average value 
implies an increasing trend in the future. Conversely, a previously decreasing trend for a sequence of values 
usually implies a decrease for a similar sequence. Anti-persistent behavior is obtained for 0 ≤ H < 0.5; in this 
case, a previously decreasing trend implies a probable increasing trend in the future and vice versa, an increase 
in the past is usually followed by a decrease in the future41,53. Persistent behavior carries out a superdiffusion, 
which is faster than in a normal random walk; and, conversely, anti-persistent behavior carries out an abnormal 
diffusion that is slower than in a normal random walk. In some dynamic processes a transition from persistent to 
anti-persistent correlation regimes over different time scales, which is known as a “crossover phenomenon”, may 
emerge44.

Two fundamental classes of fractal time series are fractional Brownian motion (fBm) and fractional Gaussian 
noise (fGn). The fBm is a continuous-time Gaussian process BH(t) with t ≥ 0 such that it satisfies BH(0) = 0 with 
probability 1, the expectation E[BH(t)] is 0 for every t, and the covariance function is given 
by = + − −E B t B t t t t t[ ( ) ( )] ( )H H H H H

1 2
1
2 1

2
2
2

1 2
2  for every t1, t2 in +R , where the parameter H is the Hurst 

exponent. The fractional Gaussian noise (fGn) is the process WH(t), with t ≥ 0, obtained from the fBm increments 
for discrete time, that is, WH(t) = BH(t + 1) − BH(t).

The two main, most robust methods to calculate the Hurst exponent are the Dispersion Analysis applied on 
fractional Gaussian noise (fGn) and Scaled Windowed Variance Analysis for fBm signals41.

The Scaled Windowed Variance Analysis (SWVA) is a reliable method for the estimation of the Hurst expo-
nent (H) that has been thoroughly tested on fractional Brownian motion (fBm) signals43. In particular, we have 
used the bridge detrended Scaled Windowed Variance analysis (bdSWV) for the study of calcium-signal time 
series41. To define the SWVA method, let the time series signal be represented by xt, with t = 1, …, N, time points. 
Next, the following steps are carried out for each one of the window sizes n = 2, 4, …, N/2, N (if N is not a power 
of 2, then n takes the values 2, 4, …, 2k, where k is the integer part of log2N):

(1)	 Partition of the data points in N/n adjacent non-overlapping windows {W1, …, WN/n} of size n, where 
Wi = {x(i−1)·n+1, … xi·n}. If N is not a power of 2 and N is not divisible by n, then the last remaining points 
are ignored for this value of n. For instance, if N = 31 and n = 4, the first 28 points are partitioned into seven 
windows.

(2)	 Subtraction of the line between the first and last points in the n-th window.
(3)	 For each i = 1, …, N/n, calculation of the standard deviation SDi of the points in each window, by using the 

formula

∑=
−
−= − ⋅ +

⋅SD x x
n

( )
1

,
(3)i t i n

i n t i
( 1) 1

2

where xi is the average in the window Wi.
(4)	 Evaluation of the average SD n( ) of the N/n standard deviations corresponding to equation (3).
(5)	 Observation of the range of the window sizes n over which the regression line of log(SD n( )) versus log(n) 

gives a good fit (usually some initial and end points are excluded).
(6)	 In this range, the slope of the regression line gives the estimation of the Hurst coefficient H.

Here, to calculate SWVA, we have made use of the program bdSWV, available on the web of the Fractal 
Analysis Programs of the National Simulation Resource64.

Dispersion Analysis.  The Dispersion Analysis (DA) method is applied for the estimation of the Hurst expo-
nent (H) on fractional Gaussian noise (fGn)42.

For different bins of length n, with n varying from 2 to N/2, one can define the standard deviation SD(n) of 
the series formed by the mean of the n consecutive values of the original series xi. That is, SD(n) is the standard 
deviation of the series yn,i, where

=
+ … +

.+ −ìy
x x

n (4)n i
i n

,
( 1)

Now, the relation between log(SD(n)) and log(n) is approximately linear:

= ⋅ −SD n SD n( ) (1) , (5)H 1

with slope H-1, where H is the Hurst coefficient and SD(1) the standard deviation calculated on the first window.
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Detrended Fluctuation Analysis.  Detrended Fluctuation Analysis (DFA) is a method that allows for the 
detection of long-memory processes on non-stationary time series that can be used properly for small data sizes65.

The method is summarized as follows: first, given the time series y(t) we obtain a signal profile by computing 
the cumulative sum

∑= −
=

x k y i y( ) ( ( ) ),
(6)i

k

1

of the time series. Then, the obtained time series is divided into boxes of equal length n. Next, the local trend xn(k) 
in each box is subtracted and the fluctuations of this detrended and integrated signal is calculated by

∑= −=F n
n

x k x k( ) 1 [ ( ) ( )] ,
(7)k

N
n1

2

This computation is repeated over all box sizes obtaining a relationship between fluctuations F(n) and box 
sizes n. A linear relationship on a log-log graph indicates the presence of scaling, and under such conditions, 
fluctuations can be characterized by a scaling exponent γ, related to the Hurst exponent66. Mainly, if 0 < γ < 0.5, 
the process is anti-correlated and exhibits anti-persistent behavior, which can be modeled by fGn with H = γ. 
When 0.5 < γ < 1, the process exhibits positive correlations and persistent behavior which can be modeled by fGn 
with H = γ, and for a random process with independent increments, γ is 0.5 (H = γ). Other scenarios also can 
be considered in DFA66. Besides, we would like to highlight some of the recent progress in nonlinear time series 
analysis67–71.

Use of experimental cells.  Xenopus laevis frogs (Guy Pluck, Xenopus Express, France) were anaesthe-
tized by hypothermia. Ovary lobules (4–8) were surgically removed under sterile conditions. After surgery, frogs 
were sutured, and allowed to recover and then returned to housing. No further oocytes were taken for at least 2 
months. All the procedures followed the guidelines of regulation 1201/2005 of Ministerio de Agricultura, Pesca 
y Alimentacion and the experimental protocols were approved by the University of the Basque Country (UPV/ 
EHU) ethics committee (code: CEBA/8/2009).
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