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Breast cancer risk spans a wide range  
 
Individual risk for developing breast cancer varies 
between 11.6% for women without specific clinical risk 
factors (i.e., average risk) and 85% for women with 
pathogenic germline mutations in highly penetrant 

genes (i.e., BRCA1, BRCA2, TP53, and PTEN) [1-6]. 
Assessment of individual risk is critical for tailoring 
screening and prevention strategies appropriate to the 
severity of risk, and therefore avoid unnecessary 
screening and over-treatment. Women at average risk 
can delay initiation of screening as recommended by 
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ABSTRACT 
 
Many clinically based models are available for breast cancer risk assessment; however, these models are not 
particularly useful at the individual level, despite being designed with that intent. There is, therefore, a 
significant need for improved, precise individualized risk assessment. In this Research Perspective, we highlight 
commonly used clinical risk assessment models and recent scientific advances to individualize risk assessment 
using precision biomarkers. Genome-wide association studies have identified >100 single nucleotide 
polymorphisms (SNPs) associated with breast cancer risk, and polygenic risk scores (PRS) have been developed 
by several groups using this information. The ability of a PRS to improve risk assessment is promising; however, 
validation in both genetically and ethnically diverse populations is needed. Additionally, novel classes of 
biomarkers, such as microRNAs, may capture clinically relevant information based on epigenetic regulation of 
gene expression. Our group has recently identified a circulating-microRNA signature predictive of long-term 
breast cancer in a prospective cohort of high-risk women. While progress has been made, the importance of 
accurate risk assessment cannot be understated. Precision risk assessment will identify those women at 
greatest risk of developing breast cancer, thus avoiding overtreatment of women at average risk and identifying 
the most appropriate candidates for chemoprevention or surgical prevention. 
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both the United States Preventative Services Task Force 
and the American Cancer Society [7, 8]. Women at 
moderate risk can begin annual screening earlier and 
should consider FDA-approved chemoprevention, such 
as tamoxifen, raloxifene or aromatase inhibitors [9]. 
Women at highest risk are candidates for aggressive 
screening (e.g., with breast MRI) or surgical prevention 
[10-13]. 
 
Limitations of current risk assessment models 
frequently used in the clinic 
 
A number of models are available for estimation of 
individual breast cancer risk based on clinical factors 
such as family history, reproductive profile, history of 
prior breast biopsy, and breast density (Table 1). The 
most commonly used clinical models are the Gail [14, 
15], the Claus [16], and the International Breast Cancer 
Intervention Study (IBIS) models [17]. For an excellent 
and comprehensive discussion of all available clinical 
models (e.g., hereditary, etc.) see the 2017 Cintolo-
Gonzalez review [18, 19]. The Gail model uses 
reproductive and biopsy information but only a limited 
family history (mother or sister with breast cancer) to 
calculate risk. This model is validated and classifies 
subsequent breast cancer cases modestly well, with 
estimates of the area under the receiver-operating 
characteristic curve (AUC) of 0.45-0.74 [15, 20-22]. 
For risk calculations see https://bcrisktool.cancer.gov. 
The Claus model uses first- and second-degree family 
history to calculate risk but does not consider additional 
family history and other risk factors (such as hormonal 
factors or biopsy history). This model has an estimated 
AUC of 0.72 [20]. For risk calculations see CancerGene 
(https://cagene.com/) [23]. The IBIS model uses 
reproductive history, biopsy history, family history and 
body mass index (BMI). The IBIS model also includes a 
more extensive assessment of family history, 
characterizing breast cancers in both first- and second-
degree relatives and the age at which they were 
diagnosed. The AUC of the IBIS model ranges between 
0.54 – 0.76, depending on the population assessed [20, 
22, 24-28]. For risk calculations see http://www.ems-
trials.org/riskevaluator/. See Table 1 for a more 
complete review of factors included in each model and 
the discriminatory accuracy in both general and high-
risk populations. 
 
Newer clinical models such as the Breast Cancer 
Surveillance Consortium (BCSC) model and 
updated/revised versions of the IBIS model (version 8) 
have incorporated mammographic density (MD) into 
assessment of risk. Mammographic density is a strong, 
independent risk factor for breast cancer development 
with studies showing a 4-6-fold increased risk for breast 
cancer for women with the highest breast density 

category compared with women in the lowest breast 
density category [29-38]. The BCSC model also 
incorporates reproductive factors, first-degree family-
history, and recently added biopsy history to its set of 
predictors [39, 40]. This model is validated and 
classifies breast cancer incidence with an AUC of 0.67 
[39, 41]. Accuracy of the latest version of the IBIS 
model has not been assessed. 
 
Given that an AUC of 0.5 suggests that the test (or 
model in this case) performs no better than chance, the 
fact that none of the above models have an AUC greater 
than 0.76 leaves room for improvement [22, 42, 43]. 
There is, therefore, a significant need for more precise 
risk assessment. Recent advances in genetics have 
improved our ability to assess risk at the individual 
level. Genome-wide association studies have identified 
>100 single nucleotide polymorphisms (SNPs) 
associated with breast cancer risk [44-47] and polygenic 
risk scores (PRS) have been developed by several 
groups using this information [48, 49]. Case-control 
studies have demonstrated the ability of PRS to 
accurately categorize risk (with AUC ranging from 0.59 
– 0.65) [50-52]. However, risk associated with any of 
the developed polygenic risk scores needs to be 
interpreted with caution as their predictive capacity has 
not been validated outside of the populations in which 
they were developed. As seen with genetic testing, this 
may limit generalizability [53]. Several groups have 
examined whether use of PRS improves accuracy of 
currently available clinical models and demonstrated 
AUCs between 0.62 and 0.70 [41, 54-59]. The ability of 
PRS to improve current clinical models is under 
prospective evaluation in the WISDOM trial [60, 61]. 
Given that many of the SNPs included in polygenic risk 
scores are likely associated with hereditary risk, caution 
should be used when adding genetic factors to family 
history-based models without accounting for joint 
influences on model fit. The ability of a PRS to improve 
risk assessment is promising; however, utility in 
genetically and ethnically diverse populations must be 
studied. 
 
Use of circulating miRNA biomarkers augment 
clinical tools to provide personalized risk assessment 
 
Novel classes of biomarkers, such as circulating 
microRNA (C-miRNA) have emerged as promising 
cancer biomarkers [62-65] and may provide additional 
risk information. MicroRNAs (miRNA) are short, non-
coding RNAs that bind to target mRNA and inhibit 
protein expression to regulate cellular processes such as 
proliferation, differentiation, and apoptosis [66-68]. A 
single miRNA can simultaneously target hundreds of 
genes, acting as a master regulator of entire biological 
pathways,  with  established  roles in controlling normal 
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Table 1. Comparison of commonly used clinical breast cancer risk assessment models: risk factors considered 
and discriminatory accuracy in independent datasets. 

Model Gail Claus IBIS (Tyrer-Cuzick) BCSC 
Model version 2[15, 105-108] 1[16, 109] 6.0.0[17] 7.0.2 8.0 2.0[40] 
 Personal       
    Age Xa X X X X Xa 
    BMI   X X X  
    Race/ethnicity X  X X X X 
 Hormonal       
    Age at menarche  X  X X X  
    Menopausal status   X X X  
    Parity, age first birth X  X X X  
    HRT use   X X X  

 Benign Breast Disease 
(BBD)       

    Num. breast biopsies X      
    BBD with LCIS   X X X X 
    BBD with atypia  X  X X X X 
    BBD without atypia   X X X X 
 Family history       
    1° female relatives (breast) Xb X X X X Xb 
    Extended family hx (breast)  X Xc Xc Xc  
    1° male family hx (breast)    X X  

    Family hx of ovarian 
cancer   X X X  

 Genetic variants       
    BRCA status   X X X  
   Polygenic Risk Score (PRS)     X  
 Breast density     X X 
Breast cancer outcomes Invasive Invasive + DCIS Invasive + DCIS Invasive 
    5-yr risk X X  X X X 
 > 10-yr riskd X X X X X X 

General population (AUC) 0.54-0.67[26, 27, 106-

108, 110-116]  0.57-0.695[26, 27]   0.66[50] 

High-risk women (AUC) 0.45-0.735[20, 22] 0.716[20] 0.51-0.762[20, 22, 

28] 0.54[24]   

a  Model not applicable for women under age 35. 
b Ages of diagnoses not considered. 
c 1° and 2° female relatives, as well as selected 3° relatives (female first cousins), diagnosed with breast cancer. 
d Risk of developing breast cancer outcome by age 90 (Gail model); by age 79 (Claus model); within 10 years and 

by age 80 (IBIS model 6); to age 85 (IBIS models 7 and 8), and over a 10-yr age interval (BCSC model). 
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development and tissue homeostasis [69-71]. Aberrant 
expression of miRNAs has been shown to regulate 
cancer cell activity by modulating oncogenic or tumor 
suppressor pathways to promote disease onset and 
progression [70]. In addition, miRNAs circulate, acting 
as intercellular signaling molecules, and may function 
to establish local and systemic environments for 
initiation and/or progression of cancer. Circulating 
miRNAs (C-miRNAs) are released from almost all cells 
in a variety of forms: in microvesicles [72], exosomes 
[73], bound to protein or lipid particles [74, 75] or as 
free species [69]. Importantly, miRNAs are readily 
detectable, stable in circulation and found in most body 
fluids (e.g. blood, urine) [62, 76], all characteristics of 
an ideal biomarker. The importance of standardized 
analysis of C-miRNA has become increasingly 
recognized by our group and others as essential for 
generating reproducible and actionable results [77-79]. 
 
In breast cancer patients, the presence of miRNA in 
circulation correlates with expression of that miRNA in 
primary breast tumors [80-82]. Additionally, significant 
differences in specific C-miRNA have been found 
between cancer patients and healthy controls [65, 83-
86], suggesting potential clinical utility for cancer 
detection [64, 81, 82, 87-93]. For cancer risk assessment 
a biomarker must predict disease status with acceptable 
specificity and sensitivity [94]. To date, only a handful 
of studies have evaluated the utility of C-miRNA in 
cancer risk assessment. For example, several studies 
have evaluated miRNAs associated with risk for colon 
cancer and identified miRNAs associated with a pre-
neoplastic colon lesion [95-99]. An independent and 
larger study identified a panel of 3 C-miRNAs as a 

promising colon cancer risk biomarker [100]. Other 
studies have discovered a number of miRNAs 
dysregulated in women <18 months from a breast 
cancer diagnosis, consistent with early detection [101-
103]. Taken together, these data suggest that it is 
feasible that C-miRNAs can provide a signature of 
breast cancer risk with actionable lead-time for 
prevention. 
 
Our group recently identified a C-miRNA-based risk 
signature predictive of long-term risk in a prospective 
cohort of women at increased risk for developing breast 
cancer. This IRB-approved prospective cohort includes 
over 600 high-risk women (who have signed informed 
consent) with a median follow-up of 8.9 years. From 
this cohort we selected 24 invasive breast cancer cases, 
to whom we matched controls on age, reason for high-
risk status (e.g., strong family history of breast cancer or 
benign breast disease), and follow-up time. The median 
age at blood draw was 55.4 (range 33.9-77.5) for 
affected cases and 55.1 (range 32.8-78.4) for cancer-
free controls (see Table 1: Subject characteristics in 
Oncotarget [104] for complete cohort clinical 
characteristics). RNA was isolated from banked serum, 
and profiled for over 2500 mature human miRNAs. The 
full Affymetrix GeneChip miRNA v4 (miRbase v20) 
microarray expression dataset is freely available in 
GEO Datasets (GSE98181, https://www.ncbi.nlm.nih. 
gov/geo/query/acc.cgi?acc=GSE98181) and the R 
scripts used for data analysis accompany our open 
access 2017 Oncotarget manuscript as a supplement 
[104]. We identified 25 C-miRNAs that were 
significantly differentially expressed between cases and 
controls. From these 25 miRNAs, we discovered a 

 
 
 

Figure 1. Development of a predictive miRNA signature for breast cancer risk among high-risk women. The predictive 
ability of A) the 6-miRNA risk signature and B) each individual C-miRNA was assessed by ROC curve and AUC based on calculated risk 
score. The combined expression of the 6 C-miRNAs discriminate cases from controls with increased accuracy and precision than any 
single miRNA. 95% confidence intervals (CI) are indicated by gray area around each curve. Modified from our 2017 Oncotarget 
publication [104]. 
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group of 6 C-miRNAs that together discriminated cases 
from non-cases with high accuracy (AUC=0.896) 
(Figure 1). For the women who developed cancer in this 
cohort, blood had been banked a median of 3.2 years 
(range 0.6-8.7) prior to diagnosis, making this clearly a 
signature associated with risk and not early detection 
[104]. Refinement and validation of this risk signature 
is ongoing, using banked samples from previously 
performed randomized clinical trials. The validation of 
a sensitive and specific, non-invasive C-miRNA risk 
assessment tool will arm clinicians with vastly 
improved individualized risk estimates for patients, 
relevant to both young and older women. These risk 
estimates can be used to guide selection of the most 
appropriate screening and prevention options for a 
given individual. Information from miRNA expression 
will also provide valuable insight into the underlying 
biology of breast cancer initiation and may provide 
targets for chemoprevention. 
 
Personalized and precise risk assessment can identify 
those women at greatest risk to develop breast cancer, 
thus avoiding overtreatment of women at lower/average 
risk and identifying women at high risk who would be 
candidates for high risk screening, chemoprevention or 
surgical prevention. Progress has been made towards 
personalized risk assessment and some promising new 
markers have been identified. However, rigorous 
validation of the most promising markers, and the 
predictive models they contribute to, in relevant 
populations is necessary before deployment for clinical 
use. 
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	Figure 1. Development of a predictive miRNA signature for breast cancer risk among high-risk women. The predictive ability of A) the 6-miRNA risk signature and B) each individual C-miRNA was assessed by ROC curve and AUC based on calculated risk score...

