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gradation of drugs and dyes using
a maching learning approach
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The waste management industry uses an increasing number of mathematical prediction models to

accurately forecast the behavior of organic pollutants during catalytic degradation. With the increasing

quantity of waste generated, these models are critical for reinforcing the efficiency of wastewater

treatment strategies. The application of machine-learning techniques in recent years has notably

improved predictive models for waste management, which are essential for mitigating the impact of

toxic commercial waste on global water supply. Organic contaminants, dyes, pesticides, surfactants,

petroleum by-products, and prescription drugs pose risks to human health. Because traditional

techniques face challenges in ensuring water quality, modern strategies are vital. Machine learning has

emerged as a valuable tool for predicting the photocatalytic degradation of medicinal drugs and dyes,

providing a promising avenue for addressing urgent demands in removing organic pollutants from

wastewater. This research investigates the synergistic application of photocatalysis and machine learning

for pollutant degradation, showcasing a sustainable solution with promising effects on environmental

remediation and computational efficiency. This study contributes to green chemistry by providing

a clever framework for addressing present-day water pollution challenges and achieving era-driven

answers.
1. Introduction

Dye and pharmaceutical wastewater oen contains a wide
variety of chemicals and compounds. Effluents from the dye
industry typically contain trace amounts of dyes,1 solvents,2 and
heavy metals,3 whereas effluents from the pharmaceutical
industry may contain pharmaceutical residues, organic
solvents,4 and other pollutants (Fig. 1).5 Without effective
management and treatment, these wastes can pose threats to
human health and the environment.6,7 For instance, medica-
tion–production effluents containing pharmaceutical residues
can have unfavourable effects on aquatic ecosystems and may
contribute to the development of antibiotic resistance. Simi-
larly, chemicals and dyes used in the textile and dye industries
can negatively impact aquatic life and water quality. When
releasing wastewater into the environment or the municipal
sewage system, it is oen necessary to employ specialized
treatment procedures to eliminate or neutralize these toxins.8,9

To protect human health and the environment, these sectors
require effective wastewater management. In the eld of waste
management, there is a growing need for predictive models that
can accurately determine the catalytic degradation performance
of organic pollutants.10–12,117 These models can help design and
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optimize wastewater treatment processes, ultimately leading to
more effective and efficient removal of harmful contaminants
from the environment.13 Machine learning algorithms have
emerged as powerful tools in developing predictive models for
waste management14–16 and toxicity prediction.17 According to
a research study by Abdallah et al., several machine-learning
Fig. 1 Various types of wastewater contaminants.
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methods have been used to create articial intelligence models
connected with garbage control.18 Articial neural networks,19

support vector machines,20 direct regression examination,21

decision trees,22 and genetic algorithms23 are commonly used
techniques to achieve this goal.24 A novel algorithm has been
steadily adopted to better manage waste and encourage envi-
ronmentally sound expansion because of its demonstrated
ability to display complex nonlinear phenomena.25 Articial
intelligence techniques have also achieved remarkable results
in developing forecasts for waste control owing to their capacity
to simulate intricate mechanisms.19,26 Forecasting models for
waste control, specically concerning the catalytic deterioration
efficacy of natural contaminants, are crucial for ensuring effi-
cient and sustainable wastewater treatment procedures.27,28

Articial intelligence algorithms have increasingly been
employed in studies on solid waste control to construct models
for predicting diverse waste-related variables. These variables
encompass the heat-related behaviour of solid waste, local
waste production, and solid waste characteristics such as
a greater caloric value.29–31 Articial intelligence algorithms
can be used to study and comprehend the intricate connections
among different factors that affect the deterioration efficacy of
natural contaminants.32–35 Hence, this information can be used
to optimize the design and operation of wastewater treatment
systems, ultimately leading to the more efficient removal of
organic pollutants from the environment.36–38 Machine learning
algorithms play a crucial role in predicting the catalytic degra-
dation performance of organic pollutants in wastewater treat-
ment processes. They enable researchers and engineers to
analyze large amounts of data and identify patterns and rela-
tionships that may not be easily discernible through traditional
analytical methods.39–45 Using machine learning algorithms,
researchers can develop accurate models that can predict the
performance of catalysts in degrading organic pollutants.46–48

These predictive models can then be used to optimize the
selection and design of catalysts, leading to more efficient and
cost-effective wastewater treatment processes.49–51 Furthermore,
machine learning algorithms in waste management can also
assist in decision-making processes for waste treatment and
disposal.52–57 Machine learning algorithms help in identifying
the most appropriate treatment technologies and strategies
for different types of waste, considering factors such as
waste composition, environmental impact, and cost-
effectiveness.25,58–62

Because machine learning algorithms are suitable for
depicting complex nonlinear processes, they are gradually being
adopted to better manage waste and facilitate sustainable
environmental development.63–67 These algorithms can process
massive datasets and discover previously hidden patterns and
discernible relationships through traditional analytical
methods. Machine learning algorithms such as articial neural
networks, support vector machines, decision trees, and genetic
algorithms have been commonly used to develop predictive
models for waste management and wastewater treatment.68–74

These models are trained using historical data on the perfor-
mance of catalysts and other relevant parameters such as
temperature, pH, and concentration of pollutants.75–81 Once
9004 | RSC Adv., 2024, 14, 9003–9019
trained, these models can accurately predict the catalytic
degradation performance of organic pollutants, allowing
researchers and engineers to optimize the selection and design
of catalysts for efficient wastewater treatment.82–87 Machine
learning algorithms have also been used to examine the
hydraulic conditions for efficient occulation during waste-
water treatment.79,88–91 The integration of machine learning
algorithms with wastewater treatment processes offers
numerous benets.92 It can improve the overall efficiency and
effectiveness of the treatment process, leading to higher rates of
pollutant degradation and cleaner water. In addition, machine
learning algorithms can assist in reducing energy consumption
and operational costs by optimizing plant the performance and
minimizing resource wastage.93 Furthermore, machine learning
algorithms can provide valuable insights into the behaviour and
dynamics of wastewater, allowing for better decision-making in
waste management strategies.94–99 This fusion additionally
assists in the improvement of ecological conservation by sup-
porting the recognition and execution of eco-friendly measures
in wastewater treatment. Articial intelligence algorithms can
assist in identifying the most efficient triggers and optimizing
their efficiency, thereby reducing the environmental inuence
of organic contaminants.10,79,100–103 Moreover, these algorithms
can assist in predicting the catalytic breakdown effectiveness of
organic pollutants, enabling the selection of the most effective
treatment techniques.104,105 In general, articial intelligence
algorithms have been demonstrated to be effective tools for
forecasting the catalytic breakdown effectiveness of organic
contaminants in wastewater treatment.106 Machine learning
(ML) techniques have become increasingly valuable in investi-
gating the photocatalytic degradation processes of chemicals
and chemical compounds. These techniques use computational
power to analyze complex data, identify patterns, and make
predictions, and help researchers optimize photocatalytic
degradation processes. A brief introduction to how machine
learning can be applied in this context is given below.

(1) Data processing and feature extraction
(2) Predictive modelling
(3) Optimization and design of experiments
(4) Pattern recognition and mechanism elucidation
(5) Real-time monitoring and control
(6) Data integration and knowledge discovery
This overview sets the context by highlighting the increasing

signicance of drug and dye degradation processes in the
environmental and healthcare sectors. It explains the chal-
lenges associated with conventional degradation methods and
introduces the potential of ML to enhance the efficiency, accu-
racy, and predictability of the degradation processes. This
review manuscript holds great importance for several reasons.
Emerging environmental concerns,107 optimization of degra-
dation processes,108–110 reduced experimental costs and time,111

enhanced predictive capabilities. Numerous studies have
explored this domain and offered diverse perspectives. For
instance, Ghaedi and Vafaei (2017) predominantly focused on
dye adsorption modelling using articial neural network (ANN)
techniques. Interestingly, only a limited array of optimizers,
including the Adaptive Neuro-fuzzy Inference System (ANFIS),
© 2024 The Author(s). Published by the Royal Society of Chemistry
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support vector machine (SVM), Particle Swarm Optimization
algorithm (PSO), and Genetic Algorithm (GA), were employed,
but these applications were relatively narrow and lacked in-
depth elucidation or graphical representation. Furthermore,
the evaluation metrics were limited, encompassing the mean
squared error (MSE), R2 (coefficient of determination), sum of
squared errors ARE, X2, Root Mean Squared Error (RMSE), and
Society of Automotive Engineers (SAE), with scant justication
for their selection. Future research objectives are also sparse,
totaling only three distinct goals.112 Similarly, Fan et al. (2018)
primarily concentrated on a specic subset of dye types, with
a predominant emphasis on the removal of a wide spectrum of
pollutants. Most studies favour ANN, with only a few incorpo-
rating Genetic Algorithms (GA). Intriguingly, when it came to
degradation modelling, a notable disparity emerged between
the Response Surface Methodology (RSM) and Random Forest
(RF) model.113 In 2021, Liu et al. introduced a novel approach,
presenting a three-layer articial neural network (ANN) with
various architectures for dye analysis.114 Bhagat et al. (2023)
highlighted the constraints faced by both ANN and RSM owing
to optimization challenges within the degradation process.115 A
comprehensive examination of pollution employing machine
learning techniques such as ANN, RF, and Support Vector
Machine (SVM) was undertaken by Taouk et al. during the
same year. Emphasis was placed on understanding the physi-
cochemical transformations that various pollutants undergo,
which is a paramount research priority.116 In 2023, Bhagat et al.
contributed to this eld by conducting an exhaustive explora-
tion encompassing degradation modelling across all categories
of dye types and the corresponding removal methodologies.
Their approach also integrated economic analysis to provide
a holistic evaluation, addressing the potential pitfalls of
misleading data visualization. Consequently, their work served
to enhance our understanding of this complex landscape,
underscoring the economic implications of data availability and
offering a logical interpretation of costs.13 This paper explores
into the fascinating realm of drug and dye molecule degrada-
tion, exploring how various machine learning techniques, such
as ANN, Levenberg–Marquardt, linear regression, gradient
boosting regression, random forest regression, genetic algo-
rithms, Cat Boost, gradient boosting, Hist Gradient Boosting,
Extra Trees, XG Boost, decision trees, bagging, light gradient
boosting machines, Gaussian processes, and combinations
thereof, inuence the degradation processes. This study accu-
rately investigated the consequences of employing these diverse
machine learning methodologies on the degradation behavior
of drug and dye molecules. The overarching objective is to
unearth valuable insights into the most efficacious algorithms
for predicting and comprehending intricate breakdown mech-
anisms. By doing so, this research aims to facilitate the devel-
opment of more streamlined and sustainable drug and dye
molecules, thus contributing to the advancement of the eld
and addressing the environmental and health concerns asso-
ciated with pharmaceutical and dye waste. It highlights the
interdisciplinary nature of the eld and promotes collaboration
among experts in chemistry, environmental science, and
computer science.
© 2024 The Author(s). Published by the Royal Society of Chemistry
2. Photocatalyst

Nanomaterials can signicantly alter a product's processing,
design, and characteristics. Capabilities, such as optical,
magnetic, electric, antibacterial, andmechanical capabilities, are
all signicantly affected when a material is reduced in size from
macro to nanoscale. This ismainly triggered by an increase in the
surface-area-to-volume ratio and surface reactivity, which have
an impact on the chemical and physical characteristics of the
material. Materials with at least one dimension between one and
100 nm are referred to as nanomaterials. These materials have
made signicant contributions to electrical and information
technologies by enabling the development of powerful, easy-to-
use, and energy-efficient products. These abrupt alterations in
material characteristics at the nanoscale have enormous poten-
tial for applications in a variety of sectors, including photo-
catalytic degradation and storage.128,155

Photocatalysts are semiconductors that catalyze reactions
when exposed to light. Unlike other energy sources, photo-
catalysts have become the standard for green catalysts in recent
years because they are non-hazardous. Photocatalysis dates
back to the early 20th century, when studies explored the
photochemical reactions of titanium dioxide (TiO2) and other
semiconductor materials. In the 1970s and 1980s, researchers
investigated the potential of photocatalysis for environmental
remediation, including water purication. The pioneering work
by Fujishima and Honda in 1972 on the photoelectrochemical
properties of TiO2 laid the foundation for modern photo-
catalysis. In semiconductor materials, an electron–hole pair is
created when exposed to light. One of the main factors inu-
encing the physical properties of semiconductors is their energy
bandgap. The difference in energy between the valence band
(HOMO) and conduction band (LUMO) is represented by the
energy band gap (Eg).156 These properties include band gap
values, recombination rates, and the availability of oxidizing
agents. However, the photocatalyst preparation parameters and
pollutant properties must be considered for an excellent pho-
tocatalytic reaction.157

Photocatalytic degradation is a promising technique for
removing organic pollutants from water. This involves the use
of photocatalysts to accelerate the degradation of organic
compounds under light irradiation. This process is particularly
important for the degradation of dyes and drugs, which are
common pollutants in industrial effluents and wastewater.
Despite its potential, photocatalytic degradation faces several
challenges, including the limited efficiency of photocatalysts
under visible light, the need for high-intensity UV-active cata-
lysts, and the potential for the formation of toxic byproducts
during degradation. Additionally, the scalability and practical
implementation of photocatalytic systems for large-scale
wastewater treatment remain areas of concern. Fine-tuning
parameters such as catalyst loading, pH, temperature, and
light intensity are crucial for improving the degradation effi-
ciency and reaction kinetics. Combining photocatalysis with
other treatment methods such as ozonation or sonolysis has
shown synergistic effects, leading to enhanced degradation
RSC Adv., 2024, 14, 9003–9019 | 9005
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rates and broader substrate specicity. Advances in kinetic
modelling and mechanistic studies have provided insights into
degradation pathways and reaction kinetics, aiding in the
optimization and scale-up of photocatalytic processes.

Recent research efforts have focused on addressing these
challenges and improving the efficiency and applicability of the
photocatalytic degradation processes. Strategies such as doping
with metals or nonmetals (i) metal and non-metal doping, (ii)
co-doping, (iii) composites, (iv) substitution, (v) sensitization,
and (vi) various other methods, coupling with other materials
(such as supporting materials), and optimizing catalyst
morphology and surface properties have been explored to
enhance the photocatalytic activity and extend the spectral
response range towards visible light.158 Over the years,
researchers have explored various semiconductor materials,
nanostructures, and dopants to enhance the photocatalytic
activity and efficiency. Photocatalytic degradation has applica-
tions in various elds, including wastewater treatment, envi-
ronmental remediation, and wastewater treatment in the
pharmaceutical industry. The potential for the removal of
emerging contaminants, such as pharmaceuticals and personal
care products, from wastewater has garnered signicant atten-
tion in recent years. Some of the photocatalyst such as Pt/TiO2,
CuO/TiO2, CuO–MMT, Ni/ZnO, ZnO, Ag–ZnO, ZnO–rGO etc. are
used for pollutant degradation.

Descriptor selection in ML modelling is important for the
photocatalytic degradation of drugs and dyes to capture the
relevant factors affecting the process. The examples are as follows.

(a) Molecular structure theorists
Molecular descriptors, such as chemical functional groups,

can be used to capture the structural characteristics of drugs or
chemical compounds. For example, descriptors representing
the presence of specic functional groups (e.g., aromatic rings
or functional moieties) in a chemical photocatalyst can inu-
ence the rate of degradation.

(b) Behavioral state descriptors
Reaction conditions, such as temperature, pH, and catalyst

concentration, play an important role. These descriptions of the
degradation process help model the environmental effects on
the photocatalytic process and determine the optimal condi-
tions for optimum performance.

(c) Electronic and optical properties
It is important to include descriptors of the electronic and

optical properties, such as the energy level and absorption
spectrum. For example, in dye photocatalysts, descriptors rep-
resenting the electronic conguration and absorption of
a substance can help predict its degradation under specic
photocatalytic conditions.

The careful selection of annotations ensures that MLmodels
capture relevant dye and drug components and their interac-
tions with photocatalysts, giving the models a good ability to
predict the photocatalytic degradation processes.
2.1 Kinetics of degradation

Based on the change in the concentration of the pollutant (dye
or drug), the kinetics of the photodegradation reactions were
9006 | RSC Adv., 2024, 14, 9003–9019
analyzed by monitoring the characteristic absorbance peak at
various illumination time intervals.

Degradation efficiency (%) = (C0/C0)100

where C0 and C are the solution concentrations at t= 0 and aer
some illumination time intervals, respectively.159

2.2 Factors inuence photocatalysis

2.2.1 Effect of pH. pH is an important factor for photo-
catalytic dye decolorization because it has a variety of effects on
dye reaction rates. Since the pH of a given solution determines
the catalyst surface charge, pH can have an impact on dye
adsorption on semiconductor surfaces.160

2.2.2 Effect of dye concentration. The adsorption of dyes on
the surface of a photocatalyst is necessary for the photocatalytic
process to occur. The amount of dye adsorbed on the photo-
catalyst surface, not the amount in the bulk of the solution, is the
factor that drives photocatalysis during photodegradation. The
initial dye concentration in each photocatalytic process is an
important consideration for dye adsorption. By raising the dye
concentration, the percentage degradation falls while maintain-
ing a constant amount of photocatalyst.161

2.2.3 Effect of catalyst concentration. Another factor
inuencing dye degradation is photocatalyst concentration. The
rate at which the dye was photodegraded increased with the
concentration of the photocatalyst. With an increase in catalyst
concentration, the photocatalyst's surface has a greater number
of active sites.162

2.2.4 Effect of light irradiation. The amount of light and
duration of irradiation affected the decolorization of the dye.
When photocatalysts absorb light energy equivalent to or
greater than the band gap energy, electrons are transferred from
the VB to the CB, leaving the VB with holes. Photocatalytic
degradation occurred at a faster rate when the radiation
intensity increased.

2.2.5 Effect of temperature. As the temperature increases,
the rate at which organic molecules photodegrade becomes
more efficient. When the solution forms bubbles owing to an
increase in temperature, free radicals are produced. Further-
more, the degradation reaction that overcomes electron–hole
recombination is aided by the temperature increase.163

2.2.6 Effect of nature of the catalyst. Different photo-
catalysts photodegrade in different ways depending on their
lattice mismatch and BET surface variations. Impurities on the
photocatalyst surface also affect the adsorption behavior of the
effluent as well as the lifetime and recombination rate of the
electron–hole pairs. A large surface area can play a signicant
role in photodegradation. However, depending on the particle
size, the electron–hole recombination mechanism can change.
Several semiconductor nanocatalysts have been demonstrated
to act as photocatalysts for the treatment of wastewater and
pharmaceutical pollutants. The inuence of photocatalyst effi-
ciency on the operating parameters was studied. Investigating
the characteristics of the sample to be degraded is essential
because the impact of different parameters has occasionally
generated controversy. Because the reaction exceeds pseudo-
© 2024 The Author(s). Published by the Royal Society of Chemistry
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rst-order kinetics, the rate decreases with illumination time. In
addition, there can be a conict between the reactants and the
intermediate products for decolorization.164
3. Analysing the performance of
machine learning algorithms

Articial intelligence algorithms play a vital role in forecasting the
catalytic disintegration performance of organic contaminants
during sewage treatment. These algorithms analyze and interpret
data on variables, such as heat, acidity, and contaminant quantity,
to formulate models that can precisely predict the efficacy of
catalytic disintegration. The combination of articial intelligence
algorithms and sewage treatment processes makes it possible to
simulate sophisticated nonlinear linkages, which conventional
models may have difficulty depicting because of the complexity of
the relationships involved.118,119 These algorithms can unearth
concealed patterns and connections within the data, leading to an
improved comprehension of the variables that impact catalytic
disintegration performance. By assimilating articial intelligence
algorithms into sewage treatment procedures, researchers and
engineers can make more knowledgeable choices concerning
catalyst selection, process enhancement, and treatment
approaches.10,120 AI algorithms are skilled at managing extensive
and intricate data collections, enabling the examination of a broad
spectrum of factors that could potentially inuence catalytic
disintegration. This capability allows researchers to simulta-
neously consider multiple variables, resulting in more precise
forecasts. Moreover, AI algorithms can simulate nonlinear
connections without the requirement for explicit mathematical or
chemical formulas.15,121Machine learning algorithms have become
increasingly valuable tools in environmental science, particularly
for the elimination of organic pollutants through catalysis. These
algorithms can analyze large datasets and identify patterns and
relationships that may not be immediately apparent to
researchers.122,123 Researchers can make efficient predictions
regarding the catalytic reduction efficiency of eco-toxic chemicals
utilizing machine learning models.124 For example, Dong et al.
formulated a machine learning framework with the objective of
forecasting the degradation efficiency of organic pollutants
through the utilization of carbon-based catalysts. The model
considers multiple variables, including the surface area of the
catalyst,125,126 distribution of pore sizes, and functional groups
present on the surface. In addition, to anticipate the photochem-
ical oxidative breakdown of phenolic pollutants, Dondapati et al.
(2020) used a supervised machine learning approach.127 These
studies provide evidence of the potential of machine learning in
the prediction of catalytic degradation performance and the
identication of highly effective catalysts.129 However, despite
these advancements, there are still challenges that need to be
addressed when applying machine learning models to the eld of
catalytic degradation. One of the challenges encountered in this
study pertains to the absence of a correlation relationship and the
relative signicance of variables.130 Despite the accurate predictive
capabilities of machine learning models in assessing catalytic
degradation performance, there remains a lack of comprehensive
© 2024 The Author(s). Published by the Royal Society of Chemistry
understanding about the fundamental connection between cata-
lytic ngerprinting and waste-to-energy conversion.131 Further-
more, it has been observed that the ngerprint features of
catalysts, such as the atomic number, chemical formula, and
electronic structure features, may have an inuence on the
decontamination efficiency, the yield, and the nature of reactive
oxygen species.1,132 However, the task of statistically establishing
the inherent correlation involving the characteristics of catalysts'
ngerprints and the decomposition of pollutants continues to
pose a signicant difficulty.133 In order to tackle these issues,
scholars are employing simulations and experiments to quantita-
tively investigate the inherent correlation between the ngerprint
attributes of catalysts and the degradation of pollutants.134 They
are also incorporating advanced techniques such as feature engi-
neering and dimensionality reduction to nd set patterns and
relationships within the data.135 By acquiring a more profound
understanding of the connection involving the chemical, catalysts
and the decomposition of pollutants, it becomes feasible to boost
the efficiency of machine learning patterns.136 This enhancement
empowers the accurate anticipation of catalytic efficiency and
simplies the choice of exceptionally efficient catalysts purposed
at breaking down organic toxins.1 Machine learning algorithms
have shown promise that this method can predict and select
effective catalysts for degrading organic contaminants. These
algorithms have been successfully used to predict the catalytic rate
constant and degradation efficiency of pharmaceutical
compounds using metal–organic frameworks.148 Furthermore,
machine-learning models can consider multiple variables simul-
taneously, allowing for a more comprehensive analysis of catalyst
performance. The utilization of machine-learning algorithms to
forecast the catalytic deterioration capability of organic pollutants
provides various benets. Firstly, machine learning algorithms can
handle large and complex datasets, allowing for the inclusion of
multiple variables that may impact catalytic performance.137 This
ability to consider multiple variables simultaneously enhances the
predictive power of the model, leading to more accurate and reli-
able results. Furthermore, machine learning models can also
consider nonlinear connections between the ngerprint features
of catalysts and pollutant deterioration, which might not be
captured by conventional statistical models. Furthermore,
machine learning algorithms can continuously learn and improve
new data, making them adaptable to changing conditions and
allowing for the development of more robust models over time.

To inspect the effectiveness of machine learning algorithms
in forecasting the chemical breakdown efficiency of natural
pollutants, scientists have utilized different methods.138,139

These methods incorporate guided machine learning, where
the algorithm is trained on a categorized dataset to grasp the
connection between the input factors and the chemical break-
down efficiency, and unsupervised machine learning, where the
algorithm distinguishes trends and connections in the data
without any previous understanding or categorizations.153,154

In the eld of computer vision, assessment metrics play an
essential role in assessing the overall performance of the gadget
models. Commonly used metrics include accuracy, precision,
recollection, and F1 rating, which can be especially applicable to
obligations that include photograph type and object detection.
RSC Adv., 2024, 14, 9003–9019 | 9007
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These metrics provide insights into the potential of the model
for efficiently classifying and discovering items inside a photo-
graph. Additionally, Intersection over Union (IoU) is frequently
used to measure the overlap between predicted and oor reality
bounding bins, imparting a more nuanced evaluation of the
localization accuracy. In natural language processing (NLP),
research is regularly based on metrics such as accuracy, preci-
sion, recall, and F1 ratings for tasks such as sentiment evalua-
tion or named entity popularity. Specialized metrics such as
BLEU and ROUGE are employed to evaluate the rst rate of
generated textual content in obligations, which includes device
translation and summarization. These metrics serve as critical
equipment in quantifying the effectiveness of device-mastering
models throughout diverse research domains, facilitating the
comprehensive knowledge of their competencies and obstacles.

For example, one of the authors developed amachine learning
model to predict personal exposure to benzene.133 They compared
the performance of their machine learning model with a linear
regression approach and found that the machine learning model
showed higher variability in performance, accurately classifying
personal exposure levels to benzene. These studies demonstrated
the potential of machine learning methods for accurately pre-
dicting the catalytic degradation performance of organic
contaminants. By leveraging the power of machine learning,
researchers can gain valuable insights into the factors that
inuence catalytic degradation and predict the performance of
organic pollutants under different conditions. Furthermore, it
was found that using machine learning algorithms to estimate
environmental pollutants yields signicant improvements in
accuracy. For instance, the use of random forest approach has
proven effective in estimating ne particulate matter ambient
ozone levels and groundwater nitrate pollution.17

AI methods have enabled the quantitative identication of the
intrinsic link between catalyst ngerprint properties and pollutant
degradation, which was previously difficult to determine.133 This
breakthrough in utilizingmachine learning algorithms for catalyst
screening and selection signicantly improved our understanding
of the factors that impact decontamination performance, together
with the quantity and variety of reactive oxygen species produced
during the degradation process. Estimating the catalytic degra-
dation performance of organic contaminants is critical for
creating efficient environmental remediation solutions.

Machine-learning models can also enhance the development
of more efficient and sustainable catalytic processes by
providing insights into the underlying mechanisms and key
parameters that drive pollutant degradation. Overall, machine-
learning algorithms have the potential to revolutionize the eld
of catalytic degradation of organic pollutants.
4. Applications of machine learning in
pollution control

Machine learning algorithms have a wide range of applications
in pollution control140,141 air quality epidemiology142 and envi-
ronmental remediation.

They can be used as follows.
9008 | RSC Adv., 2024, 14, 9003–9019
(1) The effectiveness of different catalysts in degrading
organic pollutants was predicted based on their ngerprint
characteristics.

(2) Optimize the reaction conditions and process parameters
to maximize the pollutant degradation efficiency.

(3) Identify the most inuential factors that contribute to the
degradation of organic pollutants, allowing for targeted
improvements in catalyst design and performance.143

(4) Assess the environmental impact of different pollutants
and predict their behavior under various scenarios.

(5) Design-tailored treatment plans for specic pollutants
based on their chemical properties and characteristics.

(6) Develop real-time monitoring systems to detect and track
pollutant levels, allowing prompt response and mitigation
measures. By harnessing the power of machine-learning algo-
rithms, researchers can expedite the discovery and optimization
of potent catalysts for pollutant degradation. This can lead to
signicant advancements in pollution control and environ-
mental remediation.

Catalytic conversion reactions require precise control and
optimization of the reaction conditions, which can be time
consuming and challenging for chemists. Articial intelligence
algorithms can analyze vast amounts of data, identify the most
efficient reaction parameters, save time, and improve the
overall success rate of these reactions. AI can also predict the
outcomes of different catalytic conversions, allowing
researchers to make informed decisions and accelerate the
development of new drugs, dyes, and wastewater treatment
methods.
4.1 Drug degradation

Drugs are degraded by a process known as photocatalytic drug
degradation when exposed to light, especially when a photo-
catalyst is present. A substance known as a photocatalyst is one
that speeds up a photochemical reaction by collecting light
energy and transferring it to drugmolecules, which causes them
to be chemically altered. Drugs that are light-sensitive are
particularly susceptible to this type of degradation, which can
alter their composition, potency, and overall efficiency.

This section discusses the inuence of the physicochemical
properties of the drug on its degradation, which are heavily
inuenced by their structural and physicochemical features and
can be analyzed using ML methods. The degradation behavior
of new pharmaceuticals can be predicted using ML models
trained on a dataset of known drug degradation designs. To
further improve the efficacy of drug degradation, ML algorithms
can be utilized to optimize the photocatalytic reaction param-
eters, including light intensity and catalyst concentration.

Gordanshekan et al., in 2022, proposed the use of two pho-
tocatalytic systems to reduce cexime, Bi2WO6@TiO2 and g-
C3N4@Bi2WO6. Adsorption isotherms and photocatalytic
breakdown kinetics were studied using UV irradiation. Toxicity
estimation, degradation pathway analysis, and Articial Neural
Network (ANN) analyses were performed in this study. The
degradation of cexime and its byproducts was complete aer
180 min of the reaction. Aer 135 min of reaction, LC-MS and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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TOC showed that the majority of harmful products were no
longer present, and T.E.S.T. veried that safer chemicals had
been isolated. The number of hidden neurons along each ANN
path also varied from 1 to 24 before the architecture with the
smallest MSE was selected. The photocatalytic degradation of
cexime was predicted using an optimized structure, which was
created by optimizing the number of neurons. The articial
neural network model has developed reliability in simulating
the photocatalytic degradation of cexime, as demonstrated by
the high accuracy of ANN prediction results with experimental
data. The excellent results achieved by ANN suggest that it may
be possible to rely on the prediction of any photocatalyst,
whether it is a pure form or a binary mixture, and at different
component weight ratios. The signicance of the variables is
shown in Garson's equation. According to the experimental
ndings, the C/L ratio and reaction time are the most important
factors. The fact that the signicance values for each imported
variable are so close together suggests that none of them can be
safely removed.144

Hosseini et al. 2022 reported that Cu with Al/Layered Double
Hydroxide with Graphitic Carbon Nitride (LDH@g-CN)
degraded tetracycline when exposed to light. Impressive tech-
nical, environmental, and economic success was achieved: 96%
degradation in 90 min with no secondary pollution. They used
the response surface methodology (RSM) and ANN to achieve
their goals. Based on the results of the RSM analysis of variance
(ANOVA), researchers used Central Composite Design (CCD)
methods. The information in the regression coefficients shows
the importance of the variables being examined and how they
might interact with each other. The F- and P-values of 71.11 and
0.0001, and 5.23 and 0.0897, respectively, showed the impor-
tance of the suggested model for simulating data points inside
the test domain. The optimal match between the observed data
and those used to predict the results of an experiment is indi-
cated by the R2 and adjusted R2 values of 0.96 and 0.91,
respectively. According to the results of one-way analysis of
variance (ANOVA), the following factors had the greatest impact
on tetracycline decay by the catalyst: preliminary tetracycline
concentration, time of exposure, and photocatalyst dose. The
efficiency increased dramatically from the 8.0–30.0 ppm
Fig. 2 Performance evaluation of alternative models trained using diver
boosting regression (GBR), and (c) random forest regression (RFR). Copy

© 2024 The Author(s). Published by the Royal Society of Chemistry
tetracycline range of photocatalyst dosages. This is because the
increased concentration of nanoparticles improved light
absorption while decreasing light dispersion. In addition, the
performance was poor across the entire spectrum of tetracycline
dosing. These are very important and vital in ANN modelling;
without them, the model will not work properly with the data.
Root-Mean-Squared Error (RMSE) values have been found to be
the lowest when there were 8 neurons in the hidden layer, as
determined by an iterative procedure that simultaneously
determined the number of neurons and training functions in
both the training and testing data sets. Consequently, the AVM
removal process was modelled using the feed-forward Leven-
berg–Marquardt (LM) algorithm, which was chosen aer
further optimizing the number of neurons using the tansig and
logsig output stages. When using eight neurons, trainlm as the
training function, and tansig as the transfer function, the RMSE
was minimized across all the data series used for training,
testing, and validation. Aer reaching a peak in the 4 : 8 : 1
conguration, the R2 values began to decline. The rate at which
R2 values shi varies between the datasets used for testing and
those used for validation. We decided to use a network with
a generalized model for training, validation, and testing
because of its low RMSE and R2 values, which were close to 1
and 0.00102,145 respectively. Yu et al. in 2023 published
machine-learning-based catalyst screening and layered double
hydroxide-based catalysts for noroxacin breakdown. A unique
simulation-experiment-prediction framework was used to
determine how ROS changes at the atomic level and to nd
stable catalysts for hetero-EF reactions. The reaction time was
reduced by almost 2 h owing to the Co3Fe2-LDH's outstanding
catalytic efficiency, and its 1O2 production improved by more
than 20% during noroxacin degradation. They investigated
which catalyst conversions for ecological restoration were the
most effective. An ML system uses models for future outcomes
using one of three popular machine-learning techniques: linear
regression (LR), gradient boosting regression (GBR), and
random forest regression (RFR), as shown in Fig. 2. Monte Carlo
cross-conrmation, on the other hand, was performed to
choose a suitable ML technique for this study in light of the
small amount of data collected and previous research in this
se machine-learning techniques: (a) linear regression (LR), (b) gradient
right (2023) with permission from Elsevier.
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area. With a cross-validation fold of 10, the data were randomly
split into 10 subsets, with the goal of predicting the character-
istics from the remaining set. Among the three methods, the
GBR algorithm's R2 = 0.940 prediction accuracy of the GBR
algorithm was the most impressive. Compared to our model,
other approaches failed to accurately predict the degradation
time of the drug. The RFR model exhibits a remarkable coeffi-
cient of agreement (R2 = 0.925). The prediction accuracy of the
LR model was subpar with R2 = 0.476. These models have
shown great potential in accurately predicting the degradation
time of drugs. Additionally, the use of ngerprint traits of
catalysts allows for a cost-effective and efficient approach to
GBR forecasting, making it a valuable tool in studying various
catalysts for drug removal.132

According to a study by Shang et al. in 2022, antibiotic
pollutants in wastewater must be degraded effectively. The
advantages of the photocatalytic breakdown of organic
contaminants includes their tolerance to the ecosystem, safety,
and completeness. In this study, composite photocatalysts (TS-
1/C3N4) composed of carbon nitride and titanium silicon
molecular sieves were used to break down ooxacin in waste-
water through photocatalysis. Using experimental data and an
ANN trained with a genetic algorithm (GA), the reaction
parameters were optimized to achieve the best possible results.
Under the best testing conditions (1.55 g L−1 catalyst, 58.60%
per TS loading, and 49.38 mW cm−2 luminous power density),
the maximum removal efficiency (RE) was measured at 82.92%.
Moreover, both experimental and modelling efforts utilizing an
ANN model were made to examine the impact of wastewater
elements on RE. Experiments showed that when wastewater
constituents were present, reductions were observed in both the
RE and the amount of ooxacin adsorbed on the photocatalyst,
most likely as a result of the competitive adsorption of the
wastewater constituents, interaction combined with the effects
of light-blocking and reactive species. In this case, the capacity
of the model to forecast the synergistic interplay of wastewater
components was demonstrated by an absolute relative devia-
tion (ARD%) of 6.88%, 1.04%, and 1.77% owing to the
complementary action of metal ions, anions, and cations,
respectively. This research has the potential to yield useful
information and methods for the photocatalytic treatment of
sewage contaminated with antibiotics.146
4.2 Dye degradation

The use of dyes, a prevalent pigment in numerous industries,
has posed notable challenges concerning both human well-
being and the safeguarding of ecosystems. Hence, the degra-
dation of these pigments is vital for the preservation of life.
Moreover, machine learning (ML) models are currently experi-
encing remarkable progress in their capability to precisely
forecast the course of dye photodegradation. In this investiga-
tion, a diverse set of machine learning models was formulated
to effectively predict the photodegradation of dyes on nano-
composites. Jaffari et al. in 2023 published an ML technique to
predict how well photocatalysts made of bismuth ferrite
(BiFeO3) will work in eliminating malachite green (MG).
9010 | RSC Adv., 2024, 14, 9003–9019
Multiple machines learning models shown in Fig. 3, including
Cat Boost, gradient boosting, Hist Gradient Boosting, Extra
Trees, XG Boost, decision tree, bagging, light gradient boosting
machine (LGBM), Gaussian process, the combination of ANN
and lightest (a variant of L-S-T-M) are studied in this article to
determine their relative strengths and weaknesses. These
models were used to determine the efficacy of photocatalytic
decay in reducing malachite green concentrations in waste-
water using a variety of NM–BiFeO3 composites. Under different
settings, 1200 data sets were collected to form a comprehensive
database. Several photocatalyst inputs included the catalyst
type, reaction speed, illuminance, amount, catalyst dosage, pH
condition, humic acid level, anions, surface energy, and average
pore size. The rate of MG dye breakdown was chosen as the
dependent variable. According to the results of the performance
analysis, the cat-boost model is above all others because it has
the greatest testing, the correlation coefficient is 0.99, the mean
absolute error is 0.64, and the root-mean-squared error is 1.34.
Cat Boost can accurately forecast over 96% of the data points,
with an absolute relative error of less than 1%, as shown by the
cumulative frequency plot. Cat Boost demonstrated that the
conditions are more critical than the material used to initiate
the photocatalytic reaction. Based on the simulations, the
optimal process conditions were as follows: 105 W of light, 1.5 g
of catalyst per liter of solution, 5 mg of MG dye at the beginning,
and a pH of 7. Furthermore, time was identied as the most
important input by feature importance analysis.147 A carbon-
based metalorganic framework (AC-MIL-88B) was investigated
by Mahmoodi et al. in 2019 and the least-squares support vector
machine (SVM) technique was employed to study its potential
for the photocatalytic decay of Reactive Red 198 dye (RR198).
The photocatalytic impact of AC and MIL-88B (Fe) on the decay
of RR198 is superior to that of AC and MIL-88B (Fe). The AC/
MIL-88B (Fe) composite catalyzed the photocatalytic degrada-
tion of RR198 at 99.9% efficiency using a catalyst amount 0.08 g
L−1, pH about 3, and dye concentration 50 mg L−1. The RR198
treatment was performed in agreement with the second kinetic
theory. The rate constants (in L mg−1 min−1) for 0.2, 0.3, 0.4,
and 0.5 g of AC/MIL-88B were 0.0032, 0.0044, 0.0084, and
0.0148, respectively (Fe). As a suggestion, AC/MIL-88B (Fe) is
a promising material for the photocatalytic decolorization of
RR198 owing to its high degradation ability. The sophisticated
LSSVM model might replicate the deterioration in RR198
observed in the experiments. These results show that the model
obtained a moderate RMSE, AARD, and correlation (R2 = 0.948),
indicating that its predictions were in good agreement with the
experimental results (Fig. 4). These ndings demonstrate that
the LSSVM model captures the dye breakdown via photo-
catalysis using AC/MIL-88B (Fe). Thus, this model shows
promise as a useful instrument for forecasting and optimizing
the decolorization process in future research.148 By conducting
multiple experimental runs of photocatalytic activity, Ayodele
et al. in 2021 demonstrated that the collected data can be used
with data-driven machine-learning modelling strategies such as
ANN (Fig. 5). From the viewpoint of a Levenberg–Marquardt-
trained ANN, chloramphenicol, phenol, azo dye, gas styrene,
and methylene blue were investigated for their photocatalytic
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Illustrative representation of the procedural framework: (a) gathering data, (b) constructing models, and (c) subsequent processing.
Copyright (2023) with permission from Elsevier.
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breakdown. In each photocatalysis process, the hidden neurons
in the 20 distinct neural network topologies were optimized. To
show how chloramphenicol, phenol, azo dye, gaseous styrene,
and methylene blue break down in sunlight, the optimal ANN
congurations obtained were 320-1, 35-1, 32-1, 417-1, 46-1, and
310-1. At the 95% condence level, the optimized ANN designs
had a high R2 for forecasting the degradation of organic
contaminants, and their mean absolute errors were low. Using
a modied version of the Garson algorithm, they conducted
a sensitivity analysis, which showed that all the process
parameters had a substantial impact on the breakdown of
organic pollutants by light. Signicant inuences on photo-
degradation were identied as starting methylene blue
concentration and variables such as photocatalyst ratio, phenol
amount, pH, and hydrothermal temperature. It is important to
consider the nonlinear relationship between the process
parameters and the resulting degradation rate when designing
a photocatalytic reactor to effectively degrade the extent to
which these organic pollutants inuence the photocatalytic
© 2024 The Author(s). Published by the Royal Society of Chemistry
degradation process. The ANN algorithm can be used in pho-
tocatalytic degradation to make crucial decisions.143

Sathiskumar et al. in 2023 analyzed the different types of
dyes and drugs used in the literature. The following nitro-
phenols (4NP) were studied: 2,4,6-trinitrophenol, dinitrophenol
(DNP), methylene blue, methyl orange, and 2,4,6-trini-
trophenol. Several ML algorithms have been used to predict
catalytic characteristics based on trial time, including linear
regression (LR), support vector machines (SVM), gradient-
boosted machines (GBM), random forest (RF), and XGB tree
(XGB). They discovered that the NP and DNP were the best XGB
algorithm parameters. The SVM model exhibited the lowest
RMSE, MAE, and MAPE metrics for the validation dataset. In
both the test and training sets, the SVM outperformed the rival
models. The GBM and XGB tree models outperformed the LR
and RF models on the testing dataset with lower RMSE, MAE,
and MAPE values. However, in the training dataset, the RMSE,
MAE, and MAPE values for the GBM and XGB tree models were
relatively high. The PdO–NiO bimetallic catalyst decreased the
RSC Adv., 2024, 14, 9003–9019 | 9011



Fig. 4 (a and b) Shows the real data compared with the predicted data
in the COA-LSSVMmodel across the data index. Copyright (2019) with
permission from Elsevier.

RSC Advances Review
azo compound mixture by 98% in 8 min. As a result of their
experiments, PdO–NiO proved to be an excellent catalyst.123

A novel ML-based photocatalyst has been described by Zhai
et al. in 2023, which effectively degraded the RHB dye using
Bi2WO6/MIL-53 (Al). The catalytic activity of the BWO/MIL
composite materials can be measured primarily by observing
the degradation of RhB (Fig. 6). To hasten the development of
BWO/MIL that exhibits the desired performance, a nano-
photocatalyst module was developed using machine learning.
The support vector regression (SVR) forward feature selection
approach was used previously, and four important features per-
taining to the simulated conditions of BWO/MIL were extracted
from the RhB dataset. Second, they identied salient properties
and best-t hyperparameters for a support vector regression (SVR)
model to predict the RhB of BWO/MIL. Using an outside test and
a technique called leave-one-out cross-validation (LOOCV) yielded
R2 values of 0.823 and 0.884, respectively, for the predicted and
experimental RhB. To investigate the synthesis space, they used
inverse projection, a prediction model, and virtual screening for
9012 | RSC Adv., 2024, 14, 9003–9019
BWO/MIL nanocomposites with increased RhB content, which
brought us to our third point. The BWO/MIL composites
enhanced the toxic removal during the degradation process and
improved the photocatalytic performance. Experimentally
synthesized efforts to create highly efficient photocatalysts can be
directed by the projected RhB values.31

Rodrigues et al. (2020)149 demonstrated the mathematical
modelling of the photocatalytic reaction of reactive blue 19 (RB
19) and reactive blue 21 (RB 21) dyes in industrial effluents
using ZnO. The photodegradation of the colors in the effluent
was maintained by the ZnO catalyst. The ZnO catalyst had the
following characteristics: density of 5550 kg m−3, mean particle
diameter of 1.19107 m, surface area of 16.830 m2 g−1, and
porosity 0.1 cm3 g−1. ZnO nanoparticles were found to signi-
cantly accelerate the photodegradation of RB 19 and RB 21 over
a 6 h period, with efficiencies of 100% and 91%, respectively.
The mass balance conservation law can be used to numerically
model the reactor and the recycling lines of a photocatalytic
reactor. A rst-order photocatalytic reaction of pollutant
concentration and UV light attenuation is proposed, along with
spherical and uniformly sized particles, constant temperature,
Langmuir isotherm between the solution and catalyst, constant
void fraction in the reactor, and constant reaction time.

The model had a mean absolute error of less than 1.5% and
as high as approximately 7% when compared to the experi-
mental deterioration data. The model showed that as the frac-
tion of photocatalytic degradation increased, the concentration
of pollutants decreased, and the size of the catalyst increased.
This shows that the efficiency of the photocatalytic process
greatly depends on the Langmuir isotherm equilibrium and the
quantity of free space in the reactor. The results also show the
possibility of enhancing pollutant breakdown by adjusting both
pollutant concentration and catalyst size.149

Phyto-mediated nanoparticles were synthesized and used to
produce hydrogen on NaBH4, biological properties, and pho-
tocatalytic decay of dyes; the creation of a machine learning
model was published in 2022 by Lin et al.141 For the purpose of
degradation, they produced an N@Pt–Ag BNP catalyst. The
opposition-based principle was used tomodify the conventional
normal distribution method (OBL). The maximum number of
hidden layer neurons, mutation method, and basic variants of
DE are all set at the outset of the process. Each generation
produces a new individual that encodes information about the
neural network of the next generation, and each network
(evaluated via decoding) calculates DE's tness function of the
DE. This function is then used by the algorithm to select the
best candidate for the subsequent generation.

Fiy simulations were run with the following parameters
adjusted to nd the optimal model for the system under
consideration: generations = 500, individuals' population = 40,
the most possible number of hidden layers is two; the most
possible number of neurons in the rst hidden layer is 20, and
the most possible number of neurons in the second hidden
layer is ten. Data from each of the 50 runs, the optimal ANN
contained only one layer, consisting of 15 neurons. The average
absolute error was determined as the best model. The
percentage is 0.651% during training and 0.579% during
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Setup of an artificial neural network (ANN) for simulating the photocatalytic breakdown of organic pollutants. Copyright (2021) with
permission from Elsevier.

Fig. 6 MLM-BWO/MIL diagram created through a four-step construction process.31
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testing. The top model successfully captured the dynamics of
hydrogen production, as seen by these great results.150

Methylene blue was degraded by 94.4% using a BiVO4/BiPO4/
rGO nanocatalyst in less than 100 min, according to Yang et al.
2023.151 pH, BiVO4 concentration, GO concentration, ethanol
© 2024 The Author(s). Published by the Royal Society of Chemistry
concentration, and volume were the ve input variables used in
the ANN model (Fig. 7). For neutron numbers greater than 11,
the MSE value increased. The MSE values are consistent
between 11 and 15. Undertting occurs when there are too few
neutrons, whereas overtting occurs when there are too many
RSC Adv., 2024, 14, 9003–9019 | 9013



Fig. 7 Schematic representation of the research pathway and structure of an artificial neural network (ANN). Copyright (2023) with permission
from Elsevier.
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neutrons. This implies that the neutron number of the layer
beneath was 11. A scatter plot between the experimental date
and the ANN-predicted date, with a slope of the tted line close
to 1, is said to be evidence of the efficacy of the model in the
study. They reported overall values of 0.9944, 0.9953, and 1.2040
for the training, test, and validation datasets, respectively. The
values of R2 were 0.9953, 0.9893, and 0.9610. The network
performance was improved by experimenting with a wide range
of neuron counts in the hidden layer from 2 to 15 (MSE).

There were three sets of data generated at random: three
distinct data sets: training, testing, and validation (70 : 15 : 15).
It was found that the sparse search algorithm was the best
option available. When compared to the experimental value, the
ANN model's prediction was only 0.9% off.151
5. Challenges and solutions in
predicting catalytic degradation
performance

One of the challenges in predicting the catalytic degradation
performance using machine learning algorithms is under-
standing the correlation relationships and relative importance
of variables. This challenge arises from the complexity and
interdependency of the multiple factors that inuence the
degradation process. To overcome this challenge, researchers
can utilize supervised machine-learning approaches to train
their models using a dataset that includes a wide range of
variables. By incorporating a diverse set of variables, the
machine learning algorithm can learn the patterns and rela-
tionships between different variables and their impact on
catalytic degradation performance.

The availability and quality of the data are other obstacles.
Data that are either inaccurate or inadequate can result in
9014 | RSC Adv., 2024, 14, 9003–9019
biased predictions and hinder the reliability of machine-
learning models. To address this challenge, researchers
should ensure that their datasets are comprehensive and
representative of the real-world conditions. Data validation
procedures should also be used to identify and correct any
inconsistencies or inaccuracies in data. Furthermore, the
fundamental association between catalyst ngerprint proper-
ties and pollutant degradation is difficult to quantify.40

Researchers can utilize advanced analytical techniques, such as
simulations and tests, to quantify the ngerprint properties of
catalysts and their impact on pollutant degradation, thus
addressing this problem. When combined with experimental
data, data-driven machine learning models can help
researchers identify natural links between the catalyst proper-
ties and the rate at which contaminants in water resources
break down. Machine learning's role in predicting catalytic
degradation performance machine learning techniques have
shown to be important tools for predicting organic pollutant
catalytic degradation performance.

Sophisticated algorithms can shi through huge amounts of
information in search of patterns and correlations that humans
would miss. Scientists can anticipate catalyst features like band
gaps and performance measures like adsorption energy and
degradation efficiency employingmachine learning algorithms.152

This enabled them to screen and select potent catalysts for
the degradation of organic pollutants more effectively and
efficiently. Machine learning models have been found to be
particularly useful in the eld of catalysis as they can accelerate
the process of discovering new catalysts.152

These models may be used to analyze catalyst ngerprint
parameters to understand their impact on decontamination
performance, yield, and reactive oxygen species types. However,
it is difficult to identify a quantitative relationship between
these ngerprint traits and pollutant degradation. Researchers
© 2024 The Author(s). Published by the Royal Society of Chemistry
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are increasingly turning to machine learning approaches to
overcome this difficulty. Machine learning models can learn
from simulation and experimental data to nd intricate corre-
lations between catalyst ngerprint properties and pollutant
degradation quantities. Researchers can construct algorithms
that accurately predict the catalytic degradation performance of
organic pollutants by training these models with large datasets
that include information about catalyst characteristics and
pollutant degradation performance.

6. Innovations and future
developments in machine learning
algorithms

One of the main challenges in utilizing machine learning
algorithms to estimate the catalytic degradation performance of
organic pollutants is recognizing the association between the
relative relevance of the components to address this challenge.
Ongoing research is focused on exploring advanced feature
selection techniques and optimization algorithms to identify
the most relevant variables that contribute to the degradation
process.114,115 Another challenge is the complex and nonlinear
nature of the catalytic degradation process, which requires the
development of more advanced and sophisticated machine
learning models.

One example is the use of Explainable Articial Intelligence
(XAI) techniques, together with SHAP (SHapley Additive exPla-
nations) values, which characterize the contributions of every
function to the model's predictions. These methods beautify
interpretability, allowing researchers to understand how precise
features impact the photocatalytic degradation efficiency.

Researchers are exploring the use of deep learning algo-
rithms, such as neural networks, to capture intricate relation-
ships and patterns in the data. Additionally, advancements in
materials science and the integration of machine learning
algorithms have opened new possibilities for catalyst discovery.
By leveraging data-drivenmachine learningmodels, researchers
can predict catalyst properties and performance, such as
adsorption energy and water-contaminant degradation effi-
ciency.114,155 These factors play a crucial role in determining the
efficiency and selectivity of catalytic reactions. The stoichio-
metric ratio affects the availability of reactants and can change
the rate of the entire reaction, whereas the statistical properties
of the elements determine how catalysts react with specic
molecules and how well they bind to them. Additionally, the
electronic structure of catalysts inuences their ability to
transfer electrons and participate in redox reactions, thereby
affecting the generation and stability of reactive oxygen
species.10,121

7. Conclusions: future of machine
learning in catalytic degradation

The potential of machine learning for predicting the perfor-
mance of catalytic degradation of organic pollutants is vast and
promising. These algorithms have already demonstrated their
© 2024 The Author(s). Published by the Royal Society of Chemistry
efficacy in forecasting catalytic rate constants and in enhancing
catalyst design. Moreover, machine-learning models hold the
key to signicantly expediting the development of novel high-
performance catalyst materials. Employing machine learning
algorithms to analyze vast datasets and unveil intricate patterns
and correlations, researchers can gain deeper insight into the
mechanisms underlying pollutant degradation. This, in turn,
enables the swi screening and selection of effective catalysts,
hastening the catalyst development process. By leveraging
ngerprint traits, researchers can swily identify promising
catalyst candidates, thereby reducing their reliance on time-
consuming and costly experimentation. In summary, the inte-
gration of machine learning algorithms into the realm of cata-
lytic degradation has revolutionized researchers' approaches to
pollution remediation. This paradigm shi not only enhances
our understanding of the degradation process but also paves
the way for faster and more comprehensive pollutant remedia-
tion strategies. The eld of environmental catalysis stands to
benet signicantly from the application of machine learning
models, which enable the prediction of organic contaminant
degradation efficiency. In conclusion, the utilization of
machine learning methods in catalytic degradation research
has immense potential for forecasting the degradation of
organic pollutants.
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