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Abstract: A key factor in the successful infection of a mammalian host by Leishmania parasites is their
conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the
physical and chemical triggers that induce this conversion and the accompanying changes at the
molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the
reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also
to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a
model to integrate the transduction of different stress signals for the induction of stage conversion.

Keywords: post-transcriptional gene regulation; heat shock proteins; cell stress; protein kinases;
protein turnover

1. Leishmania Biology and Life Cycle
1.1. Natural Life Cycle

All Leishmania parasites undergo a life cycle involving two different hosts, namely sand
fly vectors (Diptera) and susceptible mammals, mostly rodents but also dogs and humans.
To adapt and survive in their hosts, the leishmaniae exist in various flagellated forms
inside the digestive tract of sand flies and as slowly proliferating or quiescent, non-motile
amastigotes within macrophages and other mononuclear phagocytes.

Leishmania spp. are taken up by female flies into their digestive tracts as part of
the blood meal. Within the peritrophic matrix, the parasites convert into flagellated pro-
mastigotes, which attach to the midgut epithelium via Leishmania surface molecules, e.g.,
lipophosphoglycan. These procyclic promastigotes proliferate logarithmically until they
reach a stationary phase and undergo differentiation into small actively motile forms, the
metacyclic promastigotes. The latter detach from the midgut epithelium and infect another
mammal during the sand fly’s next bloodmeal [1,2]. Recent data also suggest that the Leish-
mania (Mundinia) subgenus may be transmitted by midges (genus Culicoides) [3]. Procyclic
promastigotes of most Leishmania species can be generated in tissue culture media.

In mouse models, the injected parasites attract neutrophil granulocytes and tissue
macrophages [4]. Inside these cells, leishmaniae convert into non-motile amastigotes, which
persist in phagosomes, averting anti-microbial mechanisms by exporting effector molecules,
i.e., regulatory proteins. They interfere with the signal transduction pathways of the host
cells, modulating the host’s immune response [5].

1.2. Promastigote to Amastigote Differentiation
1.2.1. Temperature and pH as Triggers

Exposure of promastigotes to elevated temperatures and acidic milieu in vitro triggers
their differentiation into amastigotes in axenic culture [6,7], facilitating the analysis of
key molecular events during Leishmania stage conversion in this direction. The trigger
temperatures must be adjusted according to the tissue tropism (viscera vs. skin) of the given
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Leishmania species and strains used, e.g., 37 ◦C for viscerotropic L. donovani and L. infantum
and 32–34 ◦C for cutanotropic L. mexicana and L. (V.) braziliensis. This differentiation takes
~5 days to complete and is reversible [8]. Reverse conversion of axenic amastigotes back to
promastigotes takes ~2 days to complete once the incubation temperature is lowered to
~25 ◦C and the pH returned to 7.0–7.4, mimicking conditions inside the sand fly gut.

1.2.2. Emerging Alternative/Additional Triggers

The majority of the biochemical and morphological changes seen in promastigote-
to-amastigote differentiation are also observed when promastigotes are exposed to gel-
danamycin or radicicol, which occupy and inhibit the ATP-binding domain of the major
chaperone protein, 90 kDa heat shock protein (HSP90 a.k.a. HSP83) [9,10].

There is also evidence for an involvement of iron metabolism and reactive oxygen
species (ROS) in triggering the promastigote-to-amastigote conversion. Iron depletion in
the growth media induces an increased Leishmania iron transporter 1 (LIT1) expression
and stops proliferation, resulting in the appearance of an amastigote-like morphology and
increased infectivity to susceptible mice [11]. This is accompanied by a higher abundance
of certain amastigote-specific markers, such as amastin mRNAs. Exposure of Leishmania
species to ROS was reported to produce a similar outcome [11,12].

1.2.3. Markers of Promastigote-to-Amastigote Conversion

Apart from the morphological changes, i.e., cell rounding and the reduction of the
flagellum length, detectable by microscopy, there are molecular markers to verify stage
conversion, e.g., amastigote-specific A2 proteins [13,14]. They exist as a family of proteins
with variable copies of 10-amino acid repeats and are associated with Leishmania infectivity.
Their primary role, however, appears to be stress protection [15,16].

Another amastigote-specific marker was identified in a proteomics study of L. donovani
differentiation, i.e., 2,3-trans-enoyl CoA isomerase [17]. There are two isoforms of this
enzyme discernible by SDS-PAGE and Western blot analysis. Isoform 1 and isoform 2 are
expressed more abundantly in promastigotes and amastigotes, respectively [8]. Nuclease
P4 may be amastigote-specific [18], as much as amastins [19], but its stage-specificity
is equivocal due to a lack of common standard among different laboratories to verify
Leishmania differentiation.

1.3. Limitations of In Vitro Differentiation Models

While axenically grown amastigotes are a very important tool for studying the dy-
namics of gene expression, the axenic conditions limit their utility for other fields of
research, which require exposure to the host cell environments, i.e., antimicrobial defense
mechanisms, residence in parasitophorous vacuoles and nutrient supplies from infected
macrophages. This is reflected in the finding that proteins that are important for intra-
cellular survival, such as the 100 kDa heat shock protein [20] or cyclophilin 40 [21], are
dispensable for axenically grown amastigotes. The metabolic pathways are reprogrammed
during Leishmania differentiation into axenic amastigotes, as reflective of the requirements
of carbon sources from mammalian versus insect hosts and also the oxidative stress en-
countered in the former [17,22,23].

The use of axenic amastigotes for drug screening also raises the question of their
appropriateness, considering that intracellular amastigotes protect themselves not only
by the barrier of their own plasma membranes and detoxifying mechanisms but also by
those of the host cells and parasitophorous vacuoles. Therefore, in vitro-infected cell lines
or primary host cells are more appropriate for drug testing to provide more meaningful
results [24,25].

While many Leishmania strains of cutanotropic and viscerotropic species readily con-
vert into axenic amastigotes, L. major is a notable exception. A protocol was developed for
the axenization of this species [26], but it has not been widely used to assess, for example,
the effects of iron depletion and exposure to ROS [11].
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2. Transduction of Differentiation Triggers
2.1. Post-Transcriptional Gene Regulation during Stage Conversion

Assessing gene expression in response to triggers of differentiation begins with the
understanding of Leishmania’s uniquely structured genome, which is organized into poly-
cistronic transcription units (PTU), each consisting of functionally unrelated, single-copied
and/or tandemly repeated genes [27]. RNA polymerase II-dependent transcription pro-
ceeds through PTUs in the absence of canonical promoters and transcription factors and
therefore lacks single-gene-specific regulation [28]. Instead, our current knowledge sug-
gests that the PTUs are constitutively transcribed, producing polycistronic pre-mRNAs [29].
These pre-mRNAs are subsequently or, likely, co-transcriptionally processed by the linked
events of trans-splicing, resulting in 5′ miniexon capping and 3′ polyadenylation to produce
mature, monocistronic mRNAs [30]. During conversion from promastigotes to amastig-
otes, Leishmania must rapidly change the products of their gene expression, presumably
regulated primarily by post-transcriptional mechanisms, for adaptation to the changing
environment [31].

Leishmania gene expression is modulated, at least in part, by the stability of transcripts
that are available for protein synthesis. Early studies suggest that Leishmania mRNA stability
is controlled by cis-elements within the 5’- and 3′ untranslated regions (UTRs). The binding
of RNA-associated proteins to these regulatory RNA motifs affects not only the stability of
mRNAs but also their transport and intracellular targeting [32,33]. 3’UTR cis-elements have
been associated with the stability and abundance of HSP mRNAs, which play an important
role in adaptation to the increased temperature during amastigote differentiation [34].
Stage-specific up-regulation of the amastigote-specific surface protein amastin was initially
thought to be regulated via cis-elements in the 3′UTRs of amastin mRNAs [35] but was
subsequently found to occur at the translational stage [23,36].

In general, promastigote-to-amastigote differentiation is associated with a marked
overall down-regulation of gene expression, especially for transcripts involved in transla-
tion and ribosome biogenesis, which is suggestive of a regulatory role [37]. This is reflected
in the lower rate of translation seen in axenically differentiated amastigotes of L. infantum,
resulting from phosphorylation of a translation factor called eukaryotic initiation factor 2.
However, the translation of amastigote-specific proteins, such as the stress protein A2, is
upregulated [38]. Leishmania differentiation from promastigote to amastigote is associated
with a switch from cap-dependent to alternative translation, involving a non-conserved
4E-interacting protein (Leish4E-IP) [39].

In addition, the processing of policystronic to monomeric mRNAs has been suggested
to regulate their abundance, hence controlling Leishmania stage-specific differentiation [40].
RNA processing entails the trans-splicing of the 39-bp spliced leader (SL) RNA onto the 5’
end and the addition of a poly(A) tail to the 3’ end of all matured mRNAs. However, this
early hypothesis has not been confirmed, as the processing of individual RNAs does not
have a significant impact on their steady state levels. In spite of notable differences in RNA
processing between procyclic and metacyclic promastigotes [41], comparative RNA-Seq
and ribosome profiling analyses revealed no significant correlation between changes in
mRNA levels and protein synthesis rates [23].

Furthermore, RNA synthesis rates do not appear to have any influence on the adapta-
tion of Leishmania to changing environmental conditions during differentiation. In early
nuclear run on analyses [42], heat shock was found to have no effect on HSP mRNA
synthesis. We are currently investigating RNA synthesis rates during stage conversion
using precision nuclear run-on/sequencing analysis (PRO-seq) [43]. Initial data analyses
suggest that RNA synthesis proceeds through intergenic sequences and is specific to the
positive strand of each PTU. No stage-specific changes in RNA polymerase occupancy are
observed in the PTUs (J.G., unpublished data).
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2.2. Protein Turnover and Leishmania Proteases in Stage Differentiation

Leishmania conversion from elongated, flagellated promastigotes into ovoid amastig-
otes with rudimentary flagellum requires a retooled metabolism, resulting in multiple
qualitative and quantitative proteomic changes, some of which are facilitated by proteolytic
events. Leishmania proteases are involved in three key processes of amastigote conversion:
(i) controlling the abundance of stage-specific proteins; (ii) inducing apoptosis to reduce
parasite loads in the host cells; and (iii) modulating the host’s immune response.

The activities of Leishmania peptidases are regulated by the level of their expression,
modification or stability and impact on the abundance of their substrate proteins. This is
reflected in the stage-specific expression of many peptidases [17,23,44,45]. Accordingly,
analysis of the serine proteases LbOBP and LbS13 [46] revealed that their expression is
temperature-dependent, probably via 3’UTR secondary structure motifs and PTM [47].

Both proteasomal and lysosomal pathways are involved in Leishmania protein degra-
dation [48]. During metacyclogenesis, cysteine protease B (CPB) levels increase in MVT-
lysosomal compartments matching their proteolytic activities [48]. Acidification induces
the secretion of LbCPB by L. braziliensis [49], and its specific activity peaks during the first
72 h of heat exposure in vitro [50]. The CPB is then secreted via the flagellar pocket.

The development of megasomes in amastigotes is linked to their infectivity [51]. The
cysteine proteases therein are crucial for the parasites’ intracellular survival [48,52]. This
is most likely due to the selective degradation of MHC II surface immune complexes in
the infected macrophages and cytokines in the extracellular milieu, which shifts the host’s
immune response toward the Th2 pathway [53].

A broad variety of stage-dependent functions is reported for the highly abundant
and stage-specifically expressed metalloproteases of the MSP family (GP63, leishmanoly-
sin). Their proposed functions include: (i) making nutrients available to Leishmania in
the sandfly vector; (ii) releasing metacyclics from adhesion to the fly midgut epithelium;
(iii) neutralizing the host’s first line antimicrobial defense activities, e.g., complement-
mediated lysis, anti-microbial proteins and NK-cell attacks; (iv) facilitating Leishmania entry
into macrophages by receptor-mediated phagocytosis and their motility in the extracellular
matrix; and (v) maintaining the amastigotes’ survival in the parasitophorous vacuoles [54].

Leishmania differentiation is accompanied by autophagic events. Stressors that induce
stage differentiation also trigger apoptosis via a variety of different molecular pathways [55].
In contrast to higher eukaryotes, Leishmania are deficient of caspases. Instead, some leish-
maniae rely on metacaspases. This was demonstrated by inducing programmed cell death
(PCD) in transgenic yeast by the over expression of LmjMCA [56]. Other Leishmania pro-
teases of functional importance are a large family of calpain-like proteases (CALP) and
cysteine protease C (CPC) [55]. The mechanisms employed by Leishmania to avoid apopto-
sis and instead enter differentiation deserve further detailed investigation, as this has the
potential to provide novel targets for specific therapeutic intervention against leishmaniasis.

2.3. Protein Kinases in Stage Differentiation and Intracellular Survival

With Leishmania lacking transcriptional control, protein modifications constitute an
important aspect of regulation [57]. A kinome-wide gene deletion study revealed that 162 L.
mexicana protein kinase genes were dispensable, while 44 genes were refractory to deletion
and thus considered essential for promastigote viability. In addition, 29 kinases were found
to be crucial for differentiation from the metacyclic promastigote to the amastigote and for
the successful infection of macrophages in vitro and BALB/c mice [58].

These kinases are highly conserved among different trypanosomatid species
(Table 1) [58–84]. Moreover, some essential kinases were also found to play a crucial
role in stage conversion and virulence, e.g., LmxMPK4 [85] and secreted CK1.2 [86]. The
complete absence of tyrosine kinases, TKL receptors and RGC (receptor guanylyl cyclases)
in trypanosomatids underscores the potential significance of Leishmania serine-/threonine
kinases and of atypical kinase [58,62,87].
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Table 1. Leishmania protein kinases and their known roles/functions in stage differentiation.

Family Kinase Reported Function Reference

CMGC/CDK
Lmx/T.br/Tc/LmjCRK7 No functional homologue to human

CDK7

Baker et al.,2021 [53]
Badjatia et al., 2013 [70]
Parsons et al., 2005 [58]

LmxCRK8 Untypical regulation indicated in
TrCRK8

Baker et al., 2021 [53]
Hammarton 2007 [60]

CMGC/CDKL and
CMGC/MAPK

Lmx/LdMPK1
Intracellular survival,

phosphorylating LdHSP70 and
LdHSP90; antimony resistance

Baker et al., 2021 [53]
Wiese, 1998 [56]

Hombach-Barrigah et al., 2019 [79]
Kaur et al., 2017 [77]

Morales et al., 2010b [67]
Garg and Goyal, 2015 [72]

LmxMPK2

Infection; essential nutrient
regulation and osmotic stress via

Arginine depletion response (ADR)
and AQP1-regulation; antimony

resistance
flagella-mediated environment

sensing

Goldman-Pinkovich et al., 2016 [75]
Kelly et al., 2021 [80]

Mandal et al., 2012 [69]
Rotureau et al. 2009 [64]

LmxMPK15 Infection Baker et al., 2021 [53]

Lmx/LmjMPK10

Stage-specific auto-regulation and
phosphorylation crucial for infection;

crystal structure available;
not crucial in L. major

Morales et al., 2007 [62]
Horjales et al., 2012 [68]

Cayla et al., 2014 [71]

LmjMPK7 Infection Morales et al., 2010 [67]

STE Lmx/Lmj/T.brMRK1 Cytoplasmatic MAP3K; infection;
osmotic challenge in T.brucei

Baker et al., 2021 [58]
Agron et al., 2005 [57]

Fernandez-Cortes et al., 2017 [76]

CK1.2 LdCK1.2 Exosomal kinase; phosphorylates
HSP90 and HSP23

Hombach-Barrigah et al., 2018 [79]
Kröber-Boncardo et al., 2020 [87]

Other/CK2 LmxCK2A1,
LmxCK2A2

T.brCK2 linked to cytoskeletal
processes;

LbrCK2 secreted and ekto-forms
mediating virulence

De Lima et al., 2006 [59]
Zylbersztejn et al., 2015 [74]

Dutra et al., 2009 [63]

PEK LmxEIF2αK2 Vital for infection; T.brEIF2αK2
linked to sensing or transport

Baker et al., 2021 [53]
Moraes et al., 2007 [61]

PIKK related LmxTOR3 Infection; acidocalcisome formation
and metabolic regulation

Baker et al., 2021 [53]
Madeira da Silva and Beverley,

2010 [65]

CAMK LmxAKB1 Infection; T.brAKB1: cytokinesis and
division Inoue et al., 2015 [73]

AGC/PKA LmxPKAC3 Infection; morphogenesis Fischer Weinberger et al., under
review [53]

Other/ULK LmxSTK36, LmxULK4

Infection of sandfly vector and
mammal. functionally linked.

T.brSTK36, Tbr.ULK4: motility and
flagella assembly

Baker et al., 2021 [51]
Varga et al., 2017 [76]

Leishmania kinases appear to mediate a wide variety of core functions in Leishmania
differentiation, such as heat shock and osmotic stress response, nutrient sensing and
metabolic regulation, translation control, cytokinesis, motility and morphogenesis (Table 1).
Interestingly, the regulatory functions of Leishmania kinases often differ from those of
their orthologues in higher eukaryotes. This complicates the efforts to predict interaction
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pathways. For instance, Leishmania appear to lack the activation cascade of LmxMPK4 by
STE kinases at the conserved TxY Motif [58,75].

Due to their apparently crucial roles, Leishmania protein kinases also constitute promis-
ing drug targets notwithstanding their possible side effects against the host orthologues.
Yet, a recent kinome comparison revealed a parasite-host sequence similarity of 23–69%
(L. infantum vs. H. sapiens) and 21–69% (L. braziliensis vs. H. sapiens) [87], raising the hope of
finding inhibitors with sufficient selectivity. Re-purposing available inhibitor libraries for
testing against parasite kinases may be a promising path to finding lead compounds for
treating Leishmania infections.

2.4. Epigenetic Effects

The structure of eukaryotic chromatin is primarily formed by nucleosomes, consisting
of genomic DNA wrapped around a core histone octamer and separated by various lengths
of linker DNA. This beads-on-a-string structure or 10-nm fibre is also referred to as euchro-
matin and represents accessible DNA. Further condensation leads to the formation of a
30-nm fibre—heterochromatin—which is considered less accessible for transcription factors
and RNA polymerases. It has been postulated that euchromatin is required for inducing
gene expression under changing environmental conditions, for example, during Leishmania
stage conversion [88].

Indeed, ribosome profiling analyses showed that the inhibition of HSP90 leads pro-
mastigotes to become amastigote-like, resulting in the elevated synthesis of histones [23].
This was also observed by proteome analyses and occurs early on in the promastigote-
to-amastigote conversion [17]. In addition, histone deacetylases were found to be regu-
lated stage-dependently, suggesting the impact of epigenetic mechanisms on stage con-
version [37]. An assay for transposase-accessible chromatin by sequencing (ATAC-seq)
analysis showed that axenic amastigote differentiation is associated with the emergence
of heterochromatin [89] in the divergent SSR regions upstream of telomere ends where
transcription is initiated [90,91]. Whether the formation of heterochromatin in upstream
SSRs has an impact on transcription rates in the downstream PTUs is currently under
investigation (J.G., unpublished data).

2.5. HSPs in Stage Conversion

Since one of the key stimuli for promastigote-to-amastigote conversion is an elevation
of the ambient temperature to that of the mammalian host, we suspected early on the in-
volvement of the heat shock response in the development of amastigotes. The expression of
various heat shock proteins is upregulated when subjecting promastigotes to a temperature
up-shift, independent of acidic pH [92]. Therefore, the elevated synthesis of HSPs is an
early response to this differentiation stimulus alone.

Moreover, the chaperones HSP100 and HSP23, along with the putative co-chaperone
cyclophilin 40, were found to be essential for Leishmania survival in macrophages in vitro
and/or in animal hosts [93–95]. HSP100 is functionally important to counter the host’s
immune response in the parasite’s favor by playing a pivotal role in the assembly of
immune-modulatory exosomes, as shown by their ineffectiveness when produced by
HSP100 null mutants. While “wild type” exosomes trigger a cytokine expression in keeping
with a Th2-response and a B cell-based immune reaction, the exosomes of HSP100 null
mutants fail to suppress a Th1-based inflammatory response, known to restrict Leishmania
survival in the mammalian host.

This is apparently due to the alteration in the composition of exosomes shed by
HSP100−/− mutants lacking several HSPs and virulence factors [96].

The highly abundant chaperone HSP90 is involved in the transduction of differen-
tiation signals. We first noted this when L. donovani promastigotes were treated with
HSP90-specific inhibitors, geldanamycin or radicicol, resulting in a reduced growth and
a morphological shift [9] from the long, slender, flagellated promastigotes to ovoid, non-
motile amastigote-like cells, as shown in Figure 1.
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Figure 1. Axenic stage conversion of L. donovani from promastigotes kept at 25 ◦C/pH 7.4. (A) to
amastigotes at 37 ◦C/pH 5.5 (B) and chemically (radicicol)-induced amastigote-like forms (C). Sam-
ples were fixed and stained with DAPI (nuclei, blue) and anti-α-tubulin mAB (microtubuli, red).
Fluorescence images were captured at a 100×magnification using an EVOS Autofluor microscope;
overlays were implemented in Adobe Photoshop CS3. The bars represent 10 µm.

Moreover, similar proteome changes were observed in axenic amastigotes and after
radicicol- or 17-AAG-treatment [10]. Using ribosome profiling and BONCAT-iTRAQ mass
spectrometry, respectively, the results showed elevated synthesis for a number of differ-
ent proteins, including amastins, histones, fatty acid metabolic proteins, oxidative stress
response proteins and several heat shock proteins, highly reminiscent of gene expression in
axenic amastigotes generated by elevated temperature and acidity [23,97].

How HSP90 channels the signals to trigger Leishmania differentiation is unclear. It is
known in yeast, plants and mammals that HSP90 and HSP70 act as negative regulators
of the cellular heat shock response by quenching the activity of the HSF1 heat shock
transcription factor [98]. There is little or no HSF activity detectable in homeostatic quiescent
cells, but protein biosynthesis is not required for the rapid onset of HSF DNA-binding
activity and heat shock gene expression [99]. Heat stress and protein folding stresses
deplete the pool of free, active HSP70 and HSP90 chaperones, freeing HSF1 to form active
trimers for binding its target sequences.

A similar depletion of HSP90 and HSP70 may occur during the exposure of Leishmania
promastigotes to host tissue temperatures, a >∆10 ◦C heat shock compared with the sandfly
gut. This may be enhanced by acidic milieu but also by iron depletion and ROS stress.
Elevated temperature also boosts the shedding of exosomes which contain HSP90 and
HSP70 as major payload proteins [100]. Such a depletion will cause HSP90-dependent
regulatory proteins to be suppressed, even more so as HSP70 is also a part of the growth-
promoting HSP90 multichaperone complex [101]. We speculate that HSP90 functional
depletion transduces various stresses that trigger Leishmania stage conversion in vitro
(Figure 2).

In higher eukaryotes, highly abundant HSP90 homologues are subject to phosphoryla-
tion with the concomitant modulation of its activity, but this requires the participation of
protein kinases in an active or activatable state, such as MAP kinases [102–104]. Leishmania
HSP90 is also the target of amastigote stage-specific phosphorylation, together with other
housekeeping chaperones such as HSP70 and Sti1 [71]. HSP90 harbors several known
or putative phosphorylation sites. Mutations of these sites produce a variety of different
effects, ranging from the loss of cell viability to defective amastigote-specific infectivity
(T223, S594, S595) to a minor reduction in proliferation [83].
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tracellular survival [83,105]. The mutation of the CK1.2 phorphorylation site at S289 in 
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Figure 2. Schematic model of stage conversion through HSP90 quenching. Axenically grown
promastigotes (A) as elongated, flagellated, highly proliferative cells are exposed to cell stress
(increased temperature, acidified medium, iron depletion or ROS). This causes the sequestration
of HSP90 and other foldosome components to denatured protein domains (B). The temperature-
dependent shedding of HSP-containing exosomes and the phosphorylation of HSP90 by CK1.2
and MAPK1 adds to the reduction of free HSP90, which triggers conversion to the ovoid, non-
motile, growth-impaired amastigote (C). Alternatively, the direct inhibition of HSP90 with radicicol
or geldanamycin also depletes active HSP90 and causes a similar conversion to amastigote-like
stages (D).

So far, two protein kinases were identified that target HSP90: (i) MAP kinase 1, which
was found to be essential for L. mexicana intracellular survival [60,81], and (ii) casein kinase
1, isoform 2 (CK1.2), which is secreted into the infected host cells and is required for
intracellular survival [83,105]. The mutation of the CK1.2 phorphorylation site at S289 in
HSP90 results in a slowdown of in vitro proliferation and minor morphological changes [83].
CK1.2 also interacts with HSP23 in vitro and can mediate stress resistance in the absence of
HSP23 [106], while MAP kinase 1 also targets HSP70 [81].

3. Future Directions of Research

Recent years have seen a massive increase in experimental data about Leishmania stage
conversion, mostly due to the application of various systems biology strategies aimed at
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the various levels of gene expression and their regulation. Still, there are pieces missing
from the complex jigsaw puzzle on which we are working.

It is clear by now that mRNA abundance is relevant to, but not a reliable measure
of, Leishmania gene expression. Since Leishmania, like all other trypanosomatids, regulate
gene expression post-transcriptionally, it is more promising to direct our attention to the
mechanisms of RNA utilization by ribosomes and translation factors. Still, a systems
biology approach to correlate RNA stability with RNA abundance is expected to help
explain the fluctuations of mRNA steady state levels observed in transcriptome analyses.
Leishmania stage-specific gene expression is regulated primarily at the level of translational
efficiency via the interactions of RNA-binding proteins with mRNAs for their stability and
effective processing.

Proteome and translation analyses have shown that the expression patterns of individ-
ual ribosomal proteins undergo changes, suggestive of alterations in the composition and
specificity of ribosomes during Leishmania stage conversion. Specific stress ribosomes have
been reported to form under environmentally challenging conditions, leading to the prefer-
ential translation of specific mRNAs in bacteria. Post-translational protein modifications
mediated chiefly by the activities of protein kinases may regulate the activity and specificity
of translation initiation and elongation, signifying the need for investigation in this area and
in the interactions between protein kinases and chaperones. It is essential to standardize the
inducers of Leishmania stage conversion in vitro for examining the downstream pathways
at the translatome and (phospho-) proteome levels to develop a unified model of signal
transduction regulating this cyclic differentiation. The outcome of such investigation with
the in vitro axenic differentiation model requires verification in vivo, that is now possible
with the progress in single-cell sequencing, to study intracellular amastigotes and sand fly
gut-derived promastigotes by NGS-based gene expression assays.
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