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ABSTRACT While zinc is an essential trace metal in biology, excess zinc is toxic to
organisms. Previous studies have shown that zinc toxicity is associated with disrup-
tion of the [4Fe-4S] clusters in various dehydratases in Escherichia coli. Here, we re-
port that the intracellular zinc overload in E. coli cells inhibits iron-sulfur cluster bio-
genesis without affecting the preassembled iron-sulfur clusters in proteins. Among
the housekeeping iron-sulfur cluster assembly proteins encoded by the gene cluster
iscSUA-hscBA-fdx-iscX in E. coli cells, the scaffold IscU, the iron chaperone IscA, and
ferredoxin have strong zinc binding activity in cells, suggesting that intracellular zinc
overload inhibits iron-sulfur cluster biogenesis by binding to the iron-sulfur cluster
assembly proteins. Mutations of the conserved cysteine residues to serine in IscA,
IscU, or ferredoxin completely abolish the zinc binding activity of the proteins, indi-
cating that zinc can compete with iron or iron-sulfur cluster binding in IscA, IscU,
and ferredoxin and block iron-sulfur cluster biogenesis. Furthermore, intracellular
zinc overload appears to emulate the slow-growth phenotype of the E. coli mutant
cells with deletion of the iron-sulfur cluster assembly proteins IscU, IscA, and ferre-
doxin. Our results suggest that intracellular zinc overload inhibits iron-sulfur cluster
biogenesis by targeting the iron-sulfur cluster assembly proteins IscU, IscA, and
ferredoxin in E. coli cells.

IMPORTANCE Zinc toxicity has been implicated in causing various human diseases.
High concentrations of zinc can also inhibit bacterial cell growth. However, the un-
derlying mechanism has not been fully understood. Here, we report that zinc over-
load in Escherichia coli cells inhibits iron-sulfur cluster biogenesis by targeting spe-
cific iron-sulfur cluster assembly proteins. Because iron-sulfur proteins are involved in
diverse physiological processes, the zinc-mediated inhibition of iron-sulfur cluster
biogenesis could be largely responsible for the zinc-mediated cytotoxicity. Our find-
ing provides new insights on how intracellular zinc overload may inhibit cellular
functions in bacteria.
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As an essential trace element, zinc is vitally important for all living organisms (1). At
least 300 enzymes in the metabolic pathways of sugars, lipids, proteins, and nucleic

acids use zinc as a cofactor (2). Lack of zinc has been attributed to many human health
complications, including growth retardation, poor appetite, and cell-mediated immune
dysfunction (3). On the other hand, excess zinc is highly toxic to cells (4–6). For
example, an elevated intracellular zinc content has been linked to Alzheimer’s disease
(7) and Kufor-Rakeb syndrome (juvenile Parkinsonism) (8). In Escherichia coli cells,
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intracellular total zinc accumulates to about 0.2 mM when cells are grown in LB
medium (9). Radioactive 65Zn-labeling studies (10) and proteomic analyses (11) have
revealed a large number of putative zinc-binding proteins in E. coli cells. On the other
hand, the addition of 2.5 mM ZnSO4 to LB medium (12) or 0.35 mM ZnSO4 to M9
minimum medium (13) completely inhibits E. coli cell growth. Because of the zinc-
mediated inhibition of cell growth, zinc compounds have been developed as antibac-
terial agents and preservatives. Furthermore, host-mediated zinc toxicity to pathogenic
bacteria has been extensively investigated (14–16). However, the molecular mechanism
underlying the zinc-mediated cytotoxicity has not been fully understood.

Our previous studies have shown that topoisomerase I (17, 18) and its homolog
YrdD (19) are iron and zinc binding proteins, and excess zinc can easily compete for iron
binding in the proteins in vivo (17, 19). This suggests that zinc and iron may have similar
binding sites in proteins.

In the past decade, several “zinc finger” proteins have been identified as iron-sulfur
proteins. For example, the mitochondrial outer membrane protein mitoNEET (20) and
the cleavage and polyadenylation specificity factor 30 (CPSF30) (21) have a zinc finger
motif which hosts an iron-sulfur cluster. Since zinc and iron-sulfur cluster have similar
ligand coordination in proteins, it has been proposed that zinc may compete for
iron-sulfur center binding sites in proteins and disrupt iron-sulfur clusters in proteins
(22–24). Since iron-sulfur proteins are involved in diverse physiological functions (25),
excess zinc may affect multiple cellular functions by disrupting iron-sulfur clusters in
proteins.

Iron-sulfur clusters are assembled by a group of dedicated proteins. In E. coli, there
are two iron-sulfur cluster assembly systems encoded by the housekeeping iscSUA-
hscBA-fdx-iscX gene cluster (26) and the inducible sufABCDSE gene cluster (22). Among
the proteins encoded by iscSUA-hscBA-fdx-iscX, IscS is a cysteine desulfurase that
provides sulfur for iron-sulfur cluster assembly (27). IscU is a scaffold protein that
assembles iron-sulfur clusters (28) and transfers the transient clusters to target proteins
(29, 30). IscA was thought to be an alternative scaffold (31). However, unlike the scaffold
IscU, IscA has strong iron binding activity, and the iron center in IscA can be transferred
to IscU for iron-sulfur cluster assembly (32–34). Thus, IscA is proposed as an iron
chaperone for iron-sulfur cluster biogenesis. HscB and HscA are heat shock cognate
proteins, which assist the iron-sulfur cluster transfer from IscU to target protein (35).
Ferredoxin (Fdx) is a [2Fe-2S] cluster protein and may provide electrons for the
iron-sulfur cluster assembly process (36). IscX has also been proposed as an iron donor
for iron-sulfur cluster biogenesis (37). However, IscX has low iron binding affinity and
interacts with IscS (38). The deletion of IscX does not significantly affect iron-sulfur
proteins in E. coli cells (39). Therefore, the specific function of IscX remains to be
defined.

In this study, we find that zinc overload in E. coli cells inhibits iron-sulfur cluster
biogenesis without affecting the preassembled clusters in proteins. Additional studies
reveal that zinc has strong interaction with the iron-sulfur cluster assembly proteins
IscU, IscA, and ferredoxin, leading to inhibition of iron-sulfur cluster biogenesis in E. coli
cells.

RESULTS
Zinc overload selectively inactivates iron-sulfur enzymes in E. coli cells. In

wild-type E. coli cells, the “free” intracellular zinc concentration is in the femtomolar
range (9). Zinc homeostasis in E. coli cells is regulated primarily through a network of
zinc influx and efflux pumps. The major zinc efflux system ZntA, a P-type ATPase
transporter, is upregulated by the transcription factor ZntR when intracellular zinc
concentration is high (40). The deletion of ZntA results in an E. coli strain that is
hypersensitive to zinc (41). To explore the effect of intracellular zinc overload on
iron-sulfur proteins in E. coli cells, we have constructed an E. coli mutant in which both
the zinc efflux pump ZntA and the transcription factor ZntR were deleted. Table 1
shows that the deletion of ZntA and ZntR resulted in accumulation of intracellular zinc
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in E. coli cells grown in LB medium supplemented with 200 �M ZnSO4 under aerobic
growth conditions. ZnSO4 at 200 �M was chosen, as it inhibited cell growth of the E. coli
zntA zntR double mutant in LB medium by about 50% and did not significantly affect
the cell growth of wild-type E. coli (see Fig. S1 in the supplemental material).

To investigate the effect of zinc overload on iron-sulfur proteins in E. coli, we first
utilized fumarases. There are three fumarases in E. coli, fumarase A and fumarase B,
which require a [4Fe-4S] cluster for their catalytic activity (42); and fumarase C, which
has no iron-sulfur clusters (43). Each fumarase was expressed in the E. coli zntA zntR
mutant cells grown in LB medium supplemented with or without 200 �M ZnSO4 under
aerobic conditions. Figure 1 shows that the addition of ZnSO4 (200 �M) to LB medium

TABLE 1 Zinc content of whole cells after zinc treatment

Strain
Mean � SD zinc content (�M) of whole cells
(per 100 OD at 600 nm)

MC4100 21.6 � 0.6
MC4100�Zn 24.4 � 4.2
zntA zntR mutant 25.1 � 0.4
zntA zntR mutant � Zn 59.4 � 2.4

FIG 1 Zinc overload selectively inactivates iron-sulfur cluster containing fumarases by producing more
apo forms. (A) UV-visible absorption spectra of recombinant fumarase A (FumA) proteins purified from
E. coli zntA zntR double-mutant cells supplemented with 0 �M (spectrum 1) or 200 �M (spectrum 2)
ZnSO4 in LB medium. (B) UV-visible absorption spectra of recombinant fumarase B (FumB) proteins
purified from E. coli zntA zntR double-mutant cells supplemented with 0 �M (spectrum 1) or 200 �M
(spectrum 2) ZnSO4 in LB medium. (C) UV-visible absorption spectra of recombinant fumarase C (FumC)
proteins purified from E. coli zntA zntR double-mutant cells supplemented with 0 �M (spectrum 1) or
200 �M (spectrum 2) ZnSO4 in LB medium. The inset in panels A to C is a photograph of the SDS-PAGE
gel of purified proteins. (D) The relative fumarase activity of purified proteins from panels A to C. The
relative activity is representative of the percentage of fumarase activity with 200 �M ZnSO4 treatment in
untreated samples. The results represent average � standard deviation from three independent
experiments.
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largely eliminated the iron-sulfur cluster content (Fig. 1A and B) and the enzyme activity
(Fig. 1D) of fumarases A and B in the E. coli zntA zntR mutant cells. On the other hand,
the same zinc treatment did not affect the enzyme activity of fumarase C in E. coli zntA
zntR mutant cells (Fig. 1C and D). The results suggested that zinc overload in E. coli cells
selectively inhibits iron-sulfur cluster-containing fumarases A and B without inhibiting
fumarase C, which does not have iron-sulfur clusters.

Effect of zinc overload on other iron-sulfur proteins in E. coli cells. To further
explore the effects of zinc overload on iron-sulfur proteins, we used biotin synthase,
which contains a [2Fe-2S] cluster and a [4Fe-4S] cluster (44). Biotin synthase (BioB)
converts dethiobiotin into biotin by inserting a sulfur atom between C-6 and C-9 of
dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction (45). In the exper-
iments, recombinant BioB was expressed in the E. coli zntA zntR mutant cells grown in
LB medium supplemented with or without 200 �M ZnSO4 under aerobic conditions.
Figure 2A shows that the addition of ZnSO4 (200 �M) also decreased the iron-sulfur
cluster contents of recombinant biotin synthase in the E. coli zntA zntR mutant cells.

We then analyzed the activity of the endogenous NADH dehydrogenase I, which
contains multiple iron-sulfur clusters (46). Using deamino-NADH as a specific substrate
for NADH dehydrogenase I (47), we found that the deamino-NADH oxidation rate of the
E. coli zntA zntR mutant cells progressively decreased when the ZnSO4 concentration in
LB medium was gradually increased from 0 to 400 �M (Fig. 2B). The cell growth of the
E. coli zntA zntR mutant was also inhibited as the ZnSO4 concentration in LB medium
was increased (Fig. 2B). Since the NADH dehydrogenase I contains multiple iron-sulfur
clusters (48), the correlation between the decrease in the deamino-NADH oxidation rate
and inhibition of cell growth by zinc in LB medium suggested that zinc toxicity could
be closely associated with the inhibition of iron-sulfur proteins in E. coli cells.

Zinc overload inhibits iron-sulfur cluster biogenesis in E. coli cells. It was
proposed that zinc may directly attack iron-sulfur clusters in proteins to produce the
apo form in cells (22). On the other hand, zinc may block iron-sulfur cluster biogenesis,
thus producing apo-form inactive proteins in cells. To delineate the two possibilities, we
added ZnSO4 (200 �M) to the E. coli zntA zntR mutant cells in LB medium before and
after recombinant iron-sulfur protein was expressed.

FIG 2 Excess zinc disrupts iron-sulfur cluster assembly in both [4Fe-4S] proteins and [2Fe-2S] proteins. (A)
UV-visible absorption spectra of recombinant BioB purified from the E. coli zntA zntR double-mutant cells
supplemented with 0 �M (spectrum 1) or 200 �M (spectrum 2) ZnSO4 in LB medium under aerobic
growth conditions. (B) Correlation of the relative activity of NADH dehydrogenase I and cell growth
inhibition. The relative dehydrogenase I activity and relative cell growth were defined as the percentage
of the E. coli zntA zntR double-mutant cells in LB medium with ZnSO4 over that without ZnSO4. The
relative cell growth inhibition rate was calculated by 100% minus the relative growth rate of the E. coli
zntA zntR double-mutant cells. The relative dehydrogenase I activity (closed circles) and relative cell
growth inhibition rate (closed squares) were plotted as a function of the ZnSO4 concentration in LB
medium. The 100% cell growth represented the cell density (OD at 600 nm) of �3.0 after 5 h at 37°C in
LB medium with aeration. The results were the most representative of three independent experiments.
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In the experiment, recombinant dihydroxy-acid dehydratase (IlvD), which contains a
[4Fe-4S] cluster for its enzyme activity in the branched-chain amino acid biosynthesis
pathway (49), was expressed in the E. coli zntA zntR mutant cells grown in LB medium
with or without ZnSO4 (200 �M). IlvD was then purified from the cells. Figure 3A shows
that the addition of ZnSO4 (200 �M) to LB medium before recombinant IlvD was
expressed largely eliminated iron-sulfur clusters in the protein. However, the addition
of zinc to LB medium after IlvD was expressed did not significantly affect iron-sulfur
clusters in the protein. The enzyme activity measurements further showed that zinc
blocked iron-sulfur cluster assembly without affecting the preassembled iron-sulfur
clusters in IlvD in the E. coli cells (Fig. 3B).

The recombinant endonuclease III (Nth), a DNA repair enzyme which hosts a stable
[4Fe-4S] cluster (50), was also investigated. Figure 3C shows that while the addition of

FIG 3 Excess zinc indirectly disrupts iron-sulfur cluster assembly in proteins. (A) Inhibition of the [4Fe-4S]
cluster assembly in recombinant IlvD in the E. coli cells by zinc. UV-visible absorption spectra of recombinant
IlvD purified from E. coli zntA zntR double-mutant cells supplemented with 0 �M (spectrum 1) or 200 �M
ZnSO4 grown in LB medium before (spectrum 2) and after (spectrum 3) protein was produced in the cells. The
protein concentration of IlvD was 28 �M. The inset is a photograph of the SDS-PAGE gel of purified proteins.
(B) Relative activity of purified IlvD from panel A. For the enzyme activity assay, 1 �M IlvD was used. The unit
of IlvD enzyme activity referred to the production of keto acid (�M) per minute per micromolar IlvD. The
relative activity of control sample was considered to be 100%, and the relative activity of other samples was
obtained by dividing the control activity. (C) Inhibition of the [4Fe-4S] cluster assembly in recombinant
endonuclease III (Nth) in the E. coli cells by zinc. UV-visible absorption spectra of recombinant endonuclease
III (Nth) purified from E. coli zntA zntR double-mutant cells supplemented with 0 �M (spectrum 1) or 200 �M
ZnSO4 grown in LB medium before (spectrum 2) and after (spectrum 3) protein was produced in the cells. The
protein concentration of IlvD was 12 �M. The inset is a photograph of the SDS-PAGE gel of purified proteins.
(D) Effect of zinc on NADH dehydrogenase I in the E. coli cells. Inverted membrane vesicles (10 �l) were added
to 290 �l reaction solution containing Tris (20 mM, pH 8.0), NaCl (200 mM), and deamino-NADH (50 �M).
NADH dehydrogenase I activity was measured by monitoring the oxidation of deamino-NADH at 340 nm
(extinction coefficient, 6.22 mM�1 cm�1) at room temperature. The unit of NADH dehydrogenase I enzyme
activity referred to the reduction of substrate (micromolar) per minute per OD at 600 nm. The relative activity
of control sample was considered to be 100%, and the relative activity of other samples was obtained by
dividing the control activity. The results represent average � standard deviation from three independent
experiments.
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ZnSO4 (200 �M) to LB medium before endonuclease III was expressed in the E. coli zntA
zntR mutant cells largely prevented iron-sulfur cluster assembly in the protein, the
addition of ZnSO4 (200 �M) to LB medium after endonuclease III was expressed did not
significantly affect the preassembled iron-sulfur cluster in endonuclease III.

To further explore the inhibition of zinc overload on endogenous iron-sulfur cluster
biogenesis, we measured the activity of the native NADH dehydrogenase I in the E. coli
cells. Figure 3D shows that while the addition of ZnSO4 (200 �M) to LB medium
followed by 5 h of growth of the E. coli zntA zntR mutant cells significantly decreased
the enzyme activity, the addition of ZnSO4 (200 �M) to LB medium after 5 h of cell
growth did not affect the enzyme activity of the NADH dehydrogenase I in the cells.

In E. coli, in addition to the housekeeping iscSUA-hscBA-fdx-iscX iron-sulfur gene
cluster assembly system, there is another stress-inducible sufABCDSE system. Since
increased expression of the gene cluster sufABCDSE is an indication of the iron-sulfur
cluster assembly deficiency in E. coli cells (51, 52), we also analyzed the expression of
the sufA operon in the E. coli zntA zntR mutant cells in response to ZnSO4 in LB medium
and found that expression of the sufA operon was indeed induced by ZnSO4 treatment
(Fig. S2B), suggesting that zinc has a general inhibitory effect on iron-sulfur cluster
biogenesis in E. coli cells.

Taken together, the results suggested that ZnSO4 (200 �M) inhibits iron-sulfur
cluster biogenesis without affecting the preassembled iron-sulfur clusters in proteins in
E. coli cells.

IscU, IscA, and ferredoxin are the major zinc targets among the housekeeping
iron-sulfur cluster assembly machinery. The proteins encoded by iscSUA-hscBA-fdx-
iscX represent the housekeeping iron-sulfur cluster biogenesis machinery in E. coli cells.
If zinc inhibits iron-sulfur cluster biogenesis, it is possible that zinc may directly interact
with iron-sulfur cluster assembly proteins. To test this idea, we expressed each protein
encoded by the gene cluster iscSUA-hscBA-fdx-iscX in the E. coli zntA zntR mutant cells
grown in LB medium supplemented or not with ZnSO4 (200 �M). Purified proteins were
then subjected to the UV-visible absorption measurements and metal content analyses.

Figure 4 shows that the addition of ZnSO4 (200 �M) to LB medium had no effect on
the UV-visible absorption spectra of IscS (Fig. 4A), IscU (Fig. 4B), HscB (Fig. 4D), HscA
(Fig. 4E), and IscX (Fig. 4G) expressed in the E. coli zntA zntR mutant cells. On the other
hand, the addition of ZnSO4 (200 �M) to LB medium significantly decreased the iron
binding peak at 315 nm of IscA (Fig. 4C) and the iron-sulfur cluster binding peaks at
415 nm and 459 nm of ferredoxin (Fig. 4F) expressed in the E. coli zntA zntR mutant cells,
suggesting that zinc overload may block the iron binding in IscA and the iron-sulfur cluster
binding in ferredoxin. The zinc content measurements in purified proteins (Fig. 4H) showed
that IscU, IscA, and ferredoxin proteins contained 0.85 � 0.16, 0.94 � 0.04, and 1.69 � 0.12
zinc atoms per protein monomer (n � 3), respectively. The stoichiometry of zinc binding in
IscU is consistent with previous studies showing that each IscU monomer contains one zinc
atom (24). On the other hand, other iron-sulfur cluster assembly proteins had only very little
or no zinc binding (Fig. 4H). Thus, IscA, IscU, and ferredoxin are the major targets of zinc
overload in the E. coli zntA zntR mutant cells.

The conserved cysteine residues in IscA, IscU, and ferredoxin are required for
their zinc binding activity. To explore the zinc binding sites of IscU, IscA, and
ferredoxin, we constructed an IscU mutant (IscU-3M) in which three cysteine residues
(Cys-37, Cys-63, and Cys-106) were replaced with serine, an IscA mutant (IscA-3M) in
which three cysteine residues (Cys-35, Cys-99, and Cys-101) were replaced with serine
(48), and a ferredoxin mutant (Fdx-4M) in which four cysteine residues for binding the
[2Fe-2S] cluster (Cys 42, Cys 48, Cys 51, and Cys 87) were replaced with serine. Wild-type
IscU, IscA, and ferredoxin and their mutants (IscU-3M, IscA-3M, and ferredoxin-4M,
respectively) were then expressed in the E. coli zntA zntR mutant cells grown in LB
medium supplemented with increasing concentrations of ZnSO4 (0 to 400 �M). Each
protein was then purified from the E. coli cells.

Figure 5 shows that zinc binding in IscU, IscA, and ferredoxin was gradually
increased in the E. coli zntA zntR mutant cells as the concentration of ZnSO4 in LB
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medium was increased. In contrast, the mutant proteins (IscU-3M, IscA-3M, and Fdx-4M)
expressed in the E. coli zntA zntR mutant cells had very little or no zinc binding even
after 400 �M ZnSO4 was added to LB medium. Thus, IscU, IscA, and ferredoxin have
specific zinc binding activity, and the conserved cysteine residues in IscU, IscA, and
ferredoxin are essential for their zinc binding activity.

Zinc overload emulates the phenotype of an E. coli mutant with the deletion of
IscU, IscA, and ferredoxin. If IscU, IscA, and ferredoxin are the major targets of zinc
overload in the E. coli cells, the deletion of these genes would emulate the effects of
zinc overload on iron-sulfur cluster biogenesis. To test this idea, we deleted the genes
encoding IscU, IscA, and ferredoxin to produce an E. coli iscU iscA fdx mutant. Figure 6A
shows that the deletion of IscU, IscA, and ferredoxin decreased the iron-sulfur cluster
assembly in endonuclease III, which was similar to the inhibition of the iron-sulfur
cluster assembly in endonuclease III in the E. coli zntA zntR mutant cells grown in LB
medium supplemented with 200 �M ZnSO4 (Fig. 6B). We also measured the cell growth

FIG 4 IscU, IscA, and ferredoxin are the major zinc binding proteins among the iron-sulfur cluster assembly
proteins. Each protein encoded by the gene cluster iscSUA-hscBA-fdx-iscX was expressed in the E. coli zntA zntR
double-mutant cells grown in LB medium supplemented or not with 200 �M ZnSO4. Proteins were purified from
the cells and subjected to UV-visible absorption measurements. (A) IscS. (B) IscU. (C) IscA. (D) HscB. (E) HscA. (F)
Ferredoxin. (G) IscX. In each panel, spectrum 1 is without ZnSO4 in LB medium, and spectrum 2 is with 200 �M
ZnSO4 in LB medium. The inset in each panel is a photograph of the SDS-PAGE gel of purified proteins. The results
are representatives of three independent protein preparations. (H) The zinc content of the iron-sulfur cluster
assembly proteins encoded by the gene cluster iscSUA-hscBA-fdx-iscX purified from the E. coli zntA zntR double-
mutant cells grown in LB medium supplemented with 200 �M ZnSO4. The results represent the average � standard
deviation from three independent experiments.
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of the E. coli mutant with the deletion of IscA, IscU, and ferredoxin and found that those
deletions resulted in slow growth (Fig. 6C), which was also similar to that of the E. coli
zntA zntR mutant cells grown in LB medium supplemented with 200 �M ZnSO4 (Fig.
6D). Thus, zinc overload in E. coli cells appears to emulate the phenotype of the E. coli
mutant cells with deletion of the iron-sulfur cluster assembly proteins IscU, IscA, and
ferredoxin.

DISCUSSION

In this study, we report that zinc overload in the E. coli zntA zntR mutant cells inhibits
iron-sulfur cluster biogenesis without affecting the preassembled iron-sulfur clusters in
proteins or proteins without iron-sulfur clusters. Additional studies show that among
the housekeeping iron-sulfur cluster assembly proteins encoded by gene cluster
iscSUA-hscBA-fdx-iscX in E. coli, IscU, IscA, and ferredoxin have strong zinc binding
activity in E. coli cells, and the conserved cysteine residues in the proteins are essential
for their zinc binding activity. The deletion of IscU, IscA, and ferredoxin in E. coli cells
appears to emulate the zinc overload-mediated inhibition of iron-sulfur cluster biogen-

FIG 5 The conserved cysteine residues are required for the zinc binding activity for IscA, IscU, and
ferredoxin. (A) Zinc binding activity of IscU in E. coli zntA zntR double-mutant cells in LB medium.
Wild-type IscU and IscU mutant (IscU-3M) were expressed in E. coli zntA zntR double-mutant cells grown
in LB medium supplemented with the indicated concentrations of ZnSO4. Proteins were purified from E.
coli cells and subjected to the zinc content analyses. Zinc content in purified IscU was plotted as a
function of the ZnSO4 concentration in LB medium. Closed circles, wild-type IscU; open circles, IscU-3M
mutant. (B) Zinc binding activity of IscA in E. coli zntA zntR double-mutant cells in LB medium. Wild-type
IscA and IscA mutant (IscA-3M) were expressed in E. coli zntA zntR double-mutant cells grown in LB
medium supplemented with indicated concentrations of ZnSO4. Proteins were purified from E. coli cells
and subject to zinc content analysis. Zinc content in purified IscA was plotted as a function of the ZnSO4

concentration in LB medium. Closed circles, wild-type IscA; open circles, IscA-3M mutant. (C) Zinc binding
activity of ferredoxin in E. coli zntA zntR double-mutant cells in LB medium. Wild-type Fdx and an Fdx
mutant (Fdx-4M) were expressed in E. coli zntA zntR double-mutant cells grown in LB medium supple-
mented with indicated concentrations of ZnSO4. Proteins were purified from E. coli cells and subject to
zinc content analysis. Zinc content in purified Fdx was plotted as a function of the ZnSO4 concentration
in LB medium. Closed circles, wild-type Fdx; open circles, Fdx-4M mutant. The results represent the
average � standard deviation from three independent experiments.
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esis and the slow-growth phenotype of the E. coli zntA zntR mutant cells. The results
suggest that zinc overload inhibits iron-sulfur cluster biogenesis by specifically target-
ing IscU, IscA, and ferredoxin in cells.

Iron-sulfur clusters in proteins are generally vulnerable to reactive oxygen species (51)
and nitric oxide (53). Recently, it has also been shown that iron-sulfur clusters in dehydra-
tases are sensitive to copper (54), zinc, and silver (22). Here, we find that iron-sulfur proteins,
including fumarases A and B, endonuclease III, biotin synthase, and endogenous NADH
dehydrogenase I, are readily inactivated by zinc overload in E. coli cells. On the other hand,
the preassembled iron-sulfur clusters in proteins are not disrupted by zinc overload in the
cells. Thus, zinc overload appears to target iron-sulfur cluster biogenesis instead of disrupt-
ing iron-sulfur clusters in proteins in cells. This notion of zinc toxicity is analogous to that
of copper toxicity, which also inhibits iron-sulfur cluster biogenesis without affecting
preassembled iron-sulfur clusters in cells (48, 55).

One finding of this study is that zinc can effectively inhibit the enzyme activity of NADH
dehydrogenase I in the E. coli zntA zntR double-mutant cells. This is partially in agreement
with the previous observation that zinc inhibits the respiratory chain by both respiratory
oxidases (56, 57) and NADH dehydrogenase (57) in E. coli. However, we also find that the
activity of preexisted NADH dehydrogenase I is not affected significantly by zinc in E. coli
zntA zntR double-mutant cells. The apparent contradiction with the previous report that
zinc inhibits NADH dehydratase directly in vitro (57) is likely due to the different experi-
mental conditions. A possible consideration is that the activity of NADH dehydrogenase is
sensitive to zinc by determination in vitro. In our experiment, prior to the determination of
NADH dehydratase I activity, most of the residual zinc after treatment was removed by
washing cells twice with buffer. When we measured the activity of NADH dehydratase I,
there was little or no zinc in the reaction solution. The activity of the NADH dehydratase I
should be unaffected as long as the complex and the bound iron-sulfur clusters are

FIG 6 Excess zinc emulates the phenotype of an E. coli mutant with deletion of IscA, IscU, and ferredoxin.
(A) UV-visible absorption spectra of recombinant endonuclease III (Nth) purified from E. coli MC4100
(spectrum 1) and iscU iscA fdx mutant (spectrum 2) in LB medium under aerobic growth conditions. (B)
UV-visible absorption spectra of recombinant endonuclease III (Nth) purified from E. coli zntA zntR mutant
cells (spectrum 1) supplemented with 200 �M ZnSO4 (spectrum 2) in LB medium under aerobic growth
conditions. Insets in panels A and B are photographs of an SDS-PAGE gel of purified proteins. (C) Growth
curve of E. coli iscU iscA fdx mutant (closed squares) and wild type E. coli MC4100 (closed circles) in LB
medium under aerobic growth conditions. The results represent the average � standard deviation from
three independent experiments. (D) Growth curve of E. coli zntA zntR mutant supplemented (closed
squares) or not (closed circles) with 200 �M ZnSO4 in LB medium under aerobic growth conditions. The
results represent the average � standard deviation from three independent experiments.
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completely assembled and not destroyed by zinc treated in living cells. Altogether, zinc may
not only inhibit the activity of NADH oxidase and quinol oxidases directly but also decrease
NADH dehydratase I activity by blocking the iron-sulfur cluster assembly in the enzyme
complex in E. coli cells.

The effects of high zinc content on wild-type E. coli cells have been extensively
investigated by transcriptomics (13), proteomics (58) and metalloproteomics (59) ap-
proaches. In response to the elevated intracellular zinc content, the cells will express
multiple proteins, including ZraP, a putative zinc storage protein (59), a major zinc
efflux system, ZntA, a P-type ATPase transporter, and a transcription factor, ZntR (40),
among others. When ZntA and ZntR are deleted, the E. coli mutant cells accumulate
intracellular zinc content, resulting in zinc overload. Because zinc and the iron-sulfur
cluster have similar ligand coordination in proteins, it is conceivable that zinc over-
loading in cells may compete with iron or iron-sulfur cluster binding in the proteins and
inhibit iron-sulfur cluster biogenesis in cells. With the exception of IscS, the major
iron-sulfur cluster assembly proteins have either iron or iron-sulfur cluster binding sites.
Here, we found that zinc overload in the E. coli zntA zntR mutant cells inhibits iron-sulfur
cluster biogenesis by specifically binding to IscU, IscA, and ferredoxin. The zinc binding
in the iron-sulfur cluster assembly protein IscU has previously been reported (60), which
is consistent with our results. It may be envisioned that zinc overload forces IscU to bind
zinc, which would prevent IscU from assembling iron-sulfur clusters. Zinc binding in
IscA has not been previously reported. In the crystal structure, Cys-99 and Cys-101 of
IscA are not visible, likely because of their flexible structure (61, 62). Nevertheless, it has
been postulated that IscA may form a cysteine pocket with Cys-99 and Cys-101, which
are responsible for binding iron (63) and facilitate the binding of other transition metal
ions, such as copper or zinc. Our previous study showed that excess copper in E. coli
cells does lead to copper binding in IscA under aerobic (48) and anaerobic (55) growth
conditions and inhibits iron-sulfur cluster assembly. Here, we found that zinc overload
in E. coli cells results in zinc binding in IscA and blocks iron-sulfur cluster biogenesis.
Similarly, ferredoxin hosts a [2Fe-2S] cluster via four cysteine residues (Cys-42, Cys-48,
Cys-51, and Cys-87) (64), and zinc overload in E. coli cells leads to zinc binding in
ferredoxin. Since mutations of the conserved cysteine residues in IscU, IscA, and
ferredoxin almost abolish the zinc binding activity of the proteins, these residues are
critical for both iron/iron-sulfur clusters and zinc binding in the proteins. We propose
that zinc overload in cells results in zinc binding in IscU, IscA, and ferredoxin and
inhibits iron-sulfur cluster biogenesis in E. coli cells.

Since iron-sulfur proteins are involved in diverse physiological processes ranging
from energy metabolism to DNA repair and replication (65), the inhibition of iron-sulfur
cluster biogenesis by zinc will have a broad impact on diverse cellular functions. It
should be pointed out that iron-sulfur proteins are also the targets of cobalt (66) and
copper (48, 54, 55, 67, 68) toxicity. Thus, iron-sulfur cluster biogenesis could be the
primary target of heavy-metal toxicity in cells.

MATERIALS AND METHODS
Gene knockout in E. coli cells. ZntA and ZntR, two major proteins regulating intracellular zinc

homeostasis, were deleted from wild-type E. coli (MC4100) following procedures described previously
(69). The constructed E. coli zntA zntR mutant cells grow normally in LB medium but become hypersen-
sitive to zinc in the medium as reported by Binet and Poole (41). Genes encoding IscU, IscA, and
ferredoxin were also deleted from wild-type E. coli cells (MC4100). The gene deletion was confirmed by
PCR. All primers for the gene deletion and confirmation were synthesized by TaKaRa Co. (Dalian, China).

Protein expression and purification. Genes encoding fumarases A, B, and C from E. coli were
amplified using PCR and cloned to an expression plasmid, pBAD, as described previously (55). The
plasmids expressing E. coli IscS, IscU, IscA, HscB, HscA, ferredoxin, IscX, dihydroxy-acid dehydratase (IlvD),
endonuclease III (Nth), and biotin synthetase (BioB) were previously prepared. Each plasmid was
introduced into the E. coli zntA zntR mutant cells. Cells containing the expression plasmid were grown
to an optical density at 600 nm (OD600) of 0.6. ZnSO4 was then added to Luria-Bertani (LB) medium 10
min before recombinant protein was induced with 0.02% arabinose at 37°C for 4 h with aeration. Cells
were harvested and washed twice with protein purification buffer (NaCl [500 mM], Tris [20 mM, pH 8.0]).
Proteins were purified as described previously (55). The purity of purified protein was judged from
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SDS-PAGE, followed by the Coomassie blue staining. The concentration of purified protein was deter-
mined from the absorption peak at 280 nm using the published extinction coefficients.

Site-directed mutagenesis. The plasmid pBAD-IscA-3M was previously constructed. The IscU-3M
(C37/63/106S) and ferredoxin-4M (C42/48/51/87S) mutants were constructed by the site-directed mu-
tagenesis. Each of the conserved cysteine residues in the proteins was replaced with serine. PCR primers
used in this work are shown in Table 2, and specific mutations were confirmed by direct sequencing.

Enzyme activity assays for fumarases, dihydroxy-acid dehydratase, NADH dehydrogenase I,
and cysteine desulfurase. The activities of purified fumarases A, B, and C were measured by monitoring
the reaction product (fumaric acid) in a reaction mixture containing 50 mM sodium phosphate (pH 7.4)
and 50 mM substrate (malate) at 250 nm using an extinction coefficient of 1.48 cm�1 mM�1 (55). For
dihydroxy-acid dehydratase, activity was measured using DL-2, 3-dihydroxy-isovalerate as the substrate.
In the assay, 10 �l purified IlvD was added to 390 �l preincubated solution containing 50 mM Tris (pH
8.0) and 10 mM substrate. The reaction product (keto acids) was monitored at 240 nm using an extinction
coefficient of 0.19 cm�1 mM�1. NADH dehydrogenase I activity of E. coli cells was measured following
procedures described previously, with some modifications (48). Briefly, the inverted membrane vesicles
of E. coli cells were prepared by passing the cells through low-temperature ultrahigh-pressure continuous
flow cell disrupter (JN-3000 Plus) once. Inverted membrane vesicles were added to the reaction solution
containing 20 mM Tris (pH 8.0), NaCl (200 mM), deamino-NADH (100 �M), sodium azide (400 mM), and
plumbagin (400 �M). The NADH dehydrogenase I activity was determined by measuring the oxidation of
deamino-NADH at 340 nm (� � 6.22 mM�1 cm�1) at room temperature. In this situation, deamino-NADH
as a specific substrate for NADH dehydrogenase I provides electrons (47), sodium azide inhibits the
terminal cytochrome oxidases (52), and plumbagin abstracts the electrons directly from the NADH
dehydrogenase I (59). The cysteine desulfurase activity of E. coli IscS was measured by incubating IscS
with dithiothreitol (2 mM) and L-cysteine (0.1 mM) at 37°C. The amount of sulfide produced by IscS in the
solution was measured according to Siegel’s method (70).

Metal content analyses. Total zinc content in protein samples was determined using the zinc
indicator PAR [4-(2-pyridylazo)-resorcinol]. The iron content of protein samples was measured according
to Fischer’s method (71). Zinc and iron contents in protein samples were also analyzed by the inductively
coupled plasma-emission spectrometry (ICP-MS). The results from the two methods were very similar to
each other.

For total zinc content of E. coli, cells was also determined by ICP-MS. Particularly, the E. coli zntA zntR
mutant and its parental wild-type strain MC4100 cells were grown in LB medium supplemented or not
with 200 �M ZnSO4 at 37°C under aerobic conditions. Cells were harvested from 50 ml LB medium by
centrifugation when the OD at 600 nm of the cells reached 0.6. The cell pellet was washed twice with
50 ml of 170 mM NaCl, 20 mM Tris-HCl (pH 8.0), and 2 mM EDTA, resuspended in 5 ml of 170 mM NaCl,
and transferred to a microwave digestion vessel with 4 ml nitric acid (35% [vol/vol], Shanghai Yiqian
Technology Co. Ltd.) added. The vessel was sealed and placed in the microwave chamber. The following
steps were run: the temperature was ramped to 120°C, held for 1 min, ramped to 160°C, held for 6 min,
ramped to 180°C, held for 20 min, and reduced to room temperature over 30 min. Once digestion was
complete, the samples were diluted using deionized water. The zinc content of above-mentioned
samples was determined by ICP-MS.
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