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Abstract: Over the past three decades, numerous studies have shown a strong connection between
matrix metalloproteinase 9 (MMP-9) levels and myocardial infarction (MI) mortality and left ventricle
remodeling and dysfunction. Despite this fact, clinical trials using MMP-9 inhibitors have been
disappointing. This review focuses on the roles of MMP-9 in MI wound healing. Infiltrating
leukocytes, cardiomyocytes, fibroblasts, and endothelial cells secrete MMP-9 during all phases
of cardiac repair. MMP-9 both exacerbates the inflammatory response and aids in inflammation
resolution by stimulating the pro-inflammatory to reparative cell transition. In addition, MMP-9 has
a dual effect on neovascularization and prevents an overly stiff scar. Here, we review the complex
role of MMP-9 in cardiac wound healing, and highlight the importance of targeting MMP-9 only for
its detrimental actions. Therefore, delineating signaling pathways downstream of MMP-9 is critical.

Keywords: inflammation; extracellular matrix; matrix metalloproteinases; remodeling;
macrophage; neutrophil

1. Introduction

Myocardial infarction (MI) occurs with prolonged ischemia due to coronary artery
occlusion, resulting in irreversible cell death of cardiomyocytes [1,2]. Approximately
every 40 s, an American will have a heart attack. In more than 20% of cases, the patient
will progress to heart failure within 5 years [3–6]. Following the ischemic insult, a series
of molecular and cellular physiological pathways are triggered to repair the damaged
myocardium. As cardiomyocytes are post-mitotic cells, repair involves the replacement
of necrotic myocytes with scar tissue [7]. When ischemia is prolonged and a significant
portion of the myocardium is affected, MI may lead to alteration of left ventricle (LV)
size, shape and function, a process termed LV remodeling [1,8]. Adverse LV remodeling
constitutes the basis for ischemic heart failure [1].

A major determinant of adverse LV remodeling is the efficacy of infarct healing [9–11].
Current state-of-the-art treatment includes timely reperfusion of the coronary artery, along
with angiotensin converting enzyme inhibitors, beta adrenergic receptor blockers, and
statins. When effective, treatment limits infarct scar size and improves survival [9,12].
However, not all patients receive timely reperfusion therapy and not all patients respond
to treatment with actual reflow in the artery, both of which significantly increase their risk
of developing heart failure [9,12,13]. Improving the cardiac repair process in a predictable
way is a strategy that may help to improve outcomes for this cohort [1,8].

MI wound healing involves three distinct phases that overlap: the inflammatory,
proliferation, and maturation phases. During the inflammatory phase, recruited neutrophils
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and macrophages are pro-inflammatory (N1, M1), actively secreting proteases to clear
necrotic cells and debris that are later replaced by a fibrotic scar. During the proliferation
phase, neutrophils and macrophages convert from pro-inflammatory to reparative cell
types (N2, M2) and support inflammation resolution, while myofibroblasts and endothelial
cells are activated to form and revascularize the scar [1,8]. In addition to leukocytes,
fibroblasts also exhibit a wide range of phenotypes, going from pro-inflammatory (F1)
phenotype during the inflammation phase to anti-inflammatory (F2) phenotype during the
proliferation phase [14]. During the maturation phase, the scar is further strengthened by
cross-linking of the extracellular matrix (ECM) components, particularly collagen [1,8].

For optimal wound healing, balance among the different phases is crucial [1,15,16]. For
example, a prolonged inflammatory phase may prevent or interfere with the proliferation
and maturation phases, yielding an infarct too weak to support the structure of the LV
and lead to LV aneurysm. Likewise, extending a robust reparative phase past the time of
sufficient scar formation may increase total ECM deposition and yield an overly stiff LV,
which could serve as a conduit for arrhythmias or promote diastolic dysfunction and lead
to the development of heart failure [1,17].

ECM constituents play major roles in all phases of MI cardiac repair. Matrix metal-
loproteinases (MMPs) are a family of 25 proteolytic enzymes that collectively degrade
all ECM components [18–20]. MMPs are major regulators of the ECM, conveyed into the
infarct primarily by neutrophils and macrophages that begin infiltrating within minutes of
the ischemic insult. In addition to leukocytes, MMPs are also produced by cardiomyocytes,
fibroblasts and endothelial cells [19–21]. Of the MMPs studied in the myocardium, MMP-9
has received the majority of attention. Initially, this was due to the technical reason that
MMP-2 and MMP-9 are the two MMPs visualized by gelatin zymography, and prior to the
commercial availability of MMP antibodies, these two MMPs were the easiest to evaluate
and, therefore, the most frequently studied. MMP-9 continues to be evaluated due to its
high mechanistic connection with cardiac remodeling [20,22].

MMP-9 plasma levels correlate with MI mortality, LV remodeling and dysfunction
across a variety of species and in humans [23–26]. Zhu and colleagues showed that higher
plasma levels of MMP-9 predict in-hospital mortality in patients with acute MI, even
after adjustment for all other risk factors [23]. Somuncu and colleagues showed that
patients with MI who had MMP-9 plasma levels above 12.92 ng/mL at the time of hospital
admission had 3.5-fold higher odds for cardiovascular mortality and increased risk for
advanced heart failure compared to the group with lower MMP-9 concentrations [24]. High
MMP-9 plasma levels during the first few hours of MI are associated with a lower ejection
fraction and higher LV end-diastolic volume at discharge [26]. Similarly, higher levels of
MMP-9 are reported in ruptured human left ventricles compared to control infarcts [27].
For this reason, we focus this review article on the role of MMP-9 in MI wound healing.

2. Regulation of MMP-9 Activity

In most cells, except neutrophils, MMP-9 is regulated at the transcriptional level by
cytokines and growth factors (interleukin (IL)-13, tumor necrosis factor alpha (TNFα),
transforming growth factor beta (TGFβ), vascular endothelial growth factor (VEGF)),
and epigenetic mechanisms (histone modification, DNA methylation and non-coding
RNA) [28]. MMP-9 in neutrophils is primarily regulated at the post-translational level, since
preformed MMP-9 is stored in gelatinase granules and released upon neutrophil activation
by inflammatory signals [19,29,30]. MMP-9 transcription is mediated through various
transcription factors including nuclear factor κB (NFκB), transcription factor Sp1 (SP1) and
activator protein 1 (AP1), which are highly responsive to inflammatory stimuli [22,31].

Transcribed MMP-9 is secreted in an inactive pro-form, consisting of an NH2-terminal
pro-domain, a conserved catalytic domain, a linker domain, and a COOH-terminal
hemopexin-like domain [32,33]. The catalytic domain contains a zinc ion that is essential
for proteolytic activity and is highly conserved within the MMP family [28,34]. Interaction
between the zinc ion and a cysteine residue on the NH2-terminal pro-domain masks the
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catalytic cleft, keeping the MMP-9 inactive [33,35,36]. Therefore, MMP-9 activation requires
removal of the pro-domain or disruption of the zinc-cysteine interaction, known as the
cysteine switch mechanism [28,33]. The most common route of MMP-9 activation is prote-
olysis of the pro-domain by other proteases such as MMPs -1, -2, -3, -7, or -13, cathepsin
and plasmin [33,34,37–43]. MMP-9 can also be activated by post-translational modification
of the pro-domain cysteine residue, including S-glutathionylation or S-nitrosylation [34].

There are a number of mechanisms built in to prevent excess or undesirable MMP-
9 activation. In the circulation, alpha 2-macroglobulin prevents systemic activation of
MMP-9 [44,45]. This abundant glycoprotein contains a unique amino acid sequence, which
functions as a sequestering substrate for a broad range of active proteases. Upon MMP-
9 proteolysis, alpha-2 macroglobulin undergoes conformational change to trap MMP-9
and mask its active site [45,46]. In addition, the conformational change exposes receptor
binding domains that enable alpha 2-macroglobulin/MMP-9 complex binding to low
density lipoprotein receptor related protein 1 (LPR1), resulting in clearance of MMP-9 from
the circulation [45,47,48].

In tissue, tissue inhibitor of metalloproteases (TIMPs), a family of four proteins
(TIMP-1, TIMP-2, TIMP-3, and TIMP-4), inhibit MMP-9 by forming a tight non-covalent
complex with the catalytic site of the protease, thereby blocking substrate access [44,49,50].
TIMP-1 and TIMP-2 deficiency is associated with accelerated LV remodeling as a func-
tion of age as well as MI [51–54]. Fibroblasts and cardiomyocytes are the main source of
TIMPs after MI [55]. In addition, most cells secrete variable amounts of TIMP-1 along with
MMP-9 [56].

Active MMP-9 enzymatically cleaves numerous ECM substrates, including collagen,
fibronectin and laminin, to facilitate ECM turnover and scar formation during cardiac
wound healing [17,55]. Proteolysis of ECM substrates generates biologically active frag-
ments, termed matricryptins, which regulate MI cardiac remodeling [44]. A list of MMP-9
generated matricryptins relevant to cardiac wound repair can be found in Table 1. In
addition to ECM constituents, MMP-9 processes numerous cytokines and chemokines
including TNFα, IL-1β, TGFβ, and CXC motif ligands (CXCL-1,4,5,7, and 12) [44,57–61].
Thus, MMP-9 is capable of propagating MI inflammatory signaling that is both necessary
and potentially deleterious [62–64].

Table 1. Selection of myocardial infarction relevant matrix metalloproteinase 9 (MMP-9)
derived matricryptins.

ECM Parent Protein ECM-Fragment Effect on Cardiac Wound
Healing Reference

Collagen I C-1158/59 Stimulates neovascularization [65]
Collagen IV Tumstatin Inhibits angiogenesis [66]

Collagen XVIII Endostatin Inhibits angiogenesis [67,68]

Osteopontin (OPN) OPN-p151
OPN-p152

Increases fibroblast migration
and wound healing [69]

ECM: Extracellular matrix; OPN: osteopontin.

3. MMP-9 Signaling in the Inflammatory Phase

The inflammatory phase occurs primarily over the first week in the mouse model of
permanent occlusion, with a slightly longer time-frame for humans [70–72]. This phase is
characterized by robust increase in pro-inflammatory cytokine release and degradation of
the ECM following myocyte necrosis [22]. Damage associated molecular patterns (DAMPs),
such as high mobility group box-1, S100A8/9, fibrinogen, fibronectin, heat shock proteins,
hyaluronic acids, ATP, complement, and RNA/DNA secreted from necrotic/injured cells
and the damaged ECM, attract leukocytes to the infarcted LV. Activated leukocytes further
release DAMPs to amplify the inflammatory response [1,73]. Neutrophils and monocytes
are the predominant infiltrating cells after MI (Figure 1). They regulate tissue reprogram-
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ming by releasing various ECM degrading MMPs, serine proteases, chemokines, and
cytokines [74–77].
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Figure 1. Temporal profile of MMP-9, leukocytes, and fibroblasts during myocardial infarction wound healing. The left
side shows the temporal profile of MMP-9 and the relative abundance of neutrophils, macrophages, B-cells, T-cells, and
fibroblasts during inflammation, proliferation and maturation phase. The graphs are based on the current literature [77–84].
The right side shows the cellular source of MMP-9, as well as in vitro stimulators of MMP-9 release and the effect of MMP-9
on different myocardial infarction wound healing processes. IL-1β: Interleukin 1 beta, IL-8: Interleukin 8, MMP-9: Matrix
metalloproteinase-9, TNFα: Tumor necrosis alpha, N1: Pro-inflammatory neutrophils, N2: Anti-inflammatory/reparative
neutrophils, M1: Pro-inflammatory macrophages, M2: Anti-inflammatory/reparative macrophages, F1: Pro-inflammatory
fibroblasts, F2: Anti-inflammatory/reparative fibroblasts. Created with BioRender.com (accessed on 23 March 2021) [85].

MMP-9 is an early and major MMP brought into the infarct region by activated leuko-
cytes within minutes of the ischemic insult [8,86]. Increased MMP-9 in the infarcted region
has been demonstrated in various animal models including rat, mouse, rabbit, dog, and
pig [22,64,87–89]. In mice, the highest increase is observed from day 1 to day 4, and
corresponds to neutrophil and macrophage infiltration into the infarct [27]. Infiltrating neu-
trophils secrete preformed MMP-9, which initiates early removal of necrotic debris. Further,
MMP-9 activates IL-1β, IL-8, and CXCL6 by proteolytic processing. These molecules form
a significant positive feedback loop for neutrophil activation and chemotaxis resulting in
sustenance of inflammation. MMP-9 can also regulate IL-8 activity by negative feedback
as C-terminal cleavage causes IL-8 inactivation [90]. MMP-9 further assists in prolonging
inflammation by cleaving CD36, which leads to inhibition of neutrophil apoptosis by
lowering caspase-9 expression [91].

Along with neutrophils, early pro-inflammatory (M1) macrophages produce large
amounts of MMP-9 after MI. MMP-9 overexpression specific to macrophages unexpectedly
improves ejection fraction and blunts the inflammatory response in a mouse model of
MI [92]. One possible mechanism through which MMP-9 may blunt inflammation is by
cleaving the receptor for advanced glycation end products (RAGE) into soluble RAGE [93].
Soluble RAGE has anti-inflammatory properties and low levels of soluble RAGE in patients
are associated with heart failure [94].
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The role of B- and T-cells in post-MI wound healing is still unclear. In rat models of
MI, CD8+ T-cells are activated and their cytotoxic actions have been demonstrated in vitro
on healthy cardiomyocytes [1,95]. Ilatovskaya and colleagues recently showed that mice
deficient in functional CD8+ T-cells had improved survival and cardiac physiology at day 7
after MI. However, same mice also had exacerbated inflammation, elevated MMP-9 levels
and poor scar formation, which resulted in later cardiac rupture in 100% of CD8+ T-cell
deficient mice compared to 33% of wild type mice [96]. MMP-9, by regulating calcium
influx, coordinates CD4+ and CD8+ T-cell proliferation, and MMP-9 deletion reduces
IL-2, TNFα, and interferon gamma (IFNγ) gene expression in these cells [31]. Similarly,
B-cells are responsible for the inflammatory response by mobilization of pro-inflammatory
monocytes after MI. B-cell depletion using CD20 antibodies reduced apoptotic cell numbers
and prevented adverse cardiac remodeling [1,97].

There is a significant association between elevated MMP-9 in the infarct and intensified
inflammatory cell infiltration in animal models of MI. However, various anti-inflammatory
strategies initiated early in MI to limit neutrophil influx worsened cardiac physiology,
despite reducing inflammation and acute injury [98]. MMP-9 deficiency yielded a reduction
in LV rupture rates and leukocyte influx [87,90,99].

Cardiomyocytes and fibroblasts localized to the infarct region also secrete MMP-9
during the inflammatory phase [89]. Various conditions, such as hypoxia and aldosterone,
elevate MMP-9 expression in cardiomyocytes, whereas peroxisome-proliferator-activated
receptor β/δ (PPARβ/δ) activation decreases its expression by reducing reactive oxygen
species production [100,101]. Pro-inflammatory (F1) fibroblasts can increase MMP-9 ex-
pression in response to ischemia and stress, though they are not the primary contributors.
Increased MMP-9 in fibroblasts decreases collagen synthesis resulting in a net collagenolytic
environment [14,44]. This is an important and necessary function, since a major role of the
inflammatory phase is to degrade and clear the necrotic tissue to make room for a scar.

4. MMP-9 Signaling in the Proliferation Phase

The proliferation phase overlaps with later stages of the inflammatory phase, con-
cluding about 2 weeks after MI in the mouse model [70]. This phase is characterized
by formation of granulation tissue and consists of macrophages, myofibroblasts, new
blood vessels, and ECM [14,102]. Transition from inflammatory to proliferation phase
is dependent on the cardiac microenviroment, and leukocytes aid in inflammation res-
olution [1,103,104]. Phagocytosis of apoptotic neutrophils stimulates polarization of in-
flammatory macrophages to anti-inflammatory/reparative macrophages. Ingestion of
apoptotic neutrophils reduces expression of pro-inflammatory cytokines, such as IL-1β and
TNFα, while increasing expression of anti-inflammatory and pro-fibrotic cytokines, such as
IL-10 and TGFβ in macrophages [105–107]. Furthermore, neutrophil gelatinase-associated
lipocalin released from neutrophils also stimulates the polarization of inflammatory to
reparative macrophages. Late stage neutrophils release annexin A1 and lactoferrin, which
inhibit neutrophil migration and recruitment, as well as induce apoptosis of neutrophils.
Apoptotic neutrophils express scavenger receptors, which bind and deplete inflammatory
mediators, aiding inflammation resolution [1].

MMP-9 plays a dual role in inflammation resolution (Figure 2). MMP-9 stimulates
inflammation by inhibiting neutrophil apoptosis and macrophage phagocytosis through
the CD36 receptor [19]. CD36 is a class B scavenging receptor degraded by MMP-9.
CD36 is also a marker of mature cardiomyocytes [108]. Intact CD36 stimulates neutrophil
apoptosis and macrophage phagocytosis [91]. MMP-9 cleaves platelet glycoprotein 4 into
several fragments that inhibit neutrophil apoptosis and macrophage phagocytosis [20].
MMP-9 is an M1 macrophage marker and by processing inflammatory molecules such as
CXCL4, CXCL12, IL-8 and TGFβ1, it aids in anti-inflammatory/reparative M2 macrophage
polarization [31]. Direct stimulation of macrophages with MMP-9 produces a mixed
transition state of the M1–M2 phenotype with higher expression of CCL5 and lower
expression of CCL3, IL-1β, IL-6 and TGFβ [20,109].



Biomolecules 2021, 11, 491 6 of 13

Biomolecules 2021, 11, x  6 of 13 
 

is also a marker of mature cardiomyocytes [108]. Intact CD36 stimulates neutrophil apop-
tosis and macrophage phagocytosis [91]. MMP-9 cleaves platelet glycoprotein 4 into sev-
eral fragments that inhibit neutrophil apoptosis and macrophage phagocytosis [20]. 
MMP-9 is an M1 macrophage marker and by processing inflammatory molecules such as 
CXCL4, CXCL12, IL-8 and TGFβ1, it aids in anti-inflammatory/reparative M2 macrophage 
polarization [31]. Direct stimulation of macrophages with MMP-9 produces a mixed tran-
sition state of the M1–M2 phenotype with higher expression of CCL5 and lower expres-
sion of CCL3, IL-1β, IL-6 and TGFβ [20,109]. 

 
Figure 2. MMP-9 roles in inflammation and resolution after myocardial infarction. DAMPs: Danger associated molecular 
patterns, CD36: Cluster of differentiation 36, CXCL: CXC motif ligand, IL-1β: Interleukin 1 beta, IL-8: Interleukin 8, MMP: 
Matrix metalloproteinase, PTM: Post-translational modification, TIMP: Tissue inhibitor of metalloproteinases, TGFβ: 
Transforming growth factor beta. M1: Pro-inflammatory macrophages, M2: Anti-inflammatory/reparative macrophages, 
F1: Pro-inflammatory fibroblasts, F2: Anti-inflammatory/reparative fibroblasts. Created with BioRender.com (accessed on 
23 March 2021) [85]. 

The hallmark of the proliferation phase is activation of fibroblasts that includes a 
temporally linear increase in the expression of α-smooth muscle actin [110]. Activated fi-
broblasts produce collagen necessary for mechanical support of the newly formed scar. 
Reparative macrophages secrete factors that are crucial for fibroblast activation and pro-
liferation [110]. Many cells, including reparative macrophages produce and secrete latent 
TGFβ, which, in its active form, is a very potent suppressor of inflammation [31]. MMP-9 
cleaves latent TGFβ into its active form, which in turn stimulates fibroblast migration and 
activation [14,19,111]. MMP-9 is also directly involved in promoting fibroblast migration. 

Figure 2. MMP-9 roles in inflammation and resolution after myocardial infarction. DAMPs: Danger associated molecular
patterns, CD36: Cluster of differentiation 36, CXCL: CXC motif ligand, IL-1β: Interleukin 1 beta, IL-8: Interleukin 8,
MMP: Matrix metalloproteinase, PTM: Post-translational modification, TIMP: Tissue inhibitor of metalloproteinases, TGFβ:
Transforming growth factor beta. M1: Pro-inflammatory macrophages, M2: Anti-inflammatory/reparative macrophages,
F1: Pro-inflammatory fibroblasts, F2: Anti-inflammatory/reparative fibroblasts. Created with BioRender.com (accessed on
23 March 2021) [85].

The hallmark of the proliferation phase is activation of fibroblasts that includes a
temporally linear increase in the expression of α-smooth muscle actin [110]. Activated
fibroblasts produce collagen necessary for mechanical support of the newly formed scar.
Reparative macrophages secrete factors that are crucial for fibroblast activation and prolif-
eration [110]. Many cells, including reparative macrophages produce and secrete latent
TGFβ, which, in its active form, is a very potent suppressor of inflammation [31]. MMP-9
cleaves latent TGFβ into its active form, which in turn stimulates fibroblast migration
and activation [14,19,111]. MMP-9 is also directly involved in promoting fibroblast mi-
gration. Treatment of cardiac fibroblasts with MMP-9 stimulates migration, increases
collagen synthesis, and upregulates angiogenic factors [44,112]. Furthermore, MMP-9
generates ECM fragments that induce fibroblast migration and collagen synthesis. MMP-
9 cleaves osteopontin at three different amino acid positions to generate four peptides.
In vitro, two of these peptides increase fibroblast migration [20,69]. MMP-9 also releases
insulin-like growth factor 1 (IGF-1) from its binding protein to induce collagen and integrin
expression [111].

During the proliferation phase, revascularization of the newly formed scar occurs,
which is important for oxygen and nutrient delivery. Angiogenesis is a complex process
that depends on endothelial cells, smooth muscle cells, and their interactions with ECM
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and angiogenic factors [19]. MMP-9 can both promote and inhibit angiogenesis. Deletion
of MMP-9 stimulates neovascularization, and MMP-9 inhibits apoptosis of endothelial
cells in a chronic heart failure model [19,64,113]. Endostatin and tumstatin, released by
MMP-9 processing of collagen XVIII and collagen IVα3, inhibit angiogenesis [65–67]. The
C-1158/59 fragment, generated from collagen type Iα1 by MMP-9 and MMP-2, increases
neovascularization in vivo. MMP-9 may further degrade C-1158/59 to inactivity, thus,
inhibiting angiogenesis in a negative feedback loop. Indeed, the plasma level of MMP-9 is
inversely related to the level of C-1158/59, both in humans and in mice [20,65,114]. MMP-9
processing of collagen IV may inhibit endothelial cell growth and migration as the cryptic
regulatory peptide required for the process is exposed [115]. At the same time, MMP-9
favors endothelial cell proliferation and migration as it clears the surrounding ECM during
the early stages of MI, and macrophage derived MMP-9 is involved in capillary branch-
ing [63,115,116]. Furthermore, MMP-9 is downstream of VEGF signaling that initiates
CD34+ endothelial progenitor and stem cell migration and promotes angiogenesis during
hypoxia [116].

5. MMP-9 Signaling in the Maturation Phase

The maturation phase takes place over the weeks to months after MI in the mouse
model. During this phase, inflammation has receded in the infarct region and fibroblasts
generate and maintain the newly formed scar [14]. The ECM is enzymatically cross-linked
to further strengthen the scar and prevent rupture. Reparative cells are inactivated and
undergo apoptosis or removal [1]. At this point, the number of fibroblasts in the infarct re-
gion is reduced compared to the proliferation phase. Fibroblasts remain indefinitely active,
which is essential for the maintenance of homeostasis in the newly formed scar [14,117].
MMP-9 plays a role in the maturation of the infarct scar as well. In a mouse model of MI,
MMP-9 deletion increased infarct scar stiffness by increasing lysyl oxidase activity and
cross-linking, while paradoxically decreasing collagen deposition. Thus, MMP-9 deletion
prevents LV dilation and rupture both by reducing collagen degradation and increasing
cross-linking [118].

6. Future Perspectives and Conclusions

MMP-9 is involved in all phases of cardiac wound healing, is secreted by the majority
of cell types present at the infarct, and has different effects on LV remodeling depending
on timing and cell source. This explains why MMP-9 inhibition or overexpression in the
experimental setting has generated seemingly inconsistent results. Global MMP-9 deletion
in a mouse model of MI increased survival and improved cardiac repair and remodeling
by attenuating LV dilatation, reducing macrophage infiltration, and limiting collagen
accumulation [87,119]. At the same time, a selective MMP-9 inhibitor (MMP-9i), started
3 h after MI, showed detrimental remodeling associated with reduced ejection fraction,
increased wall thinning and prolongation of the inflammatory response. The opposing
results were attributed to the baseline differences between MMP-9 null and WT mice, and
highlighted the importance of a translational approach when designing experiments [63].
Global MMP-9 null mice demonstrate a compensatory increase in MMP-3 and a decrease in
MMP-14, which may explain some of the opposing results [64]. Elevated levels of MMP-14
are associated with increased MI mortality, while MMP-3 is associated with LV remodeling
and heart failure [21].

MMP-9 regulates the activity of many cytokines, which in turn feed-back to influence
the expression of MMP-9. One question that remains is how to differentiate between the
actions of MMP-9 on substrates alone vs. MMP-9 effects to amplify the inflammatory re-
sponse. While this problem is technically and conceptually challenging from a reductionist
view and would require in vitro examination, it is also not translationally relevant because
MI includes both signaling pathways that work in concert.

MMP-9 overexpression selectively in macrophages also improves cardiac repair by
attenuating inflammation and increasing ejection fraction [92]. This tells us that MMP-9
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may have a different role depending on the cellular source, in part due to various cell
types secreting different substrates [20]. A greater focus on MMP-9 substrates may be a
fruitful strategy in using MMP-9 as a target in cardiac repair. Using biologically active
MMP-9 derived fragments, which have more specific roles in MI wound healing, is an
alternative approach. In vivo administration of the collagen fragment C-1158/59 limited LV
remodeling in mice by reducing LV dilation [65]. This strategy of targeting the downstream
substrate, rather than MMP-9 itself, could be a useful means to accelerate resolution or
stimulate cardiac repair. MMP-9 derived matricryptins during MI is a nascent research
area ripe for investigation. MMP-9 has also been associated with respiratory failure in
COVID-19 patients. While we know that plasma MMP-9 is increased in COVID-19 patients
with severe respiratory syndrome, the cellular origin has yet to be assigned [120]. MMP-9
regulates T-cell and macrophage chemotaxis in viral myocarditis due to coxsackievirus
B3 infection and may play a role in COVID-19 induced myocarditis [121,122]. The effect
of COVID-19 on cardiac disease has been reviewed [123,124]. In summary, MMP-9 has a
favorable or detrimental effect on cardiac wound repair depending on the cell source and
timing of expression.
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