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Disease-induced resource 
constraints can trigger explosive 
epidemics
L. Böttcher1, O. Woolley-Meza2, N. A. M. Araújo1,3,4, H. J. Herrmann1,5 & D. Helbing2

Advances in mathematical epidemiology have led to a better understanding of the risks posed by 
epidemic spreading and informed strategies to contain disease spread. However, a challenge that 
has been overlooked is that, as a disease becomes more prevalent, it can limit the availability of 
the capital needed to effectively treat those who have fallen ill. Here we use a simple mathematical 
model to gain insight into the dynamics of an epidemic when the recovery of sick individuals depends 
on the availability of healing resources that are generated by the healthy population. We find that 
epidemics spiral out of control into “explosive” spread if the cost of recovery is above a critical cost. 
This can occur even when the disease would die out without the resource constraint. The onset 
of explosive epidemics is very sudden, exhibiting a discontinuous transition under very general 
assumptions. We find analytical expressions for the critical cost and the size of the explosive jump 
in infection levels in terms of the parameters that characterize the spreading process. Our model 
and results apply beyond epidemics to contagion dynamics that self-induce constraints on recovery, 
thereby amplifying the spreading process.

The global mobility of individuals that sustains modern economic activity has increased the risk of 
pandemics1,2. For example, approximately 3.1 billion passengers travel by air every year, accelerating 
disease spread and making spreading patterns more complex3,4. The biggest pandemic on record, the 
1918 Spanish influenza, was responsible for the death of 50 million people at a time when global mobility 
was slower and much less. Thus, while the containment and mitigation of global disease spread in our 
time has become harder due to high interconnectedness, it could save millions of lives, making it one of 
the most pressing 21st-century challenges. Important progress in understanding epidemic spreading has 
been made using mathematical models that capture the underlying processes and their dependence on 
infection and recovery rates5–7. These studies have focused mainly on the interplay between the dynamics 
and the structure of interactions4,8–12, and on identifying the main spreaders3,13,14. Progress has also been 
made in developing strategies to mitigate epidemic risks, for example through vaccination9,15–20. Many 
studies address the inherent limitations in the resources available to treat or prevent diseases, for instance 
by finding the optimal way to allocate a limited pool of immunization doses and antivirals21. This work 
assumes that the resources available to treat and prevent disease are independent of the evolution of the 
epidemic. However, the health burden a disease places on a population can limit the production of these 
resources22. Here we investigate a simple model that includes such disease-induced resource constraints.

A healthy and productive population is needed to enable the recovery of those that become ill: Healthy 
individuals are both the human resources needed to provide health services and pharmaceuticals, and 
contributors to the healthcare budget through taxes and insurance premiums. These mechanisms operate 
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on shorter and longer timescales but the availability of resources is always most relevant for diseases 
where the cost of treatment is high. This can apply to diseases that are endemic in a population and 
have depressed the economic productivity and growth of a region over a sustained period, leading to 
an underfunded health care system that cannot provide the necessary level of treatment. For example, 
it has been estimated that countries where Malaria was widespread in 1965 had a 1.3% lower annual 
growth rate than other countries between 1965 and 199023,24. Similarly, AIDS could lead to the collapse 
of many African economies within a few years25. On the other hand, resource constraints also apply to 
sudden outbreaks that evolve too fast for the hospital and drug production systems to adapt the available 
resources to supply sufficient treatment in the necessary time frame. A timely example are highly viru-
lent emergent pathogens, such as SARS and H1N1 influenza, which are widely feared because of their 
potential to generate the next great pandemic26,27. An even more recent example is the Ebola epidemic 
unfolding in West Africa, where one of the main initial challenges was the high infection rate in the 
already limited population of nurses and doctors, due partly to understaffing and suboptimal protective 
practices at treatment centers28,29.

To investigate the effect of disease-induced resource constraints on epidemic spreading we consider 
the simplest epidemiological model that captures longer time scales, the Susceptible-Infected-Susceptible 
(SIS) model. This model applies directly to infections that do not confer immunity, such as many bacte-
rial infections, but also to the general case where a population is exposed to a number of diseases, and 
individuals that have been infected by one disease may easily become infected by another. It is also a 
good approximation for cases where immunity is conferred but it wanes rapidly relative to the infection 
dynamics. The specific model we use applies to cases where no external resources can enter the system 
– either the disease is so widespread that there are no unaffected regions from which resources can be 
transferred, or transfer cannot occur for logistical or political reasons. We emphasize that our goal is not 
to capture the detailed dynamics of specific diseases, but rather to understand what type of behavior can 
emerge due to disease-induced resource constraints, and to characterize analytically how this behavior 
depends on the basic parameters of a contagion model. We also seek to determine the generality of our 
findings, and will discuss some cases where simulations or analytic arguments indicate that qualitatively 
similar behavior arises independent of model assumptions.

Model and Methods
In the SIS formalism individuals are either in a susceptible state or in an infected state. We will denote 
by s(t) and i(t) the fraction of susceptible and infected individuals, respectively. Susceptible individuals 
are healthy but become infected at a characteristic infection rate p when interacting with infected indi-
viduals. Infected individuals recover and become susceptible again at a recovery rate q. In this model 
individuals recover independently of available resources.

To model a recovery process that is dependent on healing resources generated by the healthy pop-
ulation, we introduce our budget-constrained Susceptible-Infected-Susceptible (bSIS) model illustrated 
in Fig.  1. This model modifies the SIS dynamic by (1) introducing a global budget b that increases by 

Figure 1. The bSIS model. The four transitions that describe the bSIS model, each occurring at the rate 
denoted above the transition arrow. As in the SIS model, infected (red) individuals contact and infect 
susceptible (blue) neighbors at rate p. Infected individuals will recover at a resource mediated recovery rate 
qb f(b) if the necessary resources cf(b) are applied, and with an additional baseline rate q0, independent of 
resource availability. A unit of budget (denoted by the $ sign) is generated by each susceptible at a rate r. 
Without loss of generality we have normalized the model so that one unit of budget is generated by every 
individual per unit of time and thus r =  1. (Little men courtesy of Alejandro Morales Gallardo.)
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one unit with the number of healthy individuals per unit time and (2) constraining recovery, at least 
partially, if the necessary budget to cover costs of healing is not available. In other words, there is a 
background recovery process that is independent of the budget available, and this process occurs at a 
rate q0. However, to reach the full potential for recovery, resources must be invested. Specifically, a cost 
c is incurred for each individual that recovers through treatment. Thus, this model captures the most 
general case, defining costs relative to the resource unit generated per unit time. Although we refer to 
every individual producing a unit of budget per unit time, this is identical, formally, to the situation 
where only a fraction of the population contributes to the budget, as long as the contributing population 
is just as likely as the rest of the population to become infected and to recover. Clearly the rate of resource 
mediated recovery will depend on the total budget b available. If there is no budget, there will be no 
resource mediated recovery. On the other hand, with a positive budget some recovery is possible, and the 
rate of recovery increases until the maximum resource mediated recovery rate qb is reached. To express 
this dependence we introduce the budget function f(b) which satisfies f(b) ≡  0 for b ≤  0 and 0 <  f(b) ≤  1 
for b >  0. Thus, the resource mediated recovery rate, given budget b, is just qb f(b) as shown in Fig. 1.

The simplest budget function fulfilling the required conditions is the Heaviside step function Θ (b), 
which is one for b >  0 and zero otherwise. In fact, for the sake of analytical tractability, this is the func-
tion we will consider for most of our analysis. However, we will show in the Generalized behavior section 
that the key results we derive using this specific budget function hold under any budget function that 
satisfies the general conditions defined above.

Mean-field approximation. To define the spreading dynamics we need to specify the interaction 
process between infected and susceptible individuals. One common starting point, which yields powerful 
insight and is analytically tractable, is the mean-field approximation. Topologically, the mean-field limit 
corresponds to an uncorrelated random graph, where every individual interacts with k randomly selected 
others (i.e. neighbors), to which it can transmit the disease. With this assumption the dynamics of the 
fraction of infected individuals are given by

( )
= ( ) ( ) − + ( ) ( ), ( )

di t
dt

kpi t s t q q f b i t[ ] 1b0

where s(t) =  1 −  i(t), so that the rate equation for the fraction of susceptibles is analogous. The first con-
tribution on the right-hand side accounts for the infection of susceptible individuals that are in contact 
with infected ones, assuming an infection rate of p. The last term accounts for both the background and 
the budget dependent recovery processes.

To fully describe the evolution of the mean-field bSIS system we couple Eq. (1) with the equation for 
the rate of change in the budget b(t):

( )
= ( ) − ( ) ( ) . ( )

db t
dt

s t cq f b i t 2b

Here the first term accounts for the budget produced by healthy individuals, and the second term for 
the reduction in budget due to successful application of healing resources. Note that setting f(b) ≡  1 for 
all b we recover the pure SIS system with recovery rate q =  q0 +  qb (in this case Eq. (2) is redundant).

One of the main insights obtained from the SIS model without budget constraints, is the existence 
of a transition from a healthy regime where the fraction of infected individuals vanishes in the ther-
modynamic limit (infinite system size), to an epidemic one characterized by a non-negligible fraction 
of infected individuals7. The details of the transition depend on the interaction structure between indi-
viduals30,31. In the mean-field system the basic reproduction number τ =  kp/q, which is just the number 
of secondary infections generated by one infected individual in a population of susceptible individuals, 
fully characterizes the onset of the SIS epidemic transition. Specifically, the system is in the epidemic 
regime when τ is greater than the critical value τ* =  132, and the transition to the epidemic regime is 
continuous. (Note that the basic reproduction number is also commonly denoted by R0 in the literature.) 
Furthermore, the level of infection in the epidemic regime increases with the basic reproduction number. 
Importantly, the steady state infection levels in the population are independent of the initial condition in 
such a model (as long as the initial infection level is greater than zero). We shall see in what follows, the 
introduction of a budget-limited recovery process transforms these dynamics by modifying the steady 
state infection level and introducing a dependence on initial conditions.

Numerical simulations on a social network. In real systems disease transmission occurs through 
non-random interactions, in contrast to the assumptions of the mean-field approximation. The interactions 
can be modeled as networks generated through the interplay between multiple social mechanisms33,34. 
These generating mechanisms together lead to complex structural features that are not generically found 
in random networks, most importantly: high clustering coefficients35, community structure36,37, and the 
small-world property33. Because the dynamics of disease spread can be highly sensitive to the inter-
action structure, we study the limited resource case on a real social network alongside the mean-field 
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approximation. Specifically, we consider a school friendship network shown in Fig.  2a, which exhibits 
the features characteristic of real social networks: clustering, community structure and the small-world 
property. This network was constructed based on the answers of school students in the United States to 
an Add-Health questionnaire38. From the full set of networks obtained from this data set, we consider 
the largest connected component, which consists of 2539 nodes and 20910 edges. (See Supplementary 
Information for a more detailed characterization of the network.) We will show that, surprisingly, the 
simple mean-field approximation captures the behavior on this more realistic interaction structure.

Results
The emergence of explosive epidemics. We investigate the behavior of the bSIS model on the 
static friendship network, considering a parameter regime where an epidemic arises in the SIS model 
(τ >  τ*). (All numerical results on the friendship network are averages over 3200 stochastic simulations.) 
To build intuition we initially consider the simplest case, where all healing requires a budget contribution 
(q0 =  0), and in addition we assume a Heaviside step function for the budget. Thus, unless otherwise 
specified, q =  qb in the results that follow. However, in the Generalized behavior section we will show 
that the key characteristics in the behavior also hold qualitatively when there is background healing and 
for more general functions.

In the early stages of the epidemic simulation we observe exactly the SIS behavior, as seen in Fig. 2b. 
We will refer to this, budget unrestricted infection incidence level, as the low epidemic. However, after a 
critical time t =  t* the epidemic spreading rapidly escalates—a situation that we describe as an “explosive 
epidemic”. We will refer to this increased incidence level as the high epidemic. We see in Fig.  2b, an 
explosive epidemic where the entire population is infected in the steady state (i(∞) =  1).

What leads to this drastic alteration of the SIS steady state infection level when we consider 
disease-induced budget constraints? The explosive epidemics arise when the healing budget is depleted 
and the normal recovery rate cannot be sustained. Depending on the healing cost c, one of the three 
qualitatively different behaviors of the budget in time (see Fig.  3), will be instantiated. When healing 
costs are small, the budget systematically increases and the system evolves towards an infinite budget. 
On the other hand, with large enough healing costs, the budget is used up at a finite time t =  t*. After 
this time, any contribution to the budget by healthy individuals is immediately spent on the recovery 
of only a small fraction of all the infected individuals. Thus the epidemic spread outcompetes recovery, 
further decreasing the number of healthy individuals who can contribute to the budget. Eventually this 
process leads to a fully infected population. In between these two regimes, there is a critical cost (c =  c*) 
at which the budget saturates at a non-zero value. Here the infection level evolves as it would without 
a budget constraint, until it eventually exhausts the budget. Thus, integrating Eq. (1) we recover the 
evolution of infection time:

ba
bSIS

SIS

Figure 2. Epidemics self-accelerate when resources are endogenously constrained. (a) The school 
friendship network, which exhibits long-range connections, clustering and community structure (colors 
denote communities found through modularity maximization). (b) Evolution of the fraction of infected 
individuals i(t) (red circles) and the budget b(t) (blue crosses), for healing costs above the critical cost 
(c =  2 >  c* ≈  0.833), on the friendship network. Recovery requires a budget: q0 =  0 and qb =  0.8, and 
p =  0.285. In the pure SIS model the fraction of infected individuals reaches a stationary regime. The bSIS 
model also initially converges to the same stationary regime until the budget is exhausted at a critical time 
t =  t* ≈  7.3. For t >  t* recovery is not possible anymore, and the infection spreads to all of the population (i.e. 
i(∞) =  1). The difference in the steady state infection in both models, which is also the size of the jump in 
the bSIS model due to the budget constraints, is denoted Δ i∞.
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where i(0) is the initial fraction of infected individuals and we have assumed f(b) =  Θ (b).
Similarly, to approximate all three budget behaviors as observed in Fig. 3a we can simply integrate Eq. 

(2) without a budget constraint (f(b) ≡  1):

( ) =
+ ( − ) + ( + ) ( )/ ( )

( )
b t

q c q kp t cq i t i
kp

[1 ] 1 log[ 0 ]
4

where i(t) is given by Eq. (3). (Here we have set the initial condition b(0) =  0, without loss of generality.)
The crucial point is that we can find a critical cost c* above which positive contributions by healthy 

individuals to the healing budget are insufficient to meet the costs generated by the recovering patients 
(i.e. s(t) <  cqi(t)). Thus, according to Eq. (2), the budget will start decreasing until it is depleted in finite 
time and we are in the second case described above, where infection takes over the population. Clearly, 
for a fixed cost and recovery rate, the resource demands for recovery are larger when there are more 
infected individuals. This means that the critical cost is determined by the maximum infection level that 
the system will reach before the budget starts to decrease, ( )i tmax [ ]t b , where ( )i tb  denotes the infection 
level without a budget restriction. Putting all of this together, in the mean-field case we can find c* by 
solving for c at the stationary state of the budget, that is we set db(t)/dt =  0 in Eq. (2) with the constraint 
that the steady-state infection level must be ( )i tmax [ ]t b . This gives

= 

 ( ) 


 . ( )

−
⁎c kp i tmax[ ] 5t

b

1

In the case we consider in Fig. 2 the basic reproduction number is above the critical level (i.e. τ >  1), 
and 0 <  i(0) <  1 −  τ−1, which means that the pure SIS dynamic reaches the maximum infection level at 
the epidemic equilibrium i(∞) =  1 −  τ−1. This gives the special case of Eq. (5)

= ( − ) . ( )−⁎c kp q 61

This case applies when τ >  1, as long as the initial infection level is not larger than the SIS epidemic 
equilibrium (i.e. 0 <  i(0) ≤  1 −  τ−1). If the initial level of infection i(0) is larger than the pure SIS equi-
librium level then ( ) = ( )i t imax [ ] 0t b , whatever the value of τ. We can see this by noting that infection 
cannot increase above i(0) if b >  0, since the pure SIS dynamics apply and in the SIS model infection 
monotonically converges to the equilibrium. Thus Eq. (5) implies that in this case the critical cost 
depends on the initial condition. In fact, at the critical cost c =  c* the recovery demands must immedi-
ately match the generated resources. Since the initial budget is b(0), the infection level will oscillate 
around the initial infection level i(0) as the budget continuously switches on and off. This indicates that 

Figure 3. The time dynamics of the budget according to the cost of recovery. (a) Three different regimes 
of time-dependent budget development b(t), depending on the healing cost c. (Other parameters are fixed 
at values q0 =  0, qb =  0.8, p =  0.285.) For healing costs c below the critical cost, c* (green crosses c =  0), the 
budget is a monotonically increasing function of time. Above the critical cost (c =  2 >  c*, blue circles), the 
budget reaches a maximum and then decreases until it is exhausted at a critical time t =  t*, allowing the 
infection to spread explosively. At the critical cost (c =  c* =  0.833, orange inverted triangles), the budget 
saturates at a non-zero value. (b) The critical time t* at which the budget is exhausted scales with the 
distance to the critical cost c* according to t* ~ (c −  c*)−1 (averaged over 3600 samples). Parameters are fixed 
at values q0 =  0, qb =  0.8, p =  0.287.
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it is critical to treat diseases before the fraction of infected people escalates above the epidemic level since 
otherwise the epidemic will become explosive more easily (i.e. c* will be smaller).

Interestingly, this last case implies that even for τ ≤  1, where no epidemic phase is predicted in a pure 
SIS model, in the bSIS model we find a finite critical cost above which infections spread without efficient 
healing (dependent on the initial condition i(0) >  0). Furthermore, to characterize the outcome of a dis-
ease outbreak in the bSIS model, the absolute size of kp (the effective contact rate) and q (the recovery 
rate) are needed, unlike in the pure SIS model where only their relative size is important and the basic 
reproduction number τ =  kp/q fully characterizes the outcome. The dynamics of infection, and therefore 
the budget generation rate, are still fully described by τ in the bSIS model up until the point of budget 
exhaustion. However, the budget evolution depends on the competition between budget generation and 
budget consumption (i.e. recovery), and therefore the recovery rate is an independent parameter. In other 
words, if the effective contact rate and recovery rate increase by the same factor, τ is unchanged but the 
budget will be consumed at a faster rate and therefore the critical cost will be lower (as can be clearly 
seen using Eq. (6)).

Can we determine the critical time at which the budget is exhausted, given the cost of treatment ? We 
would expect that the larger the healing costs, the faster the budget is exhausted. We do in fact observe 
in our simulations that the critical time t* scales with the healing cost as t* ~ (c −  c*)−1 (see Fig. 3b). Using 
Eq. (4) we can determine t* by solving for b(t*) =  0 (given c >  c*). When τ ≤  1 by definition i(t*) =  i(0) 
and therefore Eq. (4) implies t* =  0. For the case τ >  1, if we assume t* ≫  1, transients decay and the 
equilibrium epidemic infection level i(∞) =  1 −  τ−1 is reached without budget constraints. In this case

τ
τ

=




(∞)
( )










( − ) +





.

( )
−⁎ ⁎ ⁎

⁎t
i
i

c c c
c

log
0

1
7

2 1

Thus, t* ~ (c −  c*)−1 as found in the friendship network. If τ ≤  1, one obtains t* =  0 as a consequence of 
the initial condition b(0) =  0, which implies that the treatment is constrained by the available budget 
from the beginning. Whatever the contributions of healthy individuals to the budget, they cannot cover 
the treatment costs.

Explosive epidemic transitions are discontinuous. The dynamic change at t*, and the consequent 
drastic increase in the fraction of infected individuals, is a continuous process in time (see Fig.  2b). 
However, the transition between the regimes is discontinuous in the model parameters (the healing costs 
as well as the recovery and infection rates). For example, as illustrated in Fig. 4, the transition is always 
discontinuous in the basic reproduction number τ. The transition is also discontinuous in the sense that 
there is a jump, Δ i∞, in the infection level (see Fig. 2b). We discuss below how the jump size scales with 
the model parameters. The discontinuity of this jump in the final infected fraction i(∞) has important 
implications for the resilience of the health system and the control of disease, since it implies that a 

ba

Figure 4. Discontinuous transition from the low to the high epidemic regime. (a) Asymptotic fraction 
of infected individuals i(∞) on a square lattice with 10242 sites (we consider a von Neumann neighborhood, 
which has k =  4 neighbors), for fixed costs c =  0.833, and recovery rate qb =  0.8, as a function of τ (we 
vary p, and hold k and qb fixed). A discontinuous transition from the low (grey) to the high epidemic 
regime (red) is observed. The inset shows the approach of i(∞) to τ* =  1.6488 ±  0.0001, confirming the 
predicted power-law scaling. The black solid line is a guide to the eye, corresponding to (c −  c*)β, where 
β =  0.586 ±  0.014 is the critical exponent of the order parameter for the SIS model on the square lattice. The 
values of τ* and β where obtained from ref. 39. (b) Same as in (a) but on the friendship network, where the 
average number of neighbors is 〈 k〉  =  8.2355. The inset shows that in the epidemic regime i(∞) ~ (τ −  τ*), 
just as in the mean-field limit of the SIS model32. (Results are averages over 3600 samples.)
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minute change in the properties of the disease or average contacts of an individual can abruptly shift the 
infection levels from a low equilibrium to one that is higher and harder to control.

Explosive epidemics arise across network structures. It is surprising that we can capture most of 
the dynamics of the epidemic on a real social network using only mean-field calculations. In particular, 
the same critical exponents are found for the scaling of both the fraction of infected individuals, and 
the critical time, with the distance from the critical cost. This leads us to ask whether the results we 
have found above are independent of network structure. We hypothesize that there is a resemblance 
between the dynamics in the random network of the mean-field approximation and the real friendship 
network, because the long-range interactions present in both networks dominate the dynamics. To test 
this hypothesis we will compare the behavior of the bSIS model on the friendship network to that on 
a square lattice. On the lattice there are no long-range connections and we would therefore expect to 
find different behavior if our hypothesis is true. As shown in Fig. 4a, we again find that the transition 
between the low and high epidemic regimes is discontinuous. However, the scaling behavior of the 
final infection level with the basic reproduction number (in the epidemic regime) is different in the 
lattice. Specifically, i(∞) ~ (τ −  τ*)β, with β ≈  0.59 (Fig. 4a inset). This is consistent with the order param-
eter exponent β =  0.586 ±  0.014 reported for the classical SIS on the square lattice39rather than with the 
mean-field scaling found in the friendship network (Fig.  4b inset). However, we find that the critical 
time in the square lattice scales with the distance from the critical cost according to t* ~ (c −  c*)b, with 
b =  − 0.98 ±  0.03, which is numerically consistent with the scaling found in the mean-field limit (see 
Supplementary Information). This suggests that the effects of the cost of recovery on the system dynam-
ics are similar across network topologies.

c d

a b

Figure 5. Generalizing results to the case with a baseline recovery rate independent of budget.  
(a) Evolution of the fraction of infected individuals i(t) (red circles) and the budget b(t) (blue crosses) in the 
mean-field model with the same average degree as the friendship network (〈 k〉  ≈  8.2355). All parameters are 
as in the simulation on the friendship network shown in Fig. 2b: most importantly healing costs are above 
the critical cost (c =  2 >  c* ≈  0.833) and all healing requires a budget contribution (qb =  0.8 and q0 =  0). 
Clearly the mean-field behavior is very similar to that in the friendship network. (b) Mean-field model with 
a baseline recovery rate q0 =  0.2 and qb =  0.6 (q =  q0 +  qb =  0.8 as above). The behavior is similar to (a) but 
Δ i∞ is smaller due to the baseline recovery. The steady state infection level i(∞) is bounded from above by 
(∞)iq0

 (the steady state infection in the pure SIS model with recovery rate q =  q0 =  0.2). (c) The discontinuous 
phase transition observed for parameters in (a) as τ increases (by varying p). (d) Similarly, the phase 
transition observed for the model in panel (b). Although i(∞) increases continuously with τ after the phase 
transition, the jump at τ* is clearly discontinuous.



www.nature.com/scientificreports/

8Scientific RepoRts | 5:16571 | DOI: 10.1038/srep16571

Generalized behavior. How general the “explosive epidemic” that is discontinuous in the model 
parameters, and that the system behavior depends on the initial conditions, apply over a broad class of 
models. For instance, the results hold if we allow for a baseline recovery rate q0 >  0 (see Fig.  5). 
Furthermore, we can also show that the results hold for any budget function f(b) that satisfies the con-
straints described above. The generality of our results can be easily appreciated if we define c* as the cost 
above which the dynamics will converge to a stable equilibrium infection level that is higher than the 
equilibrium infection level in the model without resource constraints, τ(∞)= − −i 1b

1, where q =  q0 +  qb. 
We note that in this model infection will always die out, independent of the budget, if τ = / <kp q 1q 00

. 
Thus, in what follows we only consider the case where τ ≥ 1q0

. Solving for the fixed point of the budget 
by setting db(t)/dt =  0 in Eq. (2) and substituting into Eq. (1) we can express the full infection dynamics 
using

( )
= ( ) − ( ) − − ( ) − ( ). ( )

−di t
dt

kpi t i t c i t q i t[1 ] [1 ] 8
1

0

As c approaches infinity the resource mediated recovery is no longer possible and this system becomes 
the SIS model with recovery rate q0, which has a stable equilibrium that is greater than 1 −  τ−1, namely 
τ− −1 q

1
0

. However, we can also show that a finite c* exists. Solving for the fixed points of Eq. (8) we find 
that there are two fixed points i(∞)+ ≥  i(∞)−:

( ) ( )
(∞) =

+ − ± − − −
.

( )
±i

c kp q c q kp ckp

ckp

1 [ 1] 4

2 9
0 0

2

We can see from this expression that this equilibrium infection level is bounded above by the equi-
librium of the pure SIS model with recovery rate q0 (namely τ− −1 q

1
0

), and approaches it in the limit 
c →  ∞. However, we can find the critical cost c* that guarantees (∞) > (∞)+i i b  by solving for c* at the 
fixed point of Eq. (8) and noting that, as in the case q0 =  0, the smallest possible c* for a system is given 
by the stationary point at the largest infection level reached, = ( )i i tmax [ ]max t b . This gives:

=
−
( − ) −

.
( )

⁎c
i

i kp i q
1

[ 1 ] 10
max

max max

(In the Supplementary Information we present a more detailed characterization of the critical cost c* 
that guarantees convergence to the higher infection fixed point.) Furthermore, it is in fact the case that 
i(∞)+ is stable while i(∞)− is unstable. To characterize the stability we note that Eq. (8) can in general 
be written as the expression of a parabola with a maximum at [i(∞)+ +  i(∞)−]/2, as shown in the phase 
plot in Fig. 6a.

a b

Figure 6. The explosive epidemic transition to a high epidemic state occurs generically in the bSIS 
model. (a) The phase space of Eq. (8) and the corresponding stationary states. In this plot the parameters 
are the same as in Fig. 5b,d. The black dots indicate the stationary states of Eq. (9) and the arrows illustrate 
the stability of i(∞)+. In general one can rewrite Eq. (8) to get an equation of a parabola. The equilibrium 
infection level without the budget restriction is denoted (∞)ib , and it is always the case that (∞) > (∞)+i ib . 
(b) The general behavior of the bSIS system can be illustrated by a phase diagram of the different regimes 
depending on healing costs and basic reproduction number. Three different regimes are found: the healthy 
regime with a zero fraction of infected individuals (i(∞) =  0); the low epidemic regime; and the higher 
infection high epidemic regime. As discussed in the text, transitions between the healthy and low epidemic 
regimes are always continuous, while transitions to the high epidemic regime are discontinuous.
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The size of the jump in infection at this transition, Δ i∞, is simply the difference between the stationary 
fraction of infected individuals for the SIS model with resource constraints, i(∞)+, and that without 
resource constraints (∞)i b  (see Fig. 5b). For the special case q0 =  0 the size of the jump is τ−1 and thus 
the basic reproduction number fully determines the jump size (see Figs 2b and 5a). However, for q0 >  0 
there is generally a dependence on the cost c.

A key point is that Eq. (8) and all of the stability analysis we have carried out is independent of 
the budget function f(b). Thus, the argument above also shows that the discontinuous emergence of 
a new endemic infection level holds under the general conditions for a budget function as previously 
defined. In the Supplementary Information we show a simple example where the discontinuous behavior 
is observed for a continuous budget function f(b), further verifying that the discontinuity of the explosive 
epidemic transition is not a consequence of the jump in the Heaviside step function at b =  0.

Discussion
In summary, we have shown that explosive transitions in the epidemic level in a population occur above 
a critical healing cost, when the budget for recovery is generated endogenously by the healthy popula-
tion. Above the critical healing cost the rate of budget generation cannot cover the recovery needs. As 
a consequence, the infection eventually jumps to a higher level than the standard model would predict. 
The general behavior of the bSIS model can be summarized in a phase diagram for the mean-field system 
with two-parameters: healing costs c and basic reproduction number τ, shown in Fig. 6b. Three steady 
state regimes are found: healthy, low epidemic, and high epidemic. The healthy regime converges to a 
zero fraction of infected individuals. This regime is observed when c <  c* and τ <  τ*. The transition to 
the high epidemic regime always leads to a discontinuous jump in the infection incidence, while the 
transition between the healthy and epidemic regimes exhibits a continuous change in the infection steady 
state, as in the classical SIS model. Importantly, an epidemic can break out even when the standard SIS 
model predicts that the disease will die out without infecting a significant part of the population. This 
highlights that to accurately assess the risks posed by a disease outbreak, the constraints that healing 
resources impose need to be taken into account. Furthermore, in the case that the cost of healing is 
above the critical cost, a fast response may be necessary to avert an uncontrollable transition into the 
high epidemic regime.

We emphasize that the behavior we find is very general. We have also shown that it applies across 
different assumptions about the underlying interaction structure between individuals. Specifically, the 
scaling exponents describing the transition to the high epidemic regime in a simulated outbreak, 
on a real friendship network, are consistent with our analytical calculations that assume a random 
interaction network. Furthermore, the discontinuous transition to the high epidemic regime exists 
independent of the specific network topology. We also show that the details of the budget function 
do not change the general behavior. Another interesting question is whether our findings hold when 
we consider other standard epidemiological models. Preliminary work and reasoning indicates that 
models that introduce a Recovered (or Removed) state, such as the SIR and SIRS models, also display 
the emergence of an epidemic outbreak when none would be predicted, or the existence of a higher 
endemic infection level than expected, when the cost of recovery c is high enough. As the period 
that individuals stay in the recovered compartment increases, the onset of an explosive transition is 
delayed. These intuitive arguments of course remain to be checked more thoroughly and are an inter-
esting avenue for future work.

Another interesting question is whether our findings extend to budget generation processes where 
there is a correlation between the ability of an individual to contribute to the budget generation and 
the likelihood they will become ill. An increased likelihood of falling ill for contributors could more 
accurately capture the situation of health workers, for example. This refinement is outside of the current 
scope of our model, but it is easy to see that this correlation would simply make the budget depletion 
accelerate, rendering the epidemic more explosive. Thus, our model presents the “best-case” scenario 
compared to these more realistic details of budget generation. Similarly, future work could consider the 
interplay between the heterogeneous distribution of resource generation and resource demands, across 
different communities or locations. In this way we could determine how to redistribute the budget, bal-
ancing the goal of protecting the greatest number of people in the short-run with the goal of sustaining a 
high-level of budget contributions. Similarly, we could also determine what locations are strategic points 
for targeting measures to increase the productivity of healthy individuals.

Finally, variants of the model we consider may also shed light on non-biological contagion processes 
where budget constraints have a significant impact on the dynamics of the system. A timely example 
are bankruptcy cascades in the banking sector40. Given the high public debt levels in most areas of the 
world, saving banks and countries suffering from high debt levels might eventually exceed the ability of 
the tax payer to create the necessary resources.
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