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Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies
that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis.
Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant
signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms
may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to
oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl
fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid
chromatography–mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes
with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids,
indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic
alterations are also associated with protection from oxidant challenge. This study provides insight into
the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple
sclerosis.

& 2015 Published by Elsevier B.V.
Introduction

Metabolic reactions drive fundamental cellular processes,
including energy production, signaling, and the generation of
precursors for macromolecules. Perturbation of these pathways by
disease results in cellular pathology; therefore, the profiling of
metabolites has the potential to uncover new disease biomarkers,
identify novel therapeutic targets, and provide information on
drug mechanism [1,2]. The comprehensive analysis of global
metabolism allows the identification of alterations in endogenous
small molecules without bias; however, a significant hurdle for
these studies is the chemical variability contained within the
metabolome. This factor makes a single separation and detection
method unlikely to provide complete coverage of all metabolite
species [3]. Here we introduce a global metabolomic platform that
utilizes both direct-infusion mass spectrometric analysis of lipids
(shotgun lipidomics) and a hydrophilic interaction liquid chro-
matography–mass spectrometric method (HILIC–MS) that mea-
sures polar metabolites associated with the tricarboxylic acid cycle
(TCA), amino acid, and nucleotide metabolism [4]. Direct infusion
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of the lipid samples significantly reduces processing time while
still detecting high abundance lipids that include biologically
important classes such as glycerophospholipids, sphingolipids, and
triacylglycerols [5]. The combination of these two methods pro-
vides coverage of diverse metabolic pathways critical for cellular
function with reduced analysis times.

We sought to utilize our platform to identify metabolic path-
ways important for neuroprotection, specifically the maintenance
of myelin. The myelin sheath is produced by oligodendrocytes and
wraps around neuronal axons, facilitating rapid nerve conduction
and providing trophic support to neurons [6]. Damage to the
myelin or oligodendrocytes leads to the development of lesions
within the central nervous system and this is a defining patholo-
gical feature of the autoimmune disease, multiple sclerosis [7].
Several mechanisms have been postulated to result in demyeli-
nation during multiple sclerosis, including the release of toxic
mediators such as reactive oxidative species as well as direct
killing of oligodendrocytes by inflammatory cells [8,9]. The acti-
vation of cellular pathways that interrupt these processes may not
only prevent demyelination, but also inhibit the axonal degen-
eration that accompanies the loss of the oligodendroglia-neuronal
connection [10].

A number of agents have been tested for their ability to act as
neuroprotective agents during central nervous system inflamma-
tion. The small molecule drug, dimethyl fumarate (DMF,
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Tecfideras) is currently approved for the treatment of multiple
sclerosis [11]. Data from human and animal studies suggests that
this compound has both anti-inflammatory and antioxidant
properties [12–14]. Clinically, a recent study showed that patients
treated with DMF had increases in brain magnetization transfer
ratio (MTR) and this was thought to correlate with the preserva-
tion of myelin density [15]. However, it is unclear whether the
myelin protection seen in multiple sclerosis patients treated with
DMF is due to the direct modulation of oligodendrocyte functions
or if this result is due to its effect on astrocytes, neurons, or
inflammatory cells. Analysis of DMF treatment during cuprizone-
induced demyelination showed no impact on demyelination and
short-term treatment of an oligodendroglial cell line in vitro did
not prevent hydrogen peroxide-mediated death [16]. These results
suggest that the myelin protection induced by DMF may be sec-
ondary to its anti-inflammatory actions. In this study, we sought to
clarify whether DMF directly impacts oligodendrocyte physiology
by using mass spectrometry-based metabolomics to identify
changes in metabolism induced by drug treatment as well as
determine the impact of these alterations on oligodendrocyte
responses to oxidative stress.
Materials and methods

Chemicals

Ammonium acetate (HPLC, Z99.0%), ammonium hydroxide
solution (LC/MS, Z25% in H2O), and DMF were purchased from
Sigma-Aldrich (St. Louis, MO, USA). LC/MS-grade water, acetoni-
trile and methanol were purchased from Fisher Scientific (Fair
Lawn, NJ, USA). Ethanol was purchased from DeconLaboratories,
Inc. (King of Prussia, PA, USA). Chloroform (HPLC Grade, Z99.5%)
was obtained from Alfa Aesar (Ward Hill, MA, USA). For cell culture
experiments, Dulbecco's Modification of Eagle's Medium (DMEM),
Penicillin/streptomycin, Phosphate-Buffered Saline (PBS) and Fetal
Bovine Serum (FBS) were purchased from Corning (Manassas, VA,
USA).

Cell culture

The MO3.13 human oligodendrocyte cell line was purchased
from CELLutions Biosystems Inc. (Burlington, Ontario, CA). MO3.13
cells were cultured at 37 °C in 5% CO2 in DMEM containing 10% FBS
and 1% penicillin/streptomycin for all experiments. Cells were
seeded in 6-well plates at a density of 3.0�105 cells/mL for the
24 h experiments or 1.0�105 cells/mL for experiments lasting
72 h.

DMF treatment and metabolite extraction

MO3.13 cells were allowed to adhere and subsequently treated
with 10 mM DMF diluted in 0.2% ethanol/PBS or vehicle alone as a
control. Treatments were carried out for 24 or 72 h prior to the
metabolite extraction [16,17]. Following treatment, a modified
form of the Bligh and Dyer Extraction was used to obtain both
hydrophilic and lipophilic metabolites for metabolomic analysis
[18]. MO3.13 cells were lysed by the addition of 180 mL HPLC grade
water with 20 mL methanol and removed from the tissue culture
dishes by gentle scraping. The cell suspensions were then sub-
jected to three cycles of freezing in liquid nitrogen, thawing, and
sonication. 750 mL of 1:2 (v:v) CHCl3:MeOH and 125 mL CHCl3 were
added to each sample, the samples were vortexed, and an addi-
tional 250 mL of water was added. After incubation at �20 °C for
1 h, samples were centrifuged at 1000� g for 10 min at 4 °C to give
a two-phase system: an aqueous layer on top, an organic layer
below, and a protein disk interphase. The aqueous and organic
phases were collected into 1.5 mL tubes separately. All the
extracted samples were dried in a CentriVap Concentrator (LAB-
CONCO, Kansas, MO, USA) and then preserved at �80 °C until
resuspension and analysis. Protein pellets were used to normalize
extracted metabolites quantities based on protein concentration
with a Bicinchoninic Acid (BCA) protein assay (G-Biosciences, St.
Louis. MO, USA) [19].

Hydrogen peroxide treatment and MTT assay

MO3.13 cells were seeded in a 96-well plate at a density of
7.5�103 cells/mL for the 24 h treatment, or 2.5�103 cells/mL for
the 72 h treatment (12 replicates per treatment group). Cells were
treated with 1 or 10 mM DMF, PBS, or 0.2% ethanol (vehicle). PBS-
treated cells were used for viability normalization based on
absorbance. After drug treatment, 400 mM hydrogen peroxide was
added to the cells for 2 h. 20 mL of a 5 mg/mL Thiazolyl Blue Tet-
razolium Bromide (MTT) PBS solution was subsequently added to
all the wells and cultures were incubated at 37 °C for 3.5 h. The
media was then aspirated and 150 mM of lysis solvent (4 mM HCl,
0.1% Nondet P-40 (NP40) in isopropanol) was added to dissolve the
insoluble purple formazan product into a colored solution. The
plates were then covered with aluminum foil and agitated on an
orbital shaker for 15 min. The absorbance was read at 590 nmwith
a reference filter of 620 nm by using a SpectraMax™ M2 plate
reader [20].

HILIC–MS profiling of metabolites

Chromatographic separation was carried out on a Micro200 LC
(Eksigent, Redwood, CA, USA) equipped with a hydrophilic inter-
action liquid chromatography (HILIC) column (Luna 3 μ NH2 100 Å,
150 mm�1.0 mm, Phenomenex, Torrance, CA, USA). The polar
metabolites were re-suspended in 200 mL of a 35:65 (v:v) acet-
onitrile: water solution, and 5 mL of the sample was injected into
the column. The liquid chromatographic method consisted of a
mobile phase A of water and a mobile phase B of acetonitrile, each
with the addition of 5 mM ammonium acetate and 5 mM ammo-
nium hydroxide. The flow rate was 30 mL/min. The gradient con-
sisted of the following linear changes in mobile phase B over time:
0 min 98%, 0.5 min 98%, 1 min 95%, 5 min 80%, 6 min 46%, 13 min
14.7%, 17 min 0%, 17.1 min 100%, 23 min 100%.

Samples were analyzed on the 5600þ TripleTOF Mass Spec-
trometer (AB SCIEX, Framingham, MA, USA) in both positive and
negative mode and were processed with Information Dependent
Acquisition (IDA). The ion source nebulizer gas (GS1) used was set
at 15 psi, heater gas (GS2) was 20 psi, and the curtain gas (CUR)
was 25 psi. In the IDA experiment, a TOF MS scan was selected to
perform a survey scan for the mass range of 60–1000 Da. This
survey scan utilized a 250 ms accumulation time for precursor ion
acquisition. In the positive mode, þ5000 V ionspray voltage was
used and a þ100 V declustering potential (DP) was selected to
increase precursor ions detection. The background threshold for
candidate ion selection was set to 10 counts/s to eliminate peaks
with low abundance as well as a low signal to noise (S/N) ratio.
Fragmentation data were subsequently collected by using a colli-
sion energy spread (CES) of þ(25�40) V. Samples analyzed in
negative mode used the same GS1, GS2 and CUR in IDA criteria. A
�4500 V ionspray voltage was used and a �100 V declustering
potential (DP) was selected for better precursor ion detection.
Fragmentation data were subsequently collected by using a colli-
sion energy spread (CES) of �(40–25) V.
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Shotgun lipidomics

A direct-infusion mass spectrometric analysis (MS/MSALL)
method was applied for analysis of lipophilic metabolites [21].
Metabolites obtained in the organic phase after extraction were re-
suspended in a methanol:chloroform:water (v:v:v, 45:45:10,
5 mM ammonia acetate) solution and directly injected into the
mass spectrometry without chromatographic separation at a flow
rate of 7 mL/min. The ion source nebulizer gas (GS1) used was set
at 14 psi, the heater gas (GS2) was 15 psi, the curtain gas (CUR)
was 25 psi.

A MS/MSALL method was used to scan a mass range of 200–
1200 Da followed by 1000 individual MS/MS experiments. In the
survey TOF MS scan, þ80.0 V DP and þ10.0 V CE were selected for
positively charged ions; and �80.0 V DP and �10.0 V CE for
negatively charged ions. With a 3000 ms accumulation time, ions
with a mass range starting at 200.050 Da and finishing with
1200.049 Da were detected. The product ion IDA scan selected
candidate ions step by step and split the precursor ions detected
by the survey TOF MS scan into 1000 steps with a 1.001 Da win-
dow width, generating MS/MS spectra for each precursor ions
within 300 ms. Precursors were fragmented with 730.0–50.0 V
collision energy spread under positive or negative mode
respectively.

Data processing

The initial processing of the HILIC–MS data were performed by
using MarkerView (version 1.2.1.1). Isotopic ion peaks were
excluded before analysis. A false discovery rate (FDR) algorithm
was adopted from Storey's QVALUE R package [22]. All the results
were analyzed under the bootstrap method to obtain the q-value
(Q-plots are provided in Supplementary Fig. S1). Features with (q-
value o0.05, and fold change 42) were considered significantly
changed. Principal component analysis (PCA) was performed with
the Pareto Scaling method to compare groups. Features were
identified by comparing accurate mass and fragmentation data to
standards in the METLIN (https://metlin.scripps.edu) [23–25] and
HMDB (http://www.hmdb.ca) databases [26]. Shotgun lipidomic
data were processed by using LipidView software (AB Sciex) with a
mass tolerance of 0.05 Da, min% intensity¼0.1% and S/NZ3. Lipids
with different chain length were indicated by their fragments’
mass to charge ratios.
Results and discussion

We first addressed the technical challenge of obtaining suffi-
cient coverage of global metabolism without extensive analysis
times. The combination of two methods, HILIC–MS and shotgun
lipidomics, allowed the detection of metabolite classes with
diverse chemical properties. Our separation method detected a
significant number of polar metabolites involved in central carbon,
amino acid, and nucleic acid metabolism. When HILIC–MS was
combined with shotgun lipidomics, we could extend our coverage
to glycerophospholipids, sphingomyelins, and free fatty acids
(method detailed in Supplementary Fig. S2). After validation, we
applied our platform to investigate the mechanism of action of
DMF.

DMF has been shown to activate nuclear factor (erythroid
derived 2)-like 2 (Nrf2) and induce a cascade of cytoprotective
[12–14] and antioxidant pathways [8,27,28]. Additionally, DMF can
suppress the transcription factor NF-κB that mediates pro-
inflammatory signaling [29,30]. Whether the neuroprotective
effects seen with this drug are secondary to immunosuppression
in multiple sclerosis is still unclear. We hypothesized that DMF
may also play a direct role in the protection of mature oligoden-
drocytes and myelin through the modulation of cellular metabo-
lism. In order to test this, we treated MO3.13 cells with DMF
(10 mM) for 24 or 72 h and subsequently determined the impact of
this drug on the metabolome. Principal component analysis (PCA)
demonstrates significant metabolic differences in DMF-treated
oligodendrocytes versus controls at both 24 and 72 h (Fig. 1A and
B). We found that at 24 h approximately 3148 features were dys-
regulated when comparing DMF-treated and control cells and this
number increased to 4960 features after 72 h of drug treatment
(based on a q-value o0.05 and fold change 42). We then iden-
tified these dysregulated metabolites based on accurate mass and
fragmentation data (Supplementary Fig. S3). An example of cel-
lular changes that were detected included temporal alterations in
amino acids. At 24 h, glutamine was upregulated in DMF-treated
MO3.13 cells, but returned to control levels after 72 h (Fig. 1C). In
contrast, DMF treatment upregulated arginine at 24 h, but this
amino acid was subsequently decreased at 72 h compared to
vehicle controls (Fig. 1D). These results indicate that DMF can alter
oligodendrocyte metabolism and that these changes are depen-
dent on the length of treatment.

Methylated esters of tricarboxylic acid (TCA) cycle inter-
mediates are cell permeable and have the ability to modify the
activity of this metabolic pathway [31,32]. Therefore, we examined
the levels of TCA cycle intermediates proximate to fumarate.
Within the TCA cycle, succinate is oxidized to fumarate and sub-
sequently hydrated to malate via the action of two enzymes,
succinate dehydrogenase and fumarase. We found that after 24
and 72 h of DMF treatment these intermediates were significantly
upregulated compared to controls (Fig. 2A–C). The succinate to
fumarate reaction is coupled to the production of reducing
equivalents and functions in both the TCA cycle and the electron
transport chain. The dysregulation of these metabolites could
influence electron transport chain function and subsequent anti-
oxidant responses. A recent study has shown that increased
fumarate levels can drive production of succinate through a
reversal of Complex II function leading to the generation of reac-
tive oxidative species [33]. Therefore, perturbations in succinate
and fumarate induced by DMF have the potential to influence
mitochondrial function and may facilitate the activation of anti-
oxidant signaling.

We then analyzed levels of reduced glutathione (GSH), a key
molecule involved in the detoxification of antioxidant species
[34,35]. We found that DMF treatment increased GSH levels in
MO3.13 cells at both 24 and 72 h (Fig. 3A). This effect is consistent
with experimental evidence showing that GSH levels in neurons
were increased by DMF treatment [36]. Similarly, DMF treatment
of human astrocytes induced early depletion of cellular GSH fol-
lowed by recovery and a subsequent increase of this antioxidant
above basal levels by 24 h [37]. We also found DMF-induced
increases in other antioxidant molecules such as carnitine and
ascorbic acid (Supplementary Fig. S4). Carnitine can scavenge free
radicals and is protective against oxidative damage in an animal
model of Huntington's disease [38,39]. Ascorbic acid is an essential
micronutrient and one of the major low molecular weight anti-
oxidants present in the brain [40]. Ascorbic acid has also been
shown to promote the myelination of peripheral nerves [41]. In
addition, it is involved in the maintenance of membrane integrity
during oxidative stress by reducing the tocopheroxyl radical of
vitamin E and preventing lipid peroxidation [42]. The ability of
DMF to increase levels of these low molecular weight antioxidants
suggests that this compound may function by increasing the levels
of antioxidant proteins through the Nrf2 pathway and promoting
the uptake or synthesis of protective small molecules.

The role of DMF in stimulating pathways that protect against
oxidative stress has shown conflicting results in different cell types
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Fig. 1. DMF treatment alters oligodendrocyte metabolism. Principal component analysis of the metabolic alterations associated with 10 mMDMF treatment at 24 (A) and 72 h
(B). (C) Box and whisker plot of glutamine, showing significant upregulation after 24 h treatment (p¼0.002, q¼0.007), but a return to control levels by 72 h (p¼0.89,
q¼0.13). (D) Box and whisker plot of arginine, which is increased at 24 h (p¼0.002, q¼0.05), but downregulated after 72 h of DMF treatment (p¼0.02; q¼0.012). *q-value
o0.05, **q-value o0.01; N¼6 replicates per group, representative of two separate experiments.
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[16,43]. We sought to determine whether the DMF-mediated
changes in antioxidant metabolites that we observed in the
MO3.13 cells could provide protection against hydrogen peroxide-
induced cell death. Cells were treated with 1 or 10 mM DMF for 24
or 72 h and then challenged with 400 mM hydrogen peroxide for
2 h (Fig. 3B, C). Vehicle-treated cells incubated with hydrogen
peroxide showed significant loss of viability compared to controls
and DMF treatment for 24 h at either 1 or 10 mM did not protect
the cells (Fig. 3B). In contrast, after 72 h of DMF treatment, MO3.13
cells exposed to hydrogen peroxide maintained their viability and
this response was dose-dependent (Fig. 3C). A number of other
studies have examined DMF-mediated antioxidant responses in
oligodendrocytes. Short-term (60 min) treatment of rat oligoden-
droglial cells depleted glutathione levels, although this did not
affect viability [44]. A study examining the antioxidant activity of
DMF in the glial cell line, CG4 demonstrated that 24 h of drug
exposure did not protect the cells from hydrogen peroxide-
induced oxidative stress [16]. Our study confirmed that 24 h of
treatment was not sufficient to protect against oxidative stress
even with the observed increases in antioxidant small molecules.
The development of mature, myelinating oligodendrocytes
involves changes in migration, proliferation, and myelin produc-
tion [45]. Metabolic differences are present at each stage of oli-
godendrocyte differentiation to promote unique functions [46].
The regulation of the TCA cycle and small molecule antioxidants
by DMF may also be dependent on the developmental stage of
these cells and it remains to be determined if changes in pro-
liferation or migration influence these responses. Future work will
also focus on identifying the metabolic factors that are elicited by
longer term treatment with DMF as these may mediate the pro-
tection from oxidative stress.

The myelin sheath is a major target of the inflammatory response
in multiple sclerosis [47] and is composed of approximately 70–80%
lipids [48]. The synthesis and incorporation of phospholipids, sphin-
golipids, and cholesterol are critical for the development and main-
tenance of the myelin sheath [49,50]. We tested whether DMF might
alter lipid homeostasis in oligodendrocytes by profiling membrane
lipids with shotgun lipidomics (Fig. 4). Based on clinical data
demonstrating neuroprotection, we postulated that this compound
might increase lipid synthesis to promote the integrity of the myelin
sheath. Unexpectedly, we found that phosphatidylcholines (PC),
sphingomyelin species (SM), and free fatty acids (FFAs) were all down-
regulated after 24 h of DMF treatment while small increases were seen
in phosphatidylethanolamine (PE), phosphatidylserine (PS), and
phosphatidylinositol (PI) species (Fig. 4A). This effect was transient as
by 72 h PC species as well as SM, PE, PI, and PS are all increased
(Fig. 4B). The increases in membrane lipids coincided with the time
point where DMF protected against oxidant challenge. It is interesting
to speculate that DMF perturbation of the TCA cycle may decrease
lipid synthesis initially, but that these metabolic processes recover
after longer treatment when sufficient antioxidant responses have
been upregulated. Alternatively, prolonged DMF treatment and acti-
vation of the Keap1-Nrf2 pathway in oligodendrocytes could influence
lipid metabolism by regulating NADPH-generating enzymes involved
in fatty acid synthesis or by increasing levels of phospholipid pre-
cursors such as serine produced from the glycolytic intermediate



Fig. 2. DMF treatment perturbs TCA cycle metabolism in oligodendrocytes. Box and
whisker plots for succinate (A), fumarate (B), and malate (C) all showing upregu-
lation after DMF treatment for 24 and 72 h compared to vehicle-treated controls
(succinate p¼0.004, q¼0.009 at 24 h, p¼0.046; q¼0.021 at 72 h; fumarate
p¼0.017, q¼0.020 at 24 h, p ¼ 0.001, q¼0.002 at 72 h; and malate p¼0.002;
q¼0.003 at 24 h, p¼0.020, q¼0.040 at 72 h). *q-value o0.05, **q-value o0.01;
N¼6 replicates per group, representative of two separate experiments.

Fig. 3. DMF induces glutathione and protects oligodendroglial cells from oxidative
stress. (A) Box and whisker plot of GSH levels after 24 and 72 h of treatment with
10 mM DMF. GSH is significantly increased at both time points (**qo0.01,
p¼0.0006, q¼0.004 at 24 h and p¼0.003, q¼0.004 at 72 h). (B) MTT assay of
MO3.13 cells treated with DMF for 24 h and exposed to 400 mM hydrogen peroxide
for 2 h. Hydrogen peroxide-treated cells show a significant loss of viability com-
pared to vehicle controls and DMF treatment at both 1 and 10 mM did not sig-
nificantly alter this reduction in viability. (C) MTT assay of MO3.13 cells treated with
DMF for 72 h and challenged with hydrogen peroxide. In contrast to vehicle-treated
controls, hydrogen peroxide-treated cells show reduced viability that was rescued
by pre-treatment with DMF. *p-value o0.05, Kruskal–Wallis test, N¼12 replicates
per group, experiment repeated 3 times.
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3P-glycerate [51,52]. Future studies will examine the connection
between Nrf2 activation and metabolic pathways involved in lipid
synthesis and degradation in oligodendrocytes.



Fig. 4. DMF treatment alters lipid metabolism in oligodendroglial cells. MO3. 13
cells were treated with DMF for 24 or 72 h and their lipids were analyzed by using
shotgun lipidomics. (A) Lipid profile of MO3.13 cells after 24 h of DMF treatment.
Decreased levels of PC (po0.01) and SM (po0.05) but increased PE (po0.01), PI
(po0.01) species were detected. (B) Lipid profile of MO3.13 cells after 72 h of DMF
treatment. Both PC (po0.01) and SM (po0.01) are significantly increased com-
pared to vehicle controls. **po0.01, *p-value o0.05, Kruskal–Wallis test, N¼6
replicates per condition, repeated three times.
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In this study, we have applied a global metabolomic platform
which employs a single extraction, a 24-min chromatographic run,
and shotgun lipidomic analysis in order to profile changes in the
oligodendrocyte metabolome in response to the small molecule
neuroprotective agent DMF. Here, we demonstrate that DMF sig-
nificantly alters oligodendrocyte metabolism, including small mole-
cules involved in antioxidant responses and these changes provide
protection against oxidative stress. These results indicate that myelin
preservation seen in DMF-treated multiple sclerosis patients may in
part be due to a direct action by this drug on oligodendrocytes.
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