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Abstract: Phosphorus (P) is an essential macronutrient for plant growth and development. Among
adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed
in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains
unclear whether other key regulators might control anthocyanin synthesis through protein mod-
ification under P-deficient conditions. In the study, phosphate (Pi) starvation led to anthocyanin
accumulations in soybean (Glycine max) leaves, accompanied with increased transcripts of a group
of genes involved in anthocyanin synthesis. Meanwhile, transcripts of GmCSN5A/B, two members
of the COP9 signalosome subunit 5 (CSN5) family, were up-regulated in both young and old soybean
leaves by Pi starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis thaliana
significantly resulted in anthocyanin accumulations in shoots, accompanied with increased tran-
scripts of gene functions in anthocyanin synthesis including AtPAL, AtCHS, AtF3H, AtF3′H, AtDFR,
AtANS, and AtUF3GT only under P-deficient conditions. Taken together, these results strongly
suggest that P deficiency leads to increased anthocyanin synthesis through enhancing expression
levels of genes involved in anthocyanin synthesis, which could be regulated by GmCSN5A and
GmCSN5B.
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1. Introduction

Phosphorus (P) is one of essential mineral nutrients required for various biomacro-
molecules (e.g., nucleic acids and phospholipids), and a series of the biological processes,
such as cell energy metabolism, signal transduction and protein modification in plants [1–3].
Inorganic phosphate (Pi) is the main form of phosphorus absorbed by plants, and is eas-
ily fixed in soils, mainly due to cation chelation and biological fixation by microorgan-
isms [1,2]. Therefore, the amount of available Pi is approximately between 1 µM and
10 µM, which is suboptimal for crop growth [4,5]. Plants have deployed a set of morpho-
logical and physiological strategies in adaptation to P deficiency, including retardation
of growth rates, enhancement of lateral root and root hair growth, accumulations of an-
thocyanin [6,7]. Meanwhile, plants have evolved the metabolic flexibility to improve P
utilization efficiency, such as scavenging Pi from P-containing metabolites, replacing mem-
brane P-lipids with sulfonyl-lipids [3,8]. Among them, anthocyanin accumulation in shoots
or leaves of Arabidopsis thaliana, tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum),
Medicago truncatula, rice (Oryza sativa) and maize (Zea mays) was widely observed and
suggested to protect chloroplasts from photoinhibitory damage in plant responses to Pi
starvation [7,9–13].
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Anthocyanins are a kind of flavonoids, and exist in most plant tissues, including
flower petals, leaves, stems, roots, and fruits [14]. Anthocyanins not only act as the pig-
ments in tissues or organs (e.g., flowers, fruits, and leaves), but also protect plants from
pathogen and insect invasion [15–17]. Meanwhile, the antioxidant activity of anthocyanins
helps plants adapt to various abiotic stresses, such as nutrient deficiencies (e.g., nitrogen
and phosphorus), and low temperature stress [18–20]. In Arabidopsis, biosynthesis of
anthocyanins includes consecutive processes which are catalyzed by multiple enzymes in-
cluding phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase
(CHI), flavanone-3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol
4-reductase (DFR), anthocyanin synthase (ANS), and flavonoid 3-O-glucosyl transferase
(UF3GT) [21,22]. Therefore, the synthesis of anthocyanins is tightly related to enzymatic ac-
tivity of the enzymes, and transcription levels of their corresponding genes in plants [7,23].
For example, anthocyanin synthase (ANS) is the key enzyme in anthocyanin synthetic
pathways, and ans-1/2 mutants accumulate less anthocyanin under high light stress in
Arabidopsis [24].

Except for the functional identification of gene functions in anthocyanin biosynthesis
processes, their upstream regulatory factors have been well characterized in plants [1,25,26].
Among them, the MYB-bHLH-WD40 (MBW) complexes are considered to play a critical
role in controlling transcription levels of genes encoding anthocyanin biosynthesis [27–31].
In these complexes, a R2R3 MYB transcription factor PRODUCTION OF ANTHOCYANIN
PIGMENTS1 (PAP1), also known as MYB75, functions as central regulator in antho-
cyanin biosynthesis in plants [30,31]. Therefore, it is reasonable to find that increased
anthocyanin accumulations by Pi starvation were regulated by PAP1 in plants, such as
Arabidopsis [29,31]. Recently, SPX4, the key regulator of Pi signaling network, has been
found to cooperate with PAP1, and thus transform the signal of P deficiency to anthocyanin
biosynthesis in plants [26].

Although the molecular mechanisms underlying anthocyanin synthesis are well
demonstrated at transcription levels in model plants (i.e., Arabidopsis and rice), it remains
largely unknown that protein modification might be involved in mediating the antho-
cyanin synthesis in plants. It is well known that a ubiquitin-proteasome-mediated protein
degradation is involved in photomorphogenesis, floral organ formation and abiotic stress
responses [32–34]. Among them, constitutive photomorphogenesis 9 (COP9) signalosome
(CSN) was found to participate in protein degradation, mainly through interacting with
Skp1-cullin 1-F-box (SCF) complexes, the largest family of ubiquitin E3 ligases [35]. Fur-
thermore, loss-function of CSN5a, one of the eight CSN subunits, was found to enhance
anthocyanin accumulations in Arabidopsis, strongly suggesting that AtCSN5A participates
in anthocyanin synthesis [36–38]. However, the molecular mechanisms underlying CSN5A
mediating anthocyanin metabolism in other plants, remain largely unknown especially in
crops.

Soybean (Glycine max) is an important legume crop, and it provides a protein-rich
food source in the world. However, phosphate starvation restrains soybean growth and
yield in soils [39]. To deal with low Pi stress, the soybean has evolved a set of adaptive
strategies to enhance Pi mobilization and acquisition in soil, such as the remodeling of
root architecture, increased exudation of organic acids and root-associated purple acid
phosphatase activities, formation of symbiosis with beneficial microbes (i.e., rhizobia and
mycorrhiza fungi) [40–43]. However, few studies tried to investigate responses of soybean
leaves to P deficiency in order to fully understand adaptative strategies of soybean to P
deficiency. Therefore, in the study, we examined anthocyanin accumulations in both old
and young soybean leaves, as well as transcripts of anthocyanin synthesis-related genes
under Pi-sufficient and Pi-deficient conditions. Meanwhile, two Pi starvation up-regulated
GmCSN5A/B members were functionally characterized, and were suggested to regulate
anthocyanin synthesis tightly dependent on Pi availability through mediating transcription
levels of several genes related to anthocyanin synthesis in plants.
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2. Results
2.1. Effects of P Deficiency on Soybean Biomass and Anthocyanin Content

To investigate the effects of P deficiency on soybean growth, the fresh weight of leaves
at two P treatments for 12 d was measured. The results showed that the fresh weight of
young and old leaves under sufficient P conditions was 12.5% and 16.8% higher than that of
P-deficient plants, respectively (Figure 1A,B). Anthocyanin content in both young and old
leaves was determined at two P levels. As shown in Figure 1C, the anthocyanin content in
young and old leaves of soybean seedlings grown under Pi-deficient conditions was about
1.2 and 1.3 times higher than those of plants grown on Pi-sufficient conditions, respectively.
However, P concentration in young and old leaves was 72.3% and 77.2% lower at low P
levels than that at high P levels, respectively (Figure 1D). These results suggest that Pi
starvation led to increased accumulations of anthocyanin in soybean leaves.
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Figure 1. Effects of P deficiency on soybean fresh weight, anthocyanin content and P concentration. (A) Phenotypes of
soybean at two P levels. Bars = 5 cm. (B) Fresh weight of young leaves (YL) and old leaves (OL). (C) Anthocyanin content
of YL and OL. (D) P concentration of YL and OL. Data are means of four replicates ± SE. Asterisks indicate significant
difference between the two P levels in the Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.2. Effects of P Deficiency on Transcripts of Anthocyanin Synthesis Genes

In order to analyze the effects of Pi starvation on anthocyanin synthesis in soybean, the
expression patterns of eight genes related to anthocyanin synthesis pathway were investi-
gated in old leaves under two P treatments, including phenylalanine ammonia-lyase (GmPAL),
chalcone synthase (GmCHS), chalcone isomerase (GmCHI), flavanone-3-hydroxylase (GmF3H),
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flavonoid 3′-hydroxylase (GmF3′H), dihydroflavonol 4-reductase (GmDFR), anthocyanin synthase
(GmANS) and flavonoid 3-O-glucosyl transferase (GmUF3GT) (Figure 2A). Results showed
that transcripts of all genes were enhanced by more than 1-fold by Pi starvation, except
F3H, which exhibited no response to P treatments (Figure 2B). Notably, the expression
levels of GmDFR under low P conditions were 5.8-fold higher than those under high P
conditions (Figure 2B).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 14 
 

 

2.2. Effects of P Deficiency on Transcripts of Anthocyanin Synthesis Genes 
In order to analyze the effects of Pi starvation on anthocyanin synthesis in soybean, 

the expression patterns of eight genes related to anthocyanin synthesis pathway were in-
vestigated in old leaves under two P treatments, including phenylalanine ammonia-lyase 
(GmPAL), chalcone synthase (GmCHS), chalcone isomerase (GmCHI), flavanone-3-hydroxylase 
(GmF3H), flavonoid 3′-hydroxylase (GmF3′H), dihydroflavonol 4-reductase (GmDFR), anthocy-
anin synthase (GmANS) and flavonoid 3-O-glucosyl transferase (GmUF3GT) (Figure 2A). Re-
sults showed that transcripts of all genes were enhanced by more than 1-fold by Pi star-
vation, except F3H, which exhibited no response to P treatments (Figure 2B). Notably, the 
expression levels of GmDFR under low P conditions were 5.8-fold higher than those under 
high P conditions (Figure 2B). 

 
Figure 2. Transcripts of eight genes in anthocyanin biosynthetic pathway in soybean leaves at two P levels. (A) The genes 
in anthocyanin biosynthetic pathway. (B) Relative expression of genes in anthocyanin biosynthetic pathway under Pi-
sufficient (+P) and Pi-deficient (−P) conditions. Data are means of four independent replicates ± SE. Asterisks indicate 
significant difference between the two P levels in the Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.001). 

2.3. Identification of GmCSN5A/B in Soybean Genome 
Two putative GmCSN5 members in the soybean genome were identified by BLAST 

searching at http://www.phytozome.net, accessed on 10 February 2019, which were 
named as GmCSN5A (Glyma.04G075000) and GmCSN5B (Glyma.06G076000) based on its 
localization in soybean chromosomes. All the tested CSN5 proteins contained the con-
served JAB_MPN domain (Figure 3). Phylogenetic analysis showed that CSN5 homologs 
in dicot plants significantly differed from monocot plants (Figure 3). Meanwhile, among 
dicot plants, CSN5 homologs in leguminous plants distinguished from other dicot plants, 
as reflected by CSN5 homologs from soybean, bean and Medicago, belonged to a sub-
group. Interestingly, CSN5B was found to contain a transmembrane region, which was 
not identified in other CSN5 homologs (Figure 3). 

Figure 2. Transcripts of eight genes in anthocyanin biosynthetic pathway in soybean leaves at two P levels. (A) The genes in
anthocyanin biosynthetic pathway. (B) Relative expression of genes in anthocyanin biosynthetic pathway under Pi-sufficient
(+P) and Pi-deficient (−P) conditions. Data are means of four independent replicates ± SE. Asterisks indicate significant
difference between the two P levels in the Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.3. Identification of GmCSN5A/B in Soybean Genome

Two putative GmCSN5 members in the soybean genome were identified by BLAST
searching at http://www.phytozome.net, accessed on 10 February 2019, which were named
as GmCSN5A (Glyma.04G075000) and GmCSN5B (Glyma.06G076000) based on its local-
ization in soybean chromosomes. All the tested CSN5 proteins contained the conserved
JAB_MPN domain (Figure 3). Phylogenetic analysis showed that CSN5 homologs in dicot
plants significantly differed from monocot plants (Figure 3). Meanwhile, among dicot
plants, CSN5 homologs in leguminous plants distinguished from other dicot plants, as
reflected by CSN5 homologs from soybean, bean and Medicago, belonged to a subgroup. In-
terestingly, CSN5B was found to contain a transmembrane region, which was not identified
in other CSN5 homologs (Figure 3).

http://www.phytozome.net


Int. J. Mol. Sci. 2021, 22, 12348 5 of 13
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 3. Phylogenetic analysis of CSN5s in plant. The phylogenetic tree was generated ground on an amino acid align-
ment of CSN5 proteins from well-known species using the Mega 5.05 program. The gene loci on the Phytozome website 
are as follows: AtCSN5A (At1G22920), AtCSN5B (At1G71230), GmCSN5A (Glyma.04G075000), GmCSN5B 
(Glyma.06G076000), PvCSN5 (Phvul.009G100700), MtCSN5 (Medtr3g108790), SlCSN5A (Solyc06g073150), SlCSN5B 
(Solyc11g017300), OsCSN5 (LOC_Os04g56070), ZmCSN5 (GRMZM2G086801). At, Arabidopsis thaliana; Gm, Glycine max; 
Os, Oryza sativa; Pv, Phaseolus vulgaris; Zm, Zea mays; Mt, Medicago truncatula; Sl, Solanum lycopersicum. 

2.4. Expression Patterns and Subcellular Localization of GmCSN5A/B 
Expression patterns of GmCSN5A and GmCSN5B in leaves were investigated at two 

P levels using qRT-PCR. Results showed that transcripts of GmCSN5A in young and old 
leaves were significantly enhanced by low P stress, as reflected by 1.5-fold and 2.6-fold 
increases, respectively (Figure 4A). Similarly, transcripts of GmCSN5B in leaves were also 
up-regulated by Pi starvation, especially in old leaves with values 2.8-fold higher than 
those in sufficient P treatment (Figure 4B). These results suggest that GmCSN5A and 
GmCSN5B exhibited enhanced expression patterns in soybean leaves in response to Pi 
starvation. 

To analyze the subcellular localization of GmCSN5A/B, the GFP (empty vector con-
trol), GmCSN5A-GFP and GmCSN5B-GFP plasmids were separately transiently expressed 
in tobacco leaf epidermal cells. Results showed that GmCSN5A-GFP fluorescence signals 
were detected in the cytoplasm and nucleus, and GmCSN5B-GFP fluorescence signals 
were detected in the whole epidermal cells, exhibiting similar patterns to the GFP fluores-
cence signals observed in cells transformed with the empty vector (Figure 4C). Therefore, 
it is suggested that GmCSN5A is mainly localized in the cytoplasm and nucleus, while 
GmCSN5B is localized in the plasma membrane, nucleus, and cytoplasm. 

Figure 3. Phylogenetic analysis of CSN5s in plant. The phylogenetic tree was generated ground on an amino acid alignment
of CSN5 proteins from well-known species using the Mega 5.05 program. The gene loci on the Phytozome website are as
follows: AtCSN5A (At1G22920), AtCSN5B (At1G71230), GmCSN5A (Glyma.04G075000), GmCSN5B (Glyma.06G076000),
PvCSN5 (Phvul.009G100700), MtCSN5 (Medtr3g108790), SlCSN5A (Solyc06g073150), SlCSN5B (Solyc11g017300), OsCSN5
(LOC_Os04g56070), ZmCSN5 (GRMZM2G086801). At, Arabidopsis thaliana; Gm, Glycine max; Os, Oryza sativa; Pv, Phaseolus
vulgaris; Zm, Zea mays; Mt, Medicago truncatula; Sl, Solanum lycopersicum.

2.4. Expression Patterns and Subcellular Localization of GmCSN5A/B

Expression patterns of GmCSN5A and GmCSN5B in leaves were investigated at two
P levels using qRT-PCR. Results showed that transcripts of GmCSN5A in young and old
leaves were significantly enhanced by low P stress, as reflected by 1.5-fold and 2.6-fold
increases, respectively (Figure 4A). Similarly, transcripts of GmCSN5B in leaves were also
up-regulated by Pi starvation, especially in old leaves with values 2.8-fold higher than those
in sufficient P treatment (Figure 4B). These results suggest that GmCSN5A and GmCSN5B
exhibited enhanced expression patterns in soybean leaves in response to Pi starvation.
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To analyze the subcellular localization of GmCSN5A/B, the GFP (empty vector con-
trol), GmCSN5A-GFP and GmCSN5B-GFP plasmids were separately transiently expressed
in tobacco leaf epidermal cells. Results showed that GmCSN5A-GFP fluorescence signals
were detected in the cytoplasm and nucleus, and GmCSN5B-GFP fluorescence signals
were detected in the whole epidermal cells, exhibiting similar patterns to the GFP fluores-
cence signals observed in cells transformed with the empty vector (Figure 4C). Therefore,
it is suggested that GmCSN5A is mainly localized in the cytoplasm and nucleus, while
GmCSN5B is localized in the plasma membrane, nucleus, and cytoplasm.

2.5. Overexpression of GmCSN5A/B Increases Anthocyanin Accumulations and Affects
Photomorphogenesis in Arabidopsis

In this study, GmCSN5A and GmCSN5B were subsequently overexpressed in Ara-
bidopsis to investigate their biological functions. Increased transcripts of GmCSN5A and
GmCSN5B in transgenic Arabidopsis were validated via qRT-PCR analysis (Figure S1). Sub-
sequently, wild type (WT) and transgenic Arabidopsis with overexpressing GmCSN5A/B
were used to investigate the role of GmCSN5A/B in anthocyanin accumulations at two P
levels (Figures 5 and 6).
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Figure 5. Effects of GmCSN5A overexpression on anthocyanin accumulation in Arabidopsis. (A) The phenotypes.
Bars = 1 cm. (B) Fresh weight. (C) Anthocyanin content. (D) P content. (E) Relative expression of eight genes in
anthocyanin biosynthetic pathway. Seedlings were grown in peat soils for 8 d. Data are means of four independent
replicates ± SE. Asterisks indicate significant difference between GmCSN5A overexpressing Arabidopsis and WT in the
Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.001).
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(B) Fresh weight. (C) Anthocyanin content. (D) P content. (E) Relative expression of eight genes in anthocyanin biosynthetic
pathway. Seedlings were grown in peat soils for 13 d. Data are means of four independent replicates ± SE. Asterisks
indicate significant difference between GmCSN5B overexpressing Arabidopsis and WT in the Student’s t-test (* p < 0.05;
** p < 0.01; *** p < 0.001).

Wild type (WT) and GmCSN5A transgenic Arabidopsis were subjected to two P
treatments for 8 d. Results showed that GmCSN5A overexpression resulted in enhanced
Arabidopsis growth at two P levels. Fresh weight in two GmCSN5A overexpression lines
(OX1 and OX2) was 12.3–25.3% and 39.6–40.1% higher than that in WT under P-sufficient
and P-deficient conditions, respectively (Figure 5B). Furthermore, under low P conditions,
anthocyanin content in GmCSN5A overexpression lines was increased by approximately
more than 1.4-fold compared to those in WT (Figure 5C). For P content, no significant
difference was observed between GmCSN5A overexpression lines and WT at two P levels
(Figure 5D). To further investigate the roles of GmCSN5A in anthocyanin synthesis in
responses to Pi starvation, transcripts of eight genes involved in the anthocyanin synthesis
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pathway were analyzed in both WT and transgenic Arabidopsis, including AtPAL, AtCHS,
AtCHI, AtF3H, AtF3′H, AtDFR, AtANS, and AtUF3GT. The results showed that expression
levels of all of the tested genes were significantly increased in two transgenic lines with
GmCSN5A overexpression only under low P conditions, but not under high P conditions
(Figure 5E).

Similarly, increases in fresh weight and anthocyanin content were also observed in
GmCSN5B overexpression lines compared to those in WT only under Pi-deficient condi-
tions, not under Pi-sufficient conditions (Figure 6B,C). However, P content in GmCSN5B
overexpression lines was no different from that in WT at two P levels (Figure 6D). Fur-
thermore, except CHI, expression levels of the tested genes were significantly increased
in transgenic lines with GmCSN5B overexpression under low P conditions (Figure 6E).
These results together suggest that both GmCSN5A and GmCSN5B play important roles in
anthocyanin synthesis in plant responses to low P stress. Meanwhile, hypocotyl length was
significantly decreased in Arabidopsis with overexpressing GmCSN5B after grown in the
dark for 5 d (Figure S2). However, no difference in hypocotyl length was found between
WT and plants with overexpressing GmCSN5A (Figure S2).

3. Discussion

Phosphorus is one of essential macronutrients and participates in numerous biochemi-
cal and metabolic processes [1,2]. Among the adaptive strategies of plants to P deficiency,
increased anthocyanin accumulations in shoot/leaves are generally considered to improve
plant tolerance to P deficiency, and widely observed in plants including Arabidopsis,
tomato, tobacco, and maize [9,10,13,26]. In this study, enhanced anthocyanin accumula-
tions in soybean young leaves and old leaves were also found under Pi-deficient conditions,
as reflected by the fact that their values were 1.2- and 1.3-fold higher than those plants in Pi-
sufficient conditions (Figure 1C). Furthermore, it was observed that anthocyanin content in
old leaves was 12.7% higher than that in young leaves by Pi starvation (Figure 1C), suggest-
ing that more anthocyanins were synthesized in old leaves by Pi starvation because Pi might
be transported out of old leaves to active tissues/organs in plants. Consistently, P concen-
tration in old leaves was 33.2% lower than that in young leaves at low P levels (Figure 1D).
Similarly, higher anthocyanin content, accompanied with lower P concentration was also
observed in shoot/leaves of other plants under low Pi stress, such as Arabidopsis and Med-
icago [7,44]. Accompanied with anthocyanin accumulations, expression levels of several
genes related to anthocyanin synthesis were significantly up-regulated by Pi starvation in
soybean old leaves, including GmPAL, GmCHS, GmCHI, GmF3′H, GmDFR, GmANS, and
GmUF3GT (Figure 2). Meanwhile, it was widely observed that transcripts of one or more
homologues related to anthocyanin synthesis were increased by P deficiency in plants,
strongly suggesting that the regulatory pathway of Pi starvation responsive anthocyanin
synthesis is well conserved in plants [7,12,23,26].

Consistently, we found that overexpressing GmCSN5A and GmCSN5B led to higher
plant fresh weight, accompanied with more anthocyanin accumulations in plants under
P-deficient conditions (Figures 5 and 6), partially suggesting that increased anthocyanin
synthesis could contribute to enhancing plant tolerance to P deficiency. It is generally
believed that anthocyanin accumulations play a role in scavenging reactive oxygen species
(ROS), and protecting chloroplasts from photoinhibitory damage in plants under abiotic
stress conditions, such as N and P deficiencies [18–20,45,46]. For example, mutation of
ZmSRO1e in maize enhanced anthocyanin accumulations and ROS scavenging activity, and
thus led to higher plant biomass, suggesting that increased anthocyanin accumulations
resulted in plant adaptation to Pi starvation through avoiding ROS inhibition [46]. However,
there should be further analysis into whether anthocyanin accumulations in Arabidopsis
with GmCSN5A/B overexpression could inhibit excess ROS accumulations under low P
conditions, which is widely observed in plants subjected to Pi starvation [47].

Functions of CSN5A are generally considered to control plant photomorphogenesis
in Arabidopsis, such as growth of hypocotyl and cotyledons [36–38]. For example, csn5
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mutants exhibited short hypocotyl and unexpanded cotyledons in seedlings grown in the
dark [37,38]. However, hypocotyl length in Arabidopsis with overexpressing GmCSN5B,
was significantly shorter than WT grown in the dark (Figure S2). These results strongly
suggested that both increased and suppressed expression levels of CSN5 could result in the
abnormal growth of plant hypocotyls. However, overexpressing GmCSN5A does not have
any effect on the hypocotyl length and root length. It might be caused by differences in
amino acids between GmCSN5A and GmCSN5B, as reflected by a transmembrane domain
presenting in GmCSN5B, not in GmCSN5A (Figure 3), which merit further studies.

In addition to influencing hypocotyl growth, increased anthocyanin accumulations
were observed in loss-function mutants of CSN5a, strongly suggesting that CSN5A partici-
pates in mediating anthocyanin synthesis in Arabidopsis [36–38]. CSN5 was suggested to
regulate anthocyanin accumulation via interactions with one of SCF complexes, SCFCOI1

and its substrate, jasmonate ZIM-domain (JAZ) proteins, which negatively mediates the
stability of a key transcription factor in anthocyanin synthesis, PAP1, and thus mediates
expression levels of anthocyanin biosynthetic genes, including DFR and UF3GT [32,38,48].
Furthermore, it is generally considered that the anthocyanin synthesis is affected directly by
transcription levels of several genes encoding enzymes in anthocyanin biosynthetic path-
way in plants [7,23]. For example, tt3, a mutant of DFR which is the rate-limiting enzyme in
anthocyanin biosynthesis, decreases anthocyanin content under normal growth conditions
or low N stress [49]. In this study, overexpressing GmCSN5A and GmCSN5B in Arabidopsis
led to anthocyanin accumulations in Arabidopsis only under P-deficient conditions, as
reflected by values more than 1.4- and 1.2-fold higher than those in WT (Figures 5 and 6),
accompanied by increased transcripts of gene functions in anthocyanin synthesis, including
AtPAL, AtCHS, AtF3H, AtF3′H, AtDFR, AtANS, and AtUF3GT (Figures 5 and 6), strongly
suggesting that GmCSN5A/B-mediated anthocyanin accumulations under Pi-deficient
conditions. It has widely been observed that CSN5 exhibits non-identical functions by
binding to different protein targets [35]. The functions of GmCSN5A/B mediating the
anthocyanin synthesis in response to Pi starvation probably depend on their interacted
proteins. Meanwhile, SPX4, a main regulator in P signaling network, has recently been
suggested to transduce the Pi starvation signal to mediate anthocyanin synthesis in Ara-
bidopsis through interacting with PAP1 [26]. It is speculated that GmCSN5A/B might be
associated with SPX4-PAP1 complex to regulate anthocyanin accumulation in response to
Pi starvation, which merits further analysis.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Soybean genotype YC03-3 provided by Root Biology Center, South China Agricultural
University, China was used in this study. The seeds were germinated for 4 d as described
previously [50]. After germination, uniform seedlings were transplanted into nutrient
solution containing 1500 µM KNO3, 400 µM NH4NO3, 1200 µM Ca(NO3)2, 25 µM MgCl2,
300 µM K2SO4, 500 µM MgSO4, 0.3 µM (NH4)2SO4, 0.5 µM CuSO4, 1.5 µM MnSO4, 1.5 µM
ZnSO4, 0.16 µM (NH4)6Mo7O24, 40 µM Fe-Na-EDTA, 2.5 µM NaB4O7, and 250 µM (+P)
or 5 µM (−P) KH2PO4. The pH value of nutrient solution was adjusted to 5.8, and
the nutrient solution was replaced every 7 d. After 12 d of P treatments, as described
previously [51], soybean fresh weight, content of P concentration and anthocyanin in the
youngest trifoliate leaves (i.e., young leaves) and primary leaves (i.e., old leaves) were
measured. All experiments included four replicates.

Arabidopsis Columbia (Col-0) ecotype and tobacco (Nicotiana benthamiana) were used
as background of transformation in this study. The seeds of Arabidopsis and tobacco
were obtained from Dr. Jinxiang Wang at South China Agricultural University, China.
Arabidopsis and tobacco plants were grown in a greenhouse at 22–24 ◦C and 60% relative
humidity with a 16 h/8 h light/dark photoperiod.
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4.2. Analysis of P Concentration and Anthocyanin Content

To determine P concentration, about 0.1 g of plant dry samples were ground into
powder and digested with H2SO4-H2O2. P concentration in the extracts was measured
according to the method described by Murphy and Riley [52].

For anthocyanin content measurement, about 0.1 g of fresh leaf samples were ground
into powder by liquid N2 and dissolved in extraction solution (0.1 M HCl mixed with
95% ethanol). The mixtures were incubated at 60 ◦C for 30 min. After centrifugation at
12,000 rpm for 15 min at 4 ◦C, the supernatants were collected and spectrophotometrically
detected at 530 and 657 nm with a microplate spectrophotometer (Thermo Scientific,
Waltham, MA, USA). Anthocyanin content was calculated as previously described [53].

4.3. Phylogenetic Analysis and Characterization of GmCSN5A/B in Plants

GmCSN5A (Glyma.04G075000) and GmCSN5B (Glyma.06G076000) were identified
in soybean genome by BLAST searches using the AtCSN5A (At1G22920) and AtCSN5B
(At1G71230) as the query sequences at the Phytozome website (http://www.phytozome.
net, accessed on 10 February 2019). The phylogenetic tree was constructed using CSN5
proteins from soybean, Arabidopsis, common bean (Phaseolus vulgaris), Medicago, tomato,
rice, and maize using MEGA 5.05 based on the Neighbor-Joining method [54]. Conserved
domain analysis was performed at the SMART website (http://smart.embl.de/, accessed
on 17 May 2020) as previously described [55].

4.4. Subcellular Localization Analysis of GmCSN5A/B

The subcellular localization of GmCSN5A and GmCSN5B was analyzed as previously
described [43]. Briefly, the full-length of GmCSN5A and GmCSN5B was separately amplified
and cloned into a pEGAD vector with eGFP at its C-terminus. The GFP and GmCSN5A/5B-
GFP plasmids and the plasma membrane marker AtPIP2A-mCherry were co-transformed
into tobacco leaves by Agrobacterium-mediated transformation. The fluorescence signals
were observed in a Zeiss LSM7 Duo confocal microscope (Zeiss, Oberkochen, Germany) at
488 nm for GFP and 543 nm for mCherry.

4.5. Functional Characterization of GmCSN5A/B in Arabidopsis

The full-length of GmCSN5A and GmCSN5B was separately amplified and cloned into
pTF101s vector according to the method described previously [43]. The GmCSN5A- and Gm-
CSN5B-pTF101s plasmids were transformed into Arabidopsis by Agrobacterium-mediated
transformation as described previously [50]. Two homozygous T3 lines (OX1/2/3/4) were
separately selected and used for functional analysis. The transcripts of GmCSN5A and
GmCSN5B in transgenic Arabidopsis were determined by quantitative RT-PCR (qRT-PCR).
To investigate the functions of GmCSN5A and GmCSN5B, both wild type (WT, Columbia-
0) and transgenic Arabidopsis seeds were cultivated on peat soils (Jiffy, Zwijndrecht,
Netherlands) supplied with or without phosphorus. After 8 or 13 d growth, Arabidopsis
plants were separately harvested for fresh weight, P and anthocyanin content analysis. All
experiments had four biological replicates.

Furthermore, to investigate the functions of GmCSN5A and GmCSN5B in photomor-
phogenesis, both WT and transgenic Arabidopsis were germinated on solid Murashige and
Skoog (MS) medium in the dark for 5 d. The length of hypocotyls and roots was analyzed
with Image J (National Institutes of Health, Bethesda, MD, USA). All experiments had 19
biological replicates.

4.6. RNA Extraction and Quantitative RT-PCR Analysis

Total RNA was extracted from soybean and Arabidopsis plants using the RNAsolve
reagent (OMEGA Bio-Tek, Norcross, GA, USA), and was then purified with RNase-free
DNase I (Invitrogen, USA). About 1 µg of RNA was reversely transcribed to complementary
DNA (cDNA) with MMLV-reverse transcriptase (Promega, Madison, WI, USA). qRT-PCR
was performed using a SYBR Premix kit (Promega, Madison, WI, USA) on a Rotor-Gene

http://www.phytozome.net
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3000 real-time PCR system (Corbett Research, Mortlake, Australia). The GmEF-1a and
AtEF-1a were separately used as an internal control. Relative expression of genes was
calculated as the ratio of expression of the tested genes to those of EF-1a as described
previously [56]. Specific gene primers are listed in Table S1.

4.7. Statistical Analysis

All data were analyzed using Microsoft Excel 2019 (Microsoft Company, Redmond,
WA, USA) and SPSS program (v21.0; SPSS Institute, Chicago, IL, USA) for calculating mean,
standard error, and Student’s t-tests.

5. Conclusions

In summary, two CSN5 members in soybean were identified, and up-regulated by Pi
starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis resulted
in significant increases in anthocyanin accumulation and fresh weight in shoot accompanied
with increased transcripts of gene functions in anthocyanin synthesis including AtPAL,
AtCHS, AtF3H, AtF3′H, AtDFR, AtANS, and AtUF3GT under P-deficient conditions. Taken
together, these results suggest that Pi starvation responsive GmCSN5A and GmCSN5B may
mediate anthocyanin accumulation in plants in responses to P deficiency.
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