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Abstract

Escherichia coli serotype O157:H7 continues to pose a serious health threat to human

beings. Cattle, a major reservoir of the pathogen, harbor E. coli O157:H7 in their gastrointes-

tinal tract and shed variable concentrations of E. coli O157:H7 into the environment. Genetic

characterization of cattle-shed E. coli O157 strains is of interest to the livestock industry,

food business, and public health community. The present study applied whole genome shot-

gun sequencing (WGS) and single nucleotide variant (SNV) calling to characterize 279 cat-

tle-shed E. coli O157:H7 strains isolated from a single feedlot located in southwestern

region of the US. More than 4,000 SNVs were identified among the strains and the resultant

phylogenomic tree revealed three major groups. Using the Sakai strain genome as refer-

ence, more than 2,000 SNVs were annotated and a detailed SNV map generated. Results

clearly revealed highly polymorphic loci along the E. coli O157:H7 genome that aligned with

the prophage regions and highly variant genes involved in processing bacterial genetic infor-

mation. The WGS data were further profiled against a comprehensive virulence factor data-

base (VFDB) for virulence gene identification. Among the total 285 virulence genes

identified, only 132 were present in all the strains. There were six virulence genes unique to

single isolates. Our findings suggested that the genome variations of the E. coli O157:H7

were mainly attributable to dynamics of certain phages, and the bacterial strains have vari-

able virulence gene profiles, even though they came from a single cattle population, which

may explain the differences in pathogenicity, host prevalence, and transmissibility by E. coli

O157:H7.
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Introduction

Escherichia coli serotype O157:H7 is one of the most important foodborne pathogens and

poses serious threat to human health, causing an estimated 73,480 illnesses, 2,168 hospitaliza-

tions and 61 deaths within the United States alone each year [1]. USDA/ERS estimated the

annual cost of the E. coli O157:H7 cases at $271.4 million, an enormous disease burden that

cannot be ignored (https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-

illnesses/).

E. coli O157:H7 produces Shiga toxins and expresses type III secretion systems, which lead

to a wide spectrum of diseases including the severe ones such as bloody diarrhea, hemolytic

uremic syndrome (HUS), and even death [2, 3]. Infectious dose of the E. coli O157:H7 is

remarkably low—as few as 10–100 colony-forming units (CFUs) may induce symptoms, and

as a result, a zero tolerance policy against E. coli O157:H7 is enforced in the processed ground

beef [4, 5]. Various transmission routes of E. coli O157:H7 have been proposed, and the pri-

mary one is presumably via consumption of contaminated food or water. However, in many

outbreaks, the transmission details simply remained unclear [1].

Since its first report in 1982 during an investigation of hemorrhagic colitis [6, 7], E. coli
O157:H7 outbreaks in the US have been repeatedly linked to raw or undercooked food of

bovine origin [8–11]. Food industry has carried out extensive work to track E. coli O157:H7

along the whole beef production chain, and observed that cattle actually may harbor E. coli
O157:H7 in their gastrointestinal tract but without presenting any clinical manifestations [12,

13] and the cattle fecal shedding contains viable, infectious E. coli O157:H7[14, 15]. Further

epidemiology studies showed that up to 30% of the cattle would be such asymptomatic E. coli
O157:H7 carriers [16, 17], which makes cattle the most important E. coli O157:H7 reservoir

for the food and water contaminations. Unfortunately, few intervention measures appear

effective in reduction of E. coli O157:H7 in cattle population and their immediate environ-

ments [18].

Characterization of the cattle-shed E. coli O157:H7 isolates, particularly their genome vari-

ability, transmission modes, and contamination mechanisms, is always necessitated for the

interests of food safety-related trace-back investigations, risk assessment practice, and regula-

tory framework decision. Traditionally, E. coli O157:H7 is characterized utilizing a range of

phenotypic- and/or genotypic-based typing techniques [19–23], which have significantly facili-

tated E. coli O157:H7 detection, clonal characterization, serotype determination, lineages dif-

ferentiation, and virulence assessment [24–27]; however, the processes are generally time-

consuming, expensive, and less sensitive. The advances in next-generations sequencing in the

past decade have made it possible to perform whole genome sequencing (WGS) of any organ-

ism including E. coli O157:H7 rapidly and at affordable costs [28, 29]. More importantly, min-

ing the WGS data allows simultaneous examination of multiple groups of featured gene

markers, and consequently has a discriminatory power superior to any of the existing tradi-

tional methods [30, 31]. There is an ever-increasing body of evidence demonstrating that

WGS has become a dominant tool in foodborne pathogen and infection investigations [32].

WGS studies on the E. coli O157:H7 have been carried out, but mostly for prevalence inves-

tigations and usually small sample collections. In the present study, we applied WGS and single

nucleotide variant (SNV) analysis to 279 cattle-shed E. coli O157:H7 strains and focused on

their genetic diversity and the subsequent effects. The strains were isolated from cattle feces

collected from a single feedlot in southwestern region of the US. This was a large single-loca-

tion collection of E. coli O157:H7. We analyzed those strains together with the reference E. coli
O157:H7 Sakai genome, and other E. coli O157:H7 assemblies available from the GenBank to

explore a deep phylogenetic relationship among those strains. The identified SNVs were
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annotated to the reference E. coli O157:H7 Sakai genome and the highly variable genomic

regions and gene-set were revealed. The WGS data were further profiled against a comprehen-

sive virulence factor database which contained more than 26,000 records, for virulence gene

identification. Our results presented valuable information and novel insights for understand-

ing the E. coli O157:H7 genome and virulence genotype evolution.

Methods

Bacterial strains

Escherichia coli strains included in the study were isolated from feces collected from 576 cattle

housed in 48 soil-surfaced pens (40 ft. ×115 ft. with 36 ft. of bunk space) in a feedlot of South

Western US between July and October of 2015. The Institutional Animal Care and Use Com-

mittee at Kansas State University approved the research for sample collection and detection

and isolation of strains that were used in the study (IACUC # 3674). All the fecal samples were

collected with a plastic spoon from freshly-defecated pen-floor fecal pats with care taken to

avoid ground contamination. The spoon with feces was placed into a Whirl-pak bag (Nasco,

Ft. Atkinson, WI), then transferred in cold storage to the Kansas State University Pre-harvest

Food Safety Laboratory.

Fecal samples were individually processed in the lab, with 2 g of the fecal sample mixed well

with the 18 ml E. coli broth (EC; Difco, ThermoFisher, Waltham, MA) and then incubated at

40˚C for 6 hrs. An aliquot of the enriched fecal suspensions was subjected to immunomagnetic

separation (IMS) procedure with O157 IMS beads (Abraxis1, Warminster, PA). Twenty-five

microliters of the O157 bead suspensions were spread-plated onto sorbitol MacConkey with

cefixime and tellurite (CT-SMAC) medium, and the plates were incubated at 37˚ C for 20–24

hours. Up to six sorbitol-negative colonies from CT-SMAC were randomly picked, inoculated

individually onto blood agar plates (Remel), and then incubated at 37˚ C for 24 hours. Isolates

obtained from the CT-SMAC plate were tested for agglutination for O157 antigen by latex

agglutination, and if positive, tested for indole production. Isolates positive for agglutination

and indole were tested by a six-plex PCR assay that targeted rfbEO157, fliCH7, eae, stx1, stx2 and

ehxA genes [33]. Confirmation of E. coli O157:H7 was based on a gene profile positive for

rfbEO157, eae, fliCH7 and at least one Shiga-toxin gene (either stx1 or stx2). Confirmed isolates

were stored in CryoCare™ beads (Key Scientific Products, Round Rock, TX).

Preparation of genomic DNA for high-throughput whole genome

sequencing

E. coli O15:H7 strains were re-streaked onto blood agar and then subcultured in Tryptone Soy

broth. The genomic DNA was extracted from the broth culture using DNeasy Blood and Tis-

sue Kit with the QIAcube robotic workstation (Qiagen, Germantown, MD). The multiplexed

genomic libraries were constructed using Nextera XT DNA Library Preparation Kit and

MiSeq Reagent Kits v2 (500 Cycles, Illumina, Inc.) following the manufacturer’s instruction.

Whole genome shotgun sequencing was performed using an Illumina MiSeq platform (Illu-

mina, San Diego, CA) to generate paired-end reads.

Sequence analysis

Raw sequencing data were subjected to De novo genome assembly using SPAdes 3.6.0 [34]

with the default settings, and strains with spurious assembly size removed. The raw reads data

from the remaining strains were first processed using the in-house script wrapper to remove
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the reads of low quality (base score cutoff: 20), low complexity (dust score cutoff: 7) and short

length (length cutoff: 150) [35, 36].

The raw-read sequencing files with a calculated sequencing depth greater than 20X from

the processed data were retained for the SNV call using the kSNP3 algorithm [37] and phylo-

genetic tree construction using FastTree (included in the kSNP3 package). SNV annotation

was performed using the SnpEff script [38]. The clade classification followed the Manning sys-

tem [39] using the BLAT aligner with 100% identity [39, 40].The virulence profiling was per-

formed using the biobakery-ShortBRED package [41] against the downloaded Virulence

Factors Database (VFDB) peptide sequences (www.mgc.ac.cn/Vfs) [42], which contained

more than 26,000 records from various pathogen sources. All the statistical graphs were cre-

ated in R.

Dataset accession

Individual sequence data are available at the SRA, which is hosted by the NCBI, under project

number PRJNA437074. Review link to the metadata: ftp://ftp-trace.ncbi.nlm.nih.gov/sra/

review/SRP134008_20180307_125217_37d5c0b6b354bc3c790d2696b42756c9. Individual

sequence data are available at GenBank with accession number: SRP134008.

Results

SNV analysis and SNV-based Phylogenomic structure characterization

The 279 E. coli O157:H7 strains used in this study originated from the fecal samples of 525

crossbred cattle housed in a single feedlot. All the sequencing data passed our in-house quality

criteria. To decipher the high-resolution phylogenomic structure of the strains, we applied the

WGS, followed by k-mer based SNV analysis [37]. A fully closed genome of E. coli O157:H7

Sakai strain (GCA_000008865.1_ASM886v1) was downloaded from the GenBank and

included in the study for comparison and SNV annotation. The analysis called a total of 4,047

SNVs (1,798 to 2,406 SNVs for individual strains, S1 Table). Interestingly, none of the SNVs

were present in all the analyzed genomes. Absence of the common SNVs, across all of the ana-

lyzed strains (core SNVs) indicated that indel events might be important during the evolution

of the E. coli O157:H7 genome.

With the Sakai strain genome included, we found that 2,274 SNVs (56.2%) were derived

from the k-mers that were uniquely mapped to this reference, 126 SNVs (3.1%) from the k-

mers mapped twice, and 1,648 SNVs (40.7%) from the k-mers not mapped at all. Such high

percentage of the unmapped SNV-containing k-mers suggested that our E. coli O157:H7 col-

lection was quite divergent from the reference Sakai strain. The identified SNVs were used for

phylogenomic tree construction (Fig 1, S1 Text). The resultant tree topology revealed 3 distinct

clusters, which roughly correspond to groups 6, 7, and 8, defined by Manning Clade system

(S2 Table) [39]. The clade 6 strains accounted for the largest number of the total collection

(n = 191, 68.5%), followed by those belonging to clade 7 (n = 50, 17.9%) and clade 8 (n = 35,

12.5%), respectively. We also found that three strains (KSU151, KSU155, and KSU247) that

could not be assigned to any clade due to the absence of the clade-specific SNVs, but clustered

well with the remaining clade 6 strains. Two clade 6 strains KSU263/KSU264 appeared as out-

liers on the phylogeny tree, as evidenced by a separate cluster with a long branch in Fig 1.

To put our isolate collection into more general genetic context, an additional 175 genomes

related to the E. coli O157:H7, including those either contained O157 (E. coli O157:X) or H7

(E. coli X:H7) (S3 Table), as well as one non-pathogenic E. coli K12 (GCA_000981485.1_Ecoli-

K12AG100), were downloaded from the GenBank and subjected to another round of SNV call

and tree construction (Fig 2, S2 Text). With the E. coli K12 genome used as an outgroup for
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the phylogeny, data demonstrated that all the E. coli O157:H7 strains tended to cluster

together, consistent with the commonly accepted clonal theory of the E. coli O157:H7 popula-

tion. Our outlier strains, KSU263/KSU264, stayed within the clonal E. coli O157:H7 strain

cluster, but more closely related to the 11 E. coli O157:H7 strain 2011EL, all of which were clin-

ical isolates (https://www.ncbi.nlm.nih.gov/pathogens) [43]. The data, also unsurprisingly,

showed that E. coli O55:H7 strains were closely related to the E. coli O157:H7.

SNV annotations

Since about 60% (56.2% + 3.1%) of the identified SNVs were mapped to the Sakai genome, we

further performed SNV annotation to better understand how the SNVs would affect the biol-

ogy of O157:H7 E. coli strains. We only focused on the SNVs that were derived from unique k-

mers (n = 2,274) to avoid the interference of possible duplicated/repetitive genome regions.

The SNVs occurred in both bacterial chromosome (n = 2,226) and bacterial plasmids (n = 48)

(S4 Table). Among the 2,274 SNVs, 1,915 were located within the coding region including 13

that had impact on two genes due to the gene overlapping on the Sakai genome, and 359

within the intergenic region. The SNVs that were annotated into the coding regions comprised

Fig 1. Phylogenomic relatedness of the E. coli O157 strains isolated from cattle feces from a single feedlot. ML phylogenetic tree; red, strains in clade 6; green,

strains in clade 7; blue, strains in clade 8; rosy-brown, strains that could not be assigned to a clade; and purple, E. coli O157:H7 Sakai strain for reference.

https://doi.org/10.1371/journal.pone.0202775.g001
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of 937 synonymous changes, 973 nonsynonymous changes, and 10 synonymous and nonsy-

nonymous changes (dual SNVs).

The large strain collection of the present study allowed us to identify and annotate in detail

a considerably higher number of SNVs compared with what has been reported before [44–47].

Using the Sakai genome, we were able to estimate that about 79% (1,796/2,274) of the SNVs

had allele frequencies (AF) greater than 1%, suggesting that most of the SNVs were evolution-

arily stable. SNVs were further grouped according to their AFs, and the results (S1 Fig) showed

that the majority of the SNVs had AF less than 20% (n = 1,547, 68%), followed by those with

AF between 60–70% (n = 243, 11%).

Fig 3 showed all the SNVs with AF greater than 1% along the Sakai genome. The track of

the coding-region SNVs distinctively revealed several variant hot-spots (more than 15 SNVs

within a genomic window of 2,000 bases versus an average of less than 1 SNV per 2,000-base

in the Sakai genome window), as shown in Fig 4. All of the hot-spots were perfectly aligned in

the prophage regions. For instance, genome regions around 1.25 M, 1.6M and 1.9 M

Fig 2. Phylogenomic relatedness among the E. coli O157 strains isolated from cattle feces from a single feedlot and the relevant genomes downloaded from the

GenBank. Black, the downloaded genomes; red, strains in clade 6; green, strains in clade 7; blue, strains in clade 8; yellow, E. coli -:H7, including E coli O55:H7; purple,

E. coli O157:H7 Sakai strain; and dark red, E. coli K12. Boxes contains the genome accession numbers corresponding to a given cluster.

https://doi.org/10.1371/journal.pone.0202775.g002
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corresponded to the prophage stx_2, prophage Shigel_SfIV, and prophage entero_YYZ loci,

respectively. Instead, the distribution of the intergenic SNVs tended to be more stochastic, pos-

sibly because of overall low count (n = 359, as indicated above) of the SNVs annotated to such

regions. Several intergenic regions enriched with the SNVs appeared to align within hot-spots

in the coding regions.

SNVs were also annotated to the genome of non-pathogenic E. coli K12 strain AG100.

When K12 was used as the genomic reference, a total of 143,463 SNVs were identified, and

92,221 of them uniquely annotated to the K12 genome. Such high number of total SNVs, when

compared with that in the background of Sakai, is obviously consistent with the prominent

genetic divergence between the pathogenic E. coli O157:H7 and non-pathogenic E. coli K12. It

is worth noting that more than 28,000 SNVs (>35% of the annotated SNVs) presented allele

frequencies greater than 0.7 as shown in (S2A Fig), strongly supporting that those genomic

variants are fixed or nearly fixed within the E. coli O157:H7 genome. Comparison to the E. coli
K12 strain did not reveal SNV hot-spots, indicating that divergence between the E. coli O157:

Fig 3. Single nucleotide variants on E. coli O157:H7 genome. Pink circular track, SNVs in genes; orange circular track, SNVs in intergenic regions; orange bars, phage

regions; and blue arrows, genes.

https://doi.org/10.1371/journal.pone.0202775.g003
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H7 and E. coli K12 has no preference on specific genetic background. Even though high num-

bers of SNVs were found when compared with the K12 genome, short genomic stretches

(genome positions: 0.3 M and 2.8 M) were SNV free and the corresponding genes may possess

important house-keeping functions for bacterial survival (S2B Fig).

Functional annotation for the genes associated with the SNVs

High-quality, deep genome sequencing in this study was key for positioning SNVs into indi-

vidual E. coli O157:H7 Sakai strain genes. Out of 5,584 Sakai genes, 1,201 contained SNVs with

the numbers ranging from 1 to 26, including 1,193 chromosomal and 8 plasmid genes (Fig 3,

S4 Table). The SNV number for a given gene was then normalized against its length to obtain

the corresponding SNV density (S5 Table). We found that 15 coding sequences possessed

more than 15 SNVs per 1,000 bases (SPK, number of SNVs per 1K genome) (Table 1). Those

genes were considered to be enriched for SNVs given that the genome-wise SPK was less than

1. Further analysis showed that the SNV-enriched genes were generally shorter with a mean

length of only 435 bp (compared with the mean length of about 1 kb of the overall Sakai

genes), and all were located on chromosomal DNA. A majority (9 out of 15, 60%) of the SNV-

enriched genes coded for hypothetical proteins without specific functions assigned, and the

ones that did have functional annotations (n = 6) were all involved in genetic information

Fig 4. Number of single nucleotide variants (SNV) per 2, 000 bases along the E. coli Sakai genome. SNV-rich regions were zoomed in.

https://doi.org/10.1371/journal.pone.0202775.g004
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processing: DNA-invertase (ECs0284), transcriptional activator (ECs1588), and recombinase

(ECs1933), restriction alleviation and modification enhancement protein (ECs1932), single-

stranded DNA binding protein (ECs1587), and Icd-like protein (ECs1577).

The 4,383 genes without SNVs were also examined. Interestingly, we found that 2,002

(46%) of those genes were absent in the non-pathogenic E. coli K12 strain; in contrast, the cor-

responding proportion was lower among the SNV-containing genes (490 out of 1,201, 41%, p

value = 0.001 by fisher exact test). These results suggested that the SNV-free genes of E. coli
O157:H7 E. coli genome tended to be gained from sources other than the non-pathogenic E.

coli genomes during its evolution.

Virulence gene profiling and virulent factors associated with the SNVs

Virulence factors (VFs) are essential in defining the pathogenicity of the E. coli O157:H7,

which makes them the single most important gene family within the genome. Therefore, we

profiled the shotgun sequencing data from our E. coli O157 strains against the 26K VFDB

sequence records, using the ShortBRED pipeline. A total of 285 virulence genes were identified

from our strain collection (S6 Table), and only 132 (46.3%, 132/285) of them were present in

all of the profiled strains, indicating that genomes of the E. coli O157:H7 strains have dynamic

and independently gained virulence genes. The common 132 virulence genes included stx2B

and others that were characteristic to the E. coli O157:H7, such as the type III secretion system

components (the Esp proteins), and the various flagellar proteins. One strain (KSU127) also

contained the stx1B gene. Among all the identified virulence genes, 6 were only present in one

of the profiled isolates (as listed in Table 2), including the stx1B (found in KSU127 isolate).

The E. coli O157:H7 strains were clustered based on the presence of the identified virulence

genes. We found that strains from clades 6 and 7 tended to cluster well with the other strains

from the same clade (Fig 5). However, strains from clade 8 spread out, except for one small

cluster which contained only 5 strains.

We then examined the SNV status of the identified VF genes using our SNV annotation

data. We first excluded the 51 VF genes that did not have the Sakai strain counterparts.

Among the remaining ones, we found that 111 possessed no SNVs and 78 strains possessed

low-density SNVs (with mean SNV density of 3 per 1,000q bases), suggesting that VF genes

Table 1. Genes enriched for SNVs from E. coli O157:H7.

Gene ID Description Length SNV density (Counts/1000 bases)

ECs0281 hypothetical protein 593 16.86

ECs0284 DNA-invertase 554 18.05

ECs1395 hypothetical protein 872 17.20

ECs1577 Icd-like protein 197 20.30

ECs1581 hypothetical protein 299 20.07

ECs1587 putative single stranded DNA-binding protein 410 21.95

ECs1588 putative transcriptional activator 272 18.38

ECs1599 hypothetical protein 281 35.59

ECs1931 hypothetical protein 188 31.91

ECs1932 restriction alleviation and modification enhancement protein 149 20.13

ECs1933 recombinase recT protein 809 16.07

ECs1936 hypothetical protein 233 21.46

ECs1944 hypothetical protein 788 15.23

ECs1956 hypothetical protein 599 15.03

ECs1957 hypothetical protein 290 17.24

https://doi.org/10.1371/journal.pone.0202775.t001
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belonged to a gene family with little genetic variances. We did observe three VF genes

ECs0319 (hypothetical protein), ECs2665 (FliT), ECs1396(AidA-I), with 12, 11, and 10 SNVs

per 1,000 bases, respectively. The function of ECs0319 is still unknown, the ECs2665 (FliT)

acts as transcriptional regulator and molecular chaperon to stabilize the flagella, and ECs1396

(AidA-I) facilitates adherence of the E. coli O157:H7 to the host cells. Their relatively higher

variability might help the pathogen to adapt to different hosts.

Discussion

Direct link between the cattle-derived pathogenic E. coli O157:H7 and human infections, includ-

ing severe complications, have been confirmed by many microbiological and epidemiological

Table 2. Virulence factors that were identified in single KSU isolate.

VFDB ID Description KSU isolate

ID

VFG000836(gb|

NP_288672)

(stx1B) shiga-like toxin 1 subunit B encoded within prophage CP-933V [Stx

(VF0206)] [Escherichia coli O157:H7 str. EDL933]

KSU127

VFG035574

(gi:218693685)

(aec27/clpV) ATP-dependent Clp proteinase Aec27 ATP-binding chain,

with chaperone activity [ACE T6SS (CVF736)] [Escherichia coli 55989]

KSU263

VFG035974

(gi:15800037)

(ehaA) beta-barrel outer membrane protein [EhaA (SS109)] [Escherichia

coli O157:H7 str. EDL933]

KSU055

VFG043048

(gi:16765293)

(ppdD) major pilin subunit [Hemorrhagic Coli pili (HCP) (AI102)]

[Escherichia coli O157:H7 str. EDL933]

KSU126

VFG043263

(gi:16802741)

(flk) flagella biosynthesis regulator [peritrichous flagella (AI140)]

[Escherichia coli O157:H7 str. EDL933]

KSU105

VFG034822

(gi:260843778)

(espR1)T3SS effector-like protein EspR-homolog[EspR1 (CVF696)] KSU303

https://doi.org/10.1371/journal.pone.0202775.t002

Fig 5. E. coli O157:H7 strains clustering based on the differences in the virulence gene profile. Clusters dominant with strains from the clades 6, 7, and 8 were

highlighted in blue, pink and green, respectively.

https://doi.org/10.1371/journal.pone.0202775.g005
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studies [48, 49]. The beef industry and the regulatory agencies have invested tremendous efforts

to prevent entry of the E. coli O157:H7 into the food supply chain. A complicated issue about the

E. coli O157:H7 control in cattle rearing practice and subsequent food safety management is its

transient presence in asymptomatic cattle. In-depth evaluation of the genomic variability of such

an important pathogen could provide insights into its pathogenic potentials and facilitate our

understanding of the disease severity and search for new effective intervention solutions.

The goal of the present study was to better understand the genetic variations among the E.

coli O157:H7 strains recovered from a single feedlot and immediate effects derived from those

variants. We performed massive WGS on a total of 279 E. coli O157:H7 strains. With the high-

quality, deep sequencing reads and available closed reference Sakai genome, we were able to

profile all the SNVs across the whole E. coli O157:H7 genome region, which allowed us not

only to construct the relatedness among all of the strains, but also locate the genes and the

intergenic regions containing those genetic variances. Our results suggested that individual E.

coli O157:H7 genome contains around 2,000 SNVs, which translate to one SNV per 2.8k bp

within the genome.

The SNV-based phylogenomic tree confirmed the genetically homogeneous structure of E.

coli O157:H7, and the extraordinary resolution of the tree basically clustered our E. coli O157:

H7 collection into three major groups, essentially equivalent to the three defined clades [39].

We found that 12.5% of the collection was seen in clade 8 and 68.5% in clade 6, which have

been reported to possess hyper-virulent phenotypes [50]. Particularly, the clade 8 is more likely

to be associated with the severe disease cases. These results were quite different from those

reported recently by our group based on a survey that involved 20 cattle farms from various

regions in California, which revealed that the clade 8 was the most dominant group [51], prob-

ably reflecting certain geographic effects on the E. coli O157:H7 lineage distribution, as our

current strains were from a feedlot located in the South Western region of the US. Two strains

(KSU263/264) in our collection had distant phylogenetic relationship with all of the remaining

ones and further analysis found that they were more closely clustered with the clinical O157

isolates 2011ELs. The three strains (KSU151, KSU155, and KSU247) that formed a subclonal

group with clade 6 strains did not present typical clade-6 SNVs, suggesting that Manning clade

classification method has its own limitations. However, it is beyond the scope of the current

study to detail genome features with potential impact on their pathobiology and genetic

classification.

Our SNV results did not reveal any core SNVs, and roughly 40% of the identified SNVs

were actually absent from the reference Sakai genome, strongly suggesting the evolutionary

plasticity within the E. coli O157:H7 clone and the high possibility of indel events during evo-

lution. Nearly 80% of the SNVs were shown to have AF greater than 1%, indicating that the

variant spectrum was stabilized. These results also provided additional evidence for the open

pangenome model of the general E. coli species [52], which was inferred by gene content analy-

sis, and highlighted the importance of de novo SNV calling during the evaluation of E. coli
O157:H7 genome variations.

SNVs- enriched genomic windows along the Sakai genome were identified with our mas-

sive data. They were all within prophage loci. The E. coli O157:H7 Sakai genome contained 16

prophage loci with 11 of them intact [53]. Our data showed that that some of those loci were

highly variable. For instance, prophage stx2_converting_II (genome region 1245903–1316397,

about 70kb long) contained a total of 115 SNVs, and two genes ECs1242 (hypothetical protein)

and ECs1232 (hypothetical protein) that were located at the 3’ end of this prophage contrib-

uted to 36 SNVs. Similarly, the prophage entero_YYZ_2008 (genome region 1920485–

1972367, about 52kb long) had a total of 170 SNVs, and it 5’ end gene ECs1934 (exonuclease

VIII RecE) alone contributed to 26 SNVs. Prophage loci contain the integrated bacteriophage
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components, which have been proposed to play important roles in the emergence of the E. coli
O157:H7 and their virulence [54]. The higher mutational rate of such loci suggested their fre-

quent integration, which obviously would boost the transmission of the related virulence

genes.

The detailed SNV annotation allowed us to examine individual genes for SNV density

(SPK). We calculated gene-wise SPK and found that E. coli O157:H7 genes generally have less

than 5 SPKs with peak at 1 SPK, suggesting a general functional stability of the basic bacterial

genetics, although it won’t rule out some type SNVs may drastically change the genome coding

and the related biology. The small panel of highly variable genes contained many proteins with

unknown functions. However, several proteins involved in DNA/RNA processing were

revealed to contain high SPKs, strongly suggesting their roles in E. coli O157:H7 genome evo-

lution and adaptation.

Clinical manifestations of the E. coli O157:H7 infections result from its virulence factors.

Current VFDB collected about 26,000 VFs from various organisms. To get a comprehensive

understanding about the virulence of the E. coli O157:H7 strains, we first generated a cluster-

based secondary database using the VFDB peptide sequences which contained only the unique

tags for any given VF gene or VF gene cluster. The secondary database allowed rapid screening

of our massive WGS data against the large VFDB database records. Collectively, we found 285

VF genes among our 279 genomes. More than half of the identified VF genes (n = 153) were

present in only a proportion of the strains, which might explain the wide disease spectrum of

E. coli O157:H7 infections. The uneven presence of the VF genes in E. coli O157:H7 genomes

also suggested that this gene family contributed significantly to the overall genomic variation

among the strains. However, it is worth noting that there is a tradeoff between speed and reso-

lution when the secondary database-based screening algorithm is applied. Some of the identi-

fied VF genes actually may represent several related VF genes.

Conclusions

Our analyses established SNV profiles for 279 E. coli O157:H7 strains collected from a single

feedlot and the majority of the SNVs have never been reported before. Although geographi-

cally limited, we observed 3 out of 9 reported E. coli O157:H7 clades in our collection. Large

collections and high-quality WGS data significantly expanded our knowledge about the geno-

mic dynamics of this important pathogen, which may be subsequently applied to other patho-

genic bacteria and more diverse sample collections. The data demonstrated the power of

combing the genome profiling and gene functional analysis, and should prove useful in future

framework development of epidemiological and biological studies of E. coli O157:H7.
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