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When considering the variation in the genome, transcriptome, proteome and

metabolome, and their interaction with the environment, every individual can be rightfully

considered as a unique biological entity. Individualized medicine promises to take this

uniqueness into account to optimize disease treatment and thereby improve health

benefits for every patient. The success of individualized medicine relies on a precise

understanding of the genotype-phenotype relationship. Although omics technologies

advance rapidly, there are several challenges that need to be overcome: Next generation

sequencing can efficiently decipher genomic sequences, epigenetic changes, and

transcriptomic variation in patients, but it does not automatically indicate how or whether

the identified variation will cause pathological changes. This is likely due to the inability

to account for (1) the consequences of gene-gene and gene-environment interactions,

and (2) (post)transcriptional as well as (post)translational processes that eventually

determine the concentration of key metabolites. The technologies to accurately measure

changes in these latter layers are still under development, and such measurements

in humans are also mainly restricted to blood and circulating cells. Despite these

challenges, it is already possible to track dynamic changes in the human interactome

in healthy and diseased states by using the integration of multi-omics data. In this

review, we evaluate the potential value of current major bioinformatics and systems

biology-based approaches, including genome wide association studies, epigenetics,

gene regulatory and protein-protein interaction networks, and genome-scale metabolic

modeling. Moreover, we address the question whether integrative analysis of personal

multi-omics data will help understanding of personal genotype-phenotype relationships.

Keywords: personalizedmedicine, interactome, gene regulatory networks (GRN), protein-protein interaction (PPI),

genome-scale metabolic models, integrative genomics, network medicine

1. INTRODUCTION

Humans share the same genes but do not have identical DNA sequences. The latest 1000
Genomes Project reported over 84,000,000 single nucleotide polymorphisms (SNPs), 3,000,000
short insertions/deletions, and 60,000 structural variants in 2504 subjects from 26 populations,
by applying whole genome sequencing as well as exome sequencing and microarray genotyping
technologies (1000 Genomes Project Consortium et al., 2015). While there are large differences
in the presence of both rare and common variants, it has been reported that every subject
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carries around 250–300 loss-of-function variants that lead
gene products to having less or no function (1000 Genomes
Project Consortium et al., 2010, 2012; UK10K Consortium
et al., 2015). Nowadays, whole genome sequencing allows the
determination of the entire DNA sequence of an individual,
and the resulting genomic information is believed to enable
prediction of disease risk and optimization of treatment outcome
(Sadee, 2011). In practice, predicting disease phenotypes from
genetic sequences is extremely challenging because the genotype-
phenotype relationship is far more complex than anticipated. A
single gene can be associated with multiple disease phenotypes
while a single disease phenotype can be caused by mutations in
multiple genes (Barabási et al., 2011). Importantly, mutations do
not have identical effects on individuals due to the individual
variation in interaction between genes, proteins, metabolites and
environmental factors (Barabási et al., 2011; Kathiresan and
Srivastava, 2012).

The complete set of (physical) interactions betweenmolecules,
such as genes, proteins and metabolites is known as the
interactome (Cusick et al., 2005). In this review, we focus
on the interactome in human cells. If we consider genome
sequences as stills and phenotypes as a movie, then there
must be a biological system which serves as a projector. It is
indeed proposed that the interactome that acts as the projector
and eventually translates the phenotypic effects determined by
both genotypes and environmental factors (Figure 1). Vidal
et al. (2011), Emmert-Streib et al. (2014) proposed that most
disease phenotypes may be caused by the perturbation of the
interactome, in which the products of disease genes were found to
interact with each other and cluster as modules (Ghiassian et al.,
2015; Menche et al., 2015). These disease modules may overlap
each other, explaining the shared associated genes and clinical
symptoms of different diseases (Ghiassian et al., 2015; Menche
et al., 2015).

FIGURE 1 | Genetic mutations and environmental effects can only lead to disease phenotypes through perturbation of the human interactome, which

is a complex network constituted by gene regulatory network, protein interaction network, and metabolism.

To understand the projector function of the interactome,
one must capture all molecular components involved in cellular
functions. With the rapid development of omics technologies,
it is now possible to readily profile up to 19,797 protein-coding
genes, 79,795 protein-coding transcripts, 30,057 proteins, and
4229 metabolites (Psychogios et al., 2011; Harrow et al., 2012;
Kim et al., 2014). Since individuality is present in the genomes,
epigenomes, transcriptomes, proteomes, and metabolomes, each
cell type in every human subject will have a different interactome
(Feinberg et al., 2010; Montgomery and Dermitzakis, 2011;
Suhre et al., 2011; Forler et al., 2014). In contrast to non-
individualized medicine, personalized medicine attempts to
address such subject-specific differences with respect to diagnosis
and treatment (Topol, 2014). This review aims to give an
overview of bioinformatic and network modeling approaches
that can be used to develop individualized medicine.

2. GENOME-WIDE ASSOCIATION
STUDIES, EPIGENETICS AND
INDIVIDUALIZED MEDICINE

Genome-wide association studies (GWAS) have identified a
great number of common single nucleotide polymorphisms
(SNPs) that are statistically associated with complex disease
phenotypes. The National Human Genome Research Institute
(NHGRI) GWAS catalog (www.genome.gov/gwastudies/)
includes 1751 curated publications of 11,912 SNPs (Welter
et al., 2014). Besides disease-associated SNPs, GWAS also
identified SNPs associated with drug efficacy and toxicity,
fueling the development of pharmacogenomics and guiding
individualized therapies (Sadee, 2011; Crews et al., 2012;
Low et al., 2014). The Pharmacogenomics Knowledgebase
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(PharmGKB, http://www.pharmgkb.org/) (Hewett et al., 2002;
Altman, 2007) is a literature-based database which provides
useful annotations on genes involved in pharmacokinetics (how
the drug is absorbed, distributed, metabolized and eliminated)
and pharmacodynamics (how the drug acts on its target and
its mechanism of action). In the current release of PharmGKB,
curated evidence for 1073 human genes involved in drug
response is present.

Epigenetics has been shown to play a key role in the
crosstalk between environment and genome, pointing toward
the notion that epigenetic marks might explain in part the
role of the environment in disease development (Bjornsson
et al., 2004; Rivera and Ren, 2013). Major epigenetic alterations
include DNA methylation, histone modification, and chromatin
remodeling (Rasool et al., 2015). A total number of 127 reference
human epigenomes are available on the website of the Roadmap
Epigenomics Project (http://www.roadmapepigenomics.org/),
including epigenetic landscapes of 111 primary cell and tissue
types as well as 16 cell lines (Roadmap Epigenomics Consortium
et al., 2015). Due to epigenetic modifications, cells can exhibit
different phenotypes in response to various environmental
factors, such as nutritional changes and oxidative stress.
Feinberg (2007) defined this ability as phenotypic plasticity,
whose abnormality is linked to diseases, such as cancers,
neurodegenerative and autoimmune disorders (Howell et al.,
2009). By integrating GWAS SNPs with epigenetic annotations,
Farh et al. (2015) identified that 90% of potentially causal
variants of autoimmune diseases are non-coding and 60% map
to enhancers of immune cells.

In general, information deriving from GWAS (Table 1) and
epigenetics provide possible etiological pathways rather than
the exact molecular mechanisms underlying diseases. Burke
and Korngiebel (2015) pointed out that although dramatic
progress has been made in genomics research, there is still
a gap between genomic knowledge and clinical application.
To fill such gap, an accurate understanding of the genotype-
phenotype relationship, which is hierarchically bridged by DNA,
RNA, protein, metabolite and flux, must be developed (Figure 2).
The integrative personal omics profile (iPOP) study (Chen
et al., 2012) was the first example of individualized medicine
attempting to overcome the gap by combining omics data sets.
Over a 14-month period which also included two viral infections
(HRV: human rhinovirus and RSV: respiratory syncytial virus),
dr. Michael Snyder not only profiled his whole genome, but also

TABLE 1 | Major SNP-trait association databases.

Name Link References

NHGRI GWAS Catalog www.genome.gov/gwastudies/ Welter et al., 2014

PharmGKB http://www.pharmgkb.org/ Hewett et al., 2002

GWASdb http://jjwanglab.org/gwasdb Li et al., 2012

GWAS Central http://www.gwascentral.org/ Beck et al., 2014

HuGE Navigator http://www.hugenavigator.net/

HuGENavigator/home.do

Yu et al., 2008

dbGaP http://www.ncbi.nlm.nih.gov/gap Tryka et al., 2014

VaDE http://bmi-tokai.jp/VaDE/ Nagai et al., 2015

the transcriptomes of his PBMCs (Peripheral BloodMononuclear
Cells) at 20 different time points, proteomes from PBMCs and
serum across 14 time points, and metabolomes of his serum
sampled 17 time points, respectively. Integration of the data sets
revealed the great potential of the individualized approach. In
particular, the genetic variant information of dr. Snyder indicated
that he is at risk for developing coronary artery disease, basal
cell carcinoma, hypertryglyceridemia, and type 2 diabetes, At the
same time, he was found carrying variants that are associated with
response to glucose lowering drugs, rosigitazone and metformin.
Interestingly, his time series measurements of transcriptome,
proteome, and metabolome across healthy states, response to
RSV infection, and recovery, enabled the authors to identify an
alteration of the insulin signaling response following the RSV
infection (Chen et al., 2012).

The iPOP study also provided us with some important
insights on omics-based individualized medicine. First of all,
as sequencing technologies vary considerably from each other
due to sensitivity, accuracy, coverage and resolution, the
measurements may contain systematic errors. Fortunately, since
the human genome is constant over time, profiling with multiple
DNA sequencing technologies is a way to improve the accuracy
of genetic variant detection in an individual genome. As shown
in the iPOP study (Chen et al., 2012), a genetic variant in the
protein-coding genes can be trusted, if it is captured by the
whole genome sequencing as well as whole exome sequencing.
Same as above, we can also trust a genetic variant in the
non protein-coding genes, if it is identified by different whole
genome sequencing platforms. In contrast to the genome which
is static, transcriptome, proteome, and metabolome are more
dynamic and changes in their patterns represent the most
valuable information for individualized medicine. To minimize
systematic errors, the personal transcriptomes, proteomes, and
metabolomes should be measured with standardized high-
throughput methods at different time points and compared
longitudinally. The longitudinal design also allows to perform
statistical analysis with a single sample through applying well-
established time-series data analysis techniques, such as Fourier
spectral analysis and autocorrelation calculations (Chen et al.,
2012). However, we have to admit that although the cost of
sequencing technologies has dramatically decreased, sequencing
with different platforms or multiple time points is unlikely to be
performed for more than economic reasons only. In addition,
the large volume of omics data sets will require substantial
investments in data storage and management.

Topol (2014) rightfully indicated that individualized medicine
needs translating large-scale omics data sets into useful
knowledge. The approaches of omics data analysis can be
roughly categorized as bioinformatics and network-based.
Bioinformatics-based approaches often use statistical techniques
to assess significant difference or association in the omics data.
Their biological interpretation mainly relies on annotations in
the community databases. Due to the chosen scope of this
review, we are not going into details of these approaches.
Network-based approaches, on the other hand, are mainly used
to integrate multi-omics simultaneously and the network itself
is subsequently used to explore biological insights. In general,
network-based approaches first reconstruct biased or unbiased
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FIGURE 2 | The genotype-phenotype relationship is hierarchically bridged by DNA, RNA, protein, metabolite and flux. These molecules are profiled in the

genomics, epigenomics, transcriptomics, proteomics, metabolomics, and fluxomics, respectively. Bioinformatics and systems biology approaches try to translate

these omics data sets into unified knowledge. In particular, from genomics and epigenomics, one attempts to identify the disease-associated genetic/epigenetic

alterations. From transcriptomics, proteomics, metabolomics, and fluxomics, one aims to identify the genes, proteins, pathways, and the flux distributions involved in

disease pathogenesis.

networks in silico, and then use the reconstructed network
to interpret the omics data. A biased network indicates that
prior biological knowledge is incorporated, whereas an unbiased
network is purely data-driven.

Network-based approaches enable us to link genotype to
phenotype, and vice versa. The constructed networks can be
viewed as maps, in which we can locate GWAS results and
improve our understanding the roles of genetic/epigenetic
alterations in disease predisposition (Califano et al., 2012;
Ghiassian et al., 2015). At the same time, these maps can
also help us tracking back molecular mechanisms of given
clinical phenotypes. Like what has been shown by Bartel et al.
(2015), the “human blood metabolome-transcriptome interface,”
a network constructed based on the correlation between serum
metabolomes and whole blood transcriptomes of 712 subjects,
can identify active pathways/modules with concentrations of
blood cholesterol and triglycerides. In the next sections, we
focus on three types of network-based approaches, namely
gene regulatory network, protein-protein interaction networks,
and genome-scale metabolic modeling and discuss them in a
schematic manner: i.e., (1) definition and generation; (2) usage
and results; (3) strength and weakness. We also discuss their
applicability for individualized medicine.

3. GENE REGULATORY NETWORKS

3.1. What are Gene Regulatory Networks?
Thousands of gene products are produced from the human
genome to support cell function and survival. The protein-coding

genes can induce protein synthesis, whereas the non protein-
coding genes encode noncoding RNAs (ncRNAs) as their gene
products. Gene regulatory networks (GRNs) ensure proper levels
of gene products present at the right time in the cell (Karlebach
and Shamir, 2008). In the GRN, nodes represent the genes and
edges indicate the interactions between gene products.

3.2. How are GRNs Generated?
Similar to gene coexpression networks, GRNs are statistically
inferred from a large number of gene expression data
sets. However, gene coexpression networks and GRNs are
fundamentally different from each other. Pearson’s correlation
coefficient is used to infer coexpression networks, meaning that
there is always a direct interaction for any pair of genes when
their expressions are statistically correlated (Stuart et al., 2003). In
contrast, GRNs are inferredmainly based onmutual information,
which explicitly specifies direct or indirect interaction for each
pair of genes. Mutual information defines howmuch information
one random variable X provides about another random variable
Y (Cover and Thomas, 2006). For GRNs, the random variables
refer to the gene expression levels. Almost all major algorithms
developed for GRN inference are mutual information-based and
include ARACNe (Algorithm for the Reconstruction of accurate
Cellular Networks) (Basso et al., 2005; Margolin et al., 2006), CLR
(Context Likelihood of Relatdeness) (Faith et al., 2007), MRNET
(Meyer et al., 2007), RN (Relevance Network) (Butte and Kohane,
2000), C3Net (Altay and Emmert-Streib, 2010a), and BC3Net
(de Matos Simoes and Emmert-Streib, 2012). Different inference
algorithms above were used to reconstruct human B cell
GRNs and found the networks contained consistent biological
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information (Altay and Emmert-Streib, 2010b; de Matos Simoes
et al., 2013). We refer readers to a recent review (Emmert-
Streib et al., 2014) for more general concepts of GRN inference
and applications. In this review, we focus on ARACNe since it
is the most widely used method. ARACNe makes use of two
steps to infer a genome-wide GRN (Basso et al., 2005). First,
ARACNe assesses all the pair of genes by calculating their mutual
information. Then, ARACNe discriminates whether the pair of
genes are directly linked or separated by any other genes through
applying a well-known property of mutual information called the
data processing inequality (Basso et al., 2005; Cover and Thomas,
2006).

3.3. What are GRNs Used for?
The rationale of the GRN lies in the idea that genetic/epigenetic
alterations contribute to disease phenotypes by inducing changes
in a finite number of regulatory bottlenecks, i.e., transcription
factors (TFs; Lefebvre et al., 2010; Califano et al., 2012).
ARACNe-inferred GRNs are used for identification of the crucial
TFs (also called master regulators) that affect the transition from
healthy to diseased states and vice versa. The identified master
regulators then serve as starting points to search for the driver
genetic/epigenetic alterations upstream.

3.4. What Has Come Out?
Lefebvre et al. (2010) applied ARACNe to infer a human B-
cell specific GRN from 254 B-cell microarray expression profiles
representing 24 distinct phenotypes. The ARACNe-inferred B-
cell GRN was subsequently used to identify MYB and FOXM1
as the master regulators of B-cell proliferation. Similarly, an
ARACNe-inferred glioblastoma GRN was created and used by
Chen et al. (2014) to identify two master regulators, C/EBPβ and
C/EBPδ that are known to be involved in mesenchymal subtype
of glioblastoma patients (Carro et al., 2010). Furthermore, by
combining the genetic variants from the same glioblastoma
patients, the authors identified that KLHL9 deletions are
upstream of the two identified master regulators and act as driver
mutations (Chen et al., 2014).

3.5. Strengths and Weaknesses
One of the major advantages of ARACNe-inferred GRNs is that
with whole genome microarray or total RNA sequencing, the
entire genome can actually be included in the ARACNe-inferred
GRNs. Moreover, since it has been shown that the interactions
inferred by the ARACNe algorithm are very likely to represent
real biophysical and biochemical interactions (Basso et al., 2005;
Lefebvre et al., 2010), ARACNe-inferred GRNs are suitable to
explore all the possible interactions related to ncRNAs. This
represents an important feature of ARACNe-inferred GRNs, as
more or less 90% of the human genome is being transcribed, but
only about 3% encodes protein. It is known that long noncoding
RNAs (lncRNAs) can interact with DNA and proteins (Quinodoz
and Guttman, 2014), and some lncRNA interactions are related
to human diseases. For example, Hirata et al. (2015) reported
that interaction between lncRNA MALAT1 and histone-lysine
N-methyltransferase EZH2 is involved in renal cell carcinoma.

The major drawback of ARACNe is that a large number
(≥100) of gene expression profile data covering a broad range
of phenotypes is required to infer the target GRNs (Basso et al.,
2005; Margolin et al., 2006). This is indeed necessary to explore a
significant range of gene expression dynamics in order to obtain
adequatemutual information for inferring GRNs (Margolin et al.,
2006). Obviously, in practice it is costly and time-consuming.

4. PROTEIN-PROTEIN INTERACTION
NETWORKS

4.1. What are Protein-protein Interaction
Networks?
Proteins exert their function through interactions with other
molecules (e.g., DNA, RNA, proteins, and metabolites).
For instance, signal transduction is mediated through
protein-protein interactions (PPIs), whereas gene expression
(transcription factor-DNA) and metabolism (enzyme-substrate
interaction) are mediated by protein-DNA and protein-
metabolite interactions, respectively (Sevimoglu and Arga,
2014). PPIs can also refer to formation of dimers, multi-protein
complexes or supramolecular assemblies (e.g., actin filaments).
Since some proteins are shared by different PPIs, individual PPIs
are interconnected. In the PPI network, nodes represent genes
whereas edges refer to physical interactions of the respective
proteins.

4.2. How are PPI Networks Generated?
There are three main resources of generic human PPI networks.
The first resource is from the literature mining. We listed
six primary databases (Table 2) that store and combine
experimentally supported PPIs from small-scale studies. The
second resource is derived from large-scale yeast-two-hybrid
(Y2H) screening. In 2005, the first generation of Y2H-based
human PPI network, HI-I-05, was introduced and included
2700 high-quality binary PPIs among 1705 proteins (Rual et al.,
2005; Stelzl et al., 2005). In 2014, the second generation of
Y2H-based human PPI network, HI-II-14, was released (Rolland
et al., 2014). This time 13,944 PPIs were identified among
4303 proteins. Both HI-I-05 and HI-II-14 can be downloaded
(http://interactome.dfci.harvard.edu/H_sapiens/). In addition to
the Y2H system, affinity-purification mass spectrometry (AP-
MS) is also developed to profile PPIs in human cells (e.g., human
HEK293T, Huttlin et al., 2015). Compared to Y2H which is

TABLE 2 | Primary sources of protein-protein interactions.

Name Link References

HPRD http://www.hprd.org/ Keshava Prasad et al.,

2009

IntAct http://www.ebi.ac.uk/intact/ Orchard et al., 2014

MINT http://mint.bio.uniroma2.it/mint/Welcome.do Licata et al., 2012

DIP http://dip.doe-mbi.ucla.edu/dip/Main.cgi Xenarios et al., 2002

BioGRID http://thebiogrid.org/ Stark et al., 2006

PDB http://www.rcsb.org/pdb/home/home.do Berman et al., 2000
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mainly used to identify binary interactions between two proteins,
AP-MS is more focusing on deciphering the composition of
protein complexes. The third resource of the human PPI
network is the computational prediction, in which machine
learning algorithms are applied to calculate the likelihood
of interactions between two proteins based on the known
interactions in the databases (Table 2). STRING (Search Tool
for the Retrieval of Interacting Genes, http://string-db.org/) (Snel
et al., 2000) is such a web-server including known and predicted
protein interactions of over 2000 organisms. In addition to
STRING, databases, such as PIPs (http://www.compbio.dundee.
ac.uk/www-pips/) (McDowall et al., 2009) and hPRINT (human
Predicted Protein Interactome) (Elefsinioti et al., 2011) also
predict PPIs without priori experimental evidence. The hPRINT
results can be retrieved in STRING as well (Franceschini et al.,
2013).

Human proteome studies have shown distinct proteome
profiles in different cell and tissue types (Kim et al., 2014;
Uhlén et al., 2015). This makes it necessary to specify PPI
networks in the target cell and tissue (Schaefer et al., 2013).
TissueNet database (http://netbio.bgu.ac.il/tissuenet/) provides
such context-specific PPI networks for 16 human tissues (Barshir
et al., 2013). A generalized way to construct such context-
specific PPI networks is introduced by Magger et al. (2012),
who developed a specific algorithm integrating context-specific
gene expression data (proteomics or transcriptomics). Gene
expression data are used to assess the probability of PPIs in the
generic PPI network. If a gene is not expressed, the algorithm can
either remove the gene from the generic PPI network or reduce
the weight of the interactions associated with the gene.

4.3. What are PPI Networks Used for?
Human PPI networks are used to identify genes, proteins and
subnetworks associated with diseases (Sevimoglu and Arga,
2014). They are also used to systematically characterize PPI
network perturbations associated with disease mutations. The
PPI network perturbations include complete loss of gene
products or alteration of PPI arrangement (Zhong et al., 2009;
Sahni et al., 2013).

4.4. What Has Come Out?
Goehler et al. (2004) generated a PPI network for Huntington’s
disease by using the Y2H. From there, they identified GIT1,
a G protein-coupled receptor kinase-interacting protein, which
directly interacts with huntingtin and turns out to enhance
huntingtin aggregation. Based on the generic human PPI network
derived from HPRD (Human Protein Reference Database;
Keshava Prasad et al., 2009), Jia and Zhao (2014) focused on
PPI subnetworks that contain multiple genes frequently mutated
in lung adenocarcinoma and melanoma patients. The results
showed that the driver mutations interrupted the PPIs that are
involved in signaling pathways (e.g., EGF receptor signaling
pathway) and biological processes (e.g., DNA repair systems; Jia
and Zhao, 2014). Based on the Y2H protein interaction assays,
Sahni et al. (2015) reported that common SNPs from healthy
subjects rarely affected PPIs, but around 60% of human disease-
associated missense mutations perturbed PPIs. Furthermore,

they also noticed that different mutations in the same gene can
influence different PPIs.

4.5. Strengths and Weaknesses
Unlike the ARACNe-inferred GRNs, in which the interactions
are statistically inferred from the gene expression levels, PPI
networks derived from the literature or Y2H screening are
experimentally supported. Therefore, perturbations in PPI
networks can be used with confidence to elucidate the molecular
basis of diseases as described in the examples given above.

A weakness of the PPI networks is incomplete coverage.
According to the up-to-date GENCODE release 23 (), there
are 19,797 protein-coding genes in the human genome. The
number of genes covered by the most comprehensive human
PPI network, HI-II-14 (Rolland et al., 2014), is only 3146 which
suggests that there is still a long way to go. In addition, PPIs
are often evaluated under unphysiological conditions, leading to
false positive and negative PPIs included in generic PPI networks
(Schaefer et al., 2013). Kuchaiev et al. (2009) reported that the
false positive and negative rate of Y2H could be as high as 64 and
71%, respectively.

5. GENOME-SCALE METABOLIC MODELS

5.1. What are Genome-scale Metabolic
Models?
Metabolites are implicated in maintenance of cellular functions
and production of building blocks (e.g., purines and pyrimidines)
for macromolecular biosynthesis. Computational biologists have
reconstructed all metabolic reactions into one large network and
name it “genome-scale metabolic model.” GEMs and GSMMs are
typically used as abbreviations in the literature.

5.2. How are GEMs Generated?
In general, GEMs are constructed by using enzyme-mediated
reactions, transporters and intermediary metabolites (Bordbar
et al., 2014). The first landmark studies in this field emerged in
2007 when Recon1 (Duarte et al., 2007) and EHMN (Edinburgh
Human Metabolic Network) (Ma et al., 2007) were manually
reconstructed based on genomic and experimental data in the
literature. These two human metabolic networks were merged
into the HMR (Human Metabolic Reaction) database (Agren
et al., 2012). In 2010, a human hepatocyte-specific metabolic
network, HepatoNet1, was reconstructed based on experimental
evidence for presence of metabolic reactions in human
hepatocytes (Gille et al., 2010). The experimental evidence was
manually curated based on information from over 1500 scientific
articles. In 2013, the continuing development of Recon1, EHMN,
and HepatoNet1 leads to the release of Recon2 (Thiele et al.,
2013). A year later, another reconstruction of human hepatocyte-
specific metabolic network, iHepatocytes2322, together with a
new release of the Human Metabolic Reaction database, HMR2,
were published (Mardinoglu et al., 2014).

Recon2 (Thiele et al., 2013) and HMR2 (Mardinoglu
et al., 2014) represents all current knowledge of global
human metabolism. Since different cell/tissue types may harbor
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synonymous enzymes to catalyze the same reaction and different
metabolic pathways may result in the same product (Uhlén et al.,
2015), it is important to reconstruct cell/tissue type specific GEMs
to characterize the metabolism of target cells and tissues. For
this purpose, algorithms, such as tINIT (task-driven Integrative
Network Inference for Tissues) (Agren et al., 2014), GIMME
(Gene Inactivity Moderated by Metabolism and Expression)
(Becker and Palsson, 2008), and mCADRE (metabolic Context-
specificity Assessed by Deterministic Reaction Evaluation)
(Wang et al., 2012) are used to generate cell/tissue type specific
GEMs from the generic GEMs (e.g., Recon2 or HMR2). These
algorithms use abundances of transcripts and proteins to estimate
the probability of presence of enzymes in the generic GEMs.
We refer readers to an excellent review (Machado and Herrgård,
2014) for more details on the differences between the various
algorithms.

5.3. What are GEMs Used for?
Human GEMs, especially cell/tissue type specific GEMs, are
mainly used as scaffolds to analyze transcriptomics data obtained
from patient samples, in order to identify the metabolic
pathways and metabolite biomarkers that are related to disease
pathogenesis.

5.4. What Has Come Out?
Using the tINIT algorithm with proteomics and transcriptomics
data of human myocytes, Väremo et al. (2015) reconstructed
a myocyte-specific GEM, iMyocytes2419, which made it
possible to reveal that type 2 diabetes patients show extensive
transcriptional changes in reactions involved in pyruvate
oxidation, branched-chain amino acid catabolism, and
tetrahydroflate metabolism. Mardinoglu et al. (2014) applied
iHepatocytes2322 and their previously developed Reporter
Metabolite algorithm (Patil and Nielsen, 2005) to analyze
transcriptomics data of patients with non-alcoholic fatty liver
disease, and identified that concentrations of chondroitin and
heparan sulfates may represent novel biomarkers for diagnosing
non-alcoholic steatohepatitis. Similar GEM-based analyses have
been performed to study diseases such as, Alzheimer’s disease
(Lewis et al., 2010), obesity (Mardinoglu et al., 2013), and cancer
(Agren et al., 2014; Yizhak et al., 2014).

5.5. Strengths and Weaknesses
In our opinion, the major advantage of GEMs is that it allows
to study global metabolic flux distributions. The rate of the
metabolic reactions in a pathway (metabolic flux) is determined
by many aspects, such as protein concentration, protein
interaction (signal transduction), enzyme kinetics andmetabolite
concentrations (Winter and Krömer, 2013). Therefore, metabolic
fluxes can be considered as the ultimate outcome of cellular
regulation at different levels (Nielsen, 2003). When listing all
the reactions as well as their corresponding flux values under
a particular condition, one can construct a metabolic flux
distribution that represents a particular cellular phenotype in
detail.

Currently, 13C stable isotope labeling is the most popular
experimental method to measure in vivo fluxes (Blank and

Ebert, 2013). By performing 13C fluxomic experiments, Murphy
et al. (2013) noticed that different levels of oncoprotein MYC
can induce distinct metabolic flux distributions in P493-6 B
cells. They showed that high MYC cells as rely more heavily
on amino acids and mitochondrial oxidative metabolism than
low MYC cells. 13C fluxomics also revealed distinct metabolic
flux distributions in different cell lines. Niklas et al. (2011)
reported that human neuronal AGE1.HN cells had lower flux
rates (around 2.3% of the glucose uptake flux) in the pentose
phosphate pathway than other cell lines, such as HEK-293 cells
(15%) and hybridoma cells (20%). These 13C fluxomic studies
illustrate that various biological conditions can induce distinct
metabolic flux distributions.

However, 13C fluxomics cannot deliver us a complete picture
of flux distributions in the metabolic network, since only a small
number of reactions can be measured. Here, GEMs provide a
means to estimate metabolic flux distributions under different
conditions relying on a limited number of exchange fluxes, i.e.,
fluxes of substrates entering the cells and the fluxes of metabolites
that are secreted from the cells. It is beyond the scope of
this review to explain the related mathematical theory, but we
recommend the article by Rossell et al. (2011), in which they
formulated how to compute complete set of fluxes from the
exchange fluxes.

Bordel et al. (2010) introduced a random sampling method
which can calculate means and standard deviations for each
flux in the GEM under different experimental conditions,
when a limited number of measurements of exchange fluxes
are given. By integrating changes in gene expression between
different conditions, metabolic reactions can be classified as
either transcriptionally regulated (significant changes in both
flux and gene expression levels), post-transcriptionally regulated
(significant changes in gene expression levels but not flux), or
metabolically regulated (significant changes in flux but not gene
expression levels). This random sampling method was applied
together with the adipocyte-specific GEM, iAdipocytes1809, and
helped identifying the fluxes of glucose uptake, fatty acids uptake,
oxidative phosphorylation, mitochondrial and peroxisomal β-
oxidation, fatty acid metabolism and tricarboxylic acid cycle as
being differentially down regulated in obese subjects (Mardinoglu
et al., 2013). Gavai et al. (2015) developed a novel algorithm
called Lsei-FBA (Lesat-squares with equalities and inequalities
Flux Balance Analysis), and identified the fluxes of glycolysis and
oxygen uptake as being decreased in brains of Alzheimer’s disease
patients (29 and 46%, respectively) compared to healthy subjects.
Similar to the random sampling method, Lsei-FBA also requires
tissue-specific GEMs, and measurements of gene expression as
well as exchange fluxes.

The second biggest advantage of GEMs is that up to now
it is currently the only platform that can integrate genomics,
transcriptomics, proteomics, metabolomics, and fluxomics data.
Yizhak et al. (2010) integrated quantitative proteomics and
metabolomics with a GEM of the human erythrocyte, and
predicted metabolic flux distributions in red blood cells. The
flux distribution predictions were found to be consistent with
the simulations made by a detailed kinetic model of human
red blood cells. Bordbar et al. (2012) analyzed transcriptomics,

Frontiers in Physiology | www.frontiersin.org 7 December 2015 | Volume 6 | Article 364

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Zhang et al. Human Interactomes Forward Individualized Medicine

proteomics, and metabolomics data sets of LPS-stimulated RAW
264.7 cells with a GEM of the RAW 264.7 cell line, and identified
a suppressive role for de novo nucleotide synthesis inmacrophage
activation.

Last but not the least, it has been shown by Uhlén et al. (2015)
that the minimum requirement of generating a cell/tissue type
specific GEM is a single RNA sequencing profile.

Naturally, GEMs also have their limitations. First of all,
although novel metabolite biomarkers for various diseases have
been predicted by using cell/tissue type specific GEMs, few of
them have been validated in humans, because of either technical
limitation of measuring the metabolites in question or difficulty
of accessing the patient materials. Secondly, since GEMs focus on
metabolic enzyme-coding genes, reactions and pathways, GEMs
cannot be used to study signal transduction pathways. Lastly,
GEMs do not contain detailed kinetics of enzymes and produce
metabolic flux distributions only under steady state conditions.

6. THE FUTURE OF INDIVIDUALIZED
MEDICINE

6.1. Role for GRNs
Regarding individualized medicine, longitudinal transcriptomics
derived from cells/tissues of an individual including healthy
and diseased states are the ideal resources to assemble
an individualized GRN. Zoppoli et al. (2010) introduced
TimeDelay-ARACNe to infer GRNs specifically from time-
course data. Such ARACNe-inferred GRN provides a
personalized map, with which one can locate the genetic
mutations identified in the one-dimensional genome sequences
in a multi-dimensional network. By integrating gene differential
expression information between healthy and diseased states, one
can also identify the crucial transcription factors controlling the
phenotype transition. Taken together with the network location
information, one can make the most of the personal genomic
information and further prioritize the damaging effect of genetic
mutations.

6.2. Role for PPI Networks
PPI networks are proposed playing a role in buffering the impact
of genetic mutations and environmental challenges (Forler
et al., 2014; Garcia-Alonso et al., 2014). This opinion has been
investigated by Garcia-Alonso et al. (2014), who built up a
human PPI network by merging generic PPI networks derived
from three public databases (BioGRID, Stark et al., 2006, IntAct,
Orchard et al., 2014, andMINT, Licata et al., 2012). They used the
reconstructed PPI network to study the effect of genetic variants
predicted to be deleterious in the subjects participating in the
1000 Genomes Project, 252 healthy Spanish individuals, and 41
chronic lymphocytic leukemia patients. Interestingly, most of
the potentially damaging genetic variants in healthy individuals
were located in peripheral regions of the PPI network and did
not really perturb the structure of the PPI network. However,
when investigating the somatic variants that were predicted to
be deleterious in chronic lymphocytic leukemia patients, they
noticed that these mutations tended to be in internal regions of

the PPI network. The above study indicates that PPI networks can
help to identify whether genetic variants may be disrupting PPIs
and hence may be important in explaining diseases.

6.3. Role for GEMs
GEMs have already been used successfully for individualized
medicine. Agren et al. (2014) reconstructed personalized GEMs
for 6 hepatocellular carcinoma patients based on proteomics
data, and used these models to identify potential anticancer
drug targets for the individual patients. Yizhak et al. (2014)
reconstructed personalized GEMs for breast and lung cancer
patients based on gene expression measurements obtained from
biopsy samples. These personalized GEMs were used to predict
the cancer cell growth rate, which was used to infer patient
survival.

For successful individualized medicine, it should be realized
that it is important to integrate information of cell/tissue type
specific GEMs, in an attempt to capture whole-body metabolism.
Urine, plasma, and serum are the most common samples from
human subjects for diagnostic purpose (Nicholson et al., 2012).
Metabolic measurements based on these samples are the results
of the crosstalk of many organs and can be regarded as serving
the readouts of whole-body metabolism.

Bordbar et al. (2011) build a multi-tissue GEM by integrating
adipocyte, hepatocyte and myocyte-specific GEMs via a
blood compartment. The assembled multi-tissue GEM was
used to study the metabolic differences between non-type 2
diabetes obese and type 2 diabetes obese individuals. They
reported that type 2 diabetes obese individuals lack activity
in reactions catalyzed by lactate dehydrogenase, catalase
and cysteine dioxygenase, comparing to the non-type 2
diabetes obese subjects. Besides integrating metabolism of
different tissues and cells, the human gut microbiome is also
considered important for whole-body metabolism (Mardinoglu
and Nielsen, 2015). Shoaie et al. (2015) reconstructed five
GEMs for five representative bacteria in the human gut,
including Bacteroides thetaiotanmicron, Eubacterium rectale,
Bifidobacterium adolescentis, Faecalibacterium prausnitzii, and
Ruminococcus bromii. These GEMs were used to study 45
overweight and obese individuals who were subjected to an
energy-restricted, high-protein diet intervention for 6 weeks.
The authors reported that the diet intervention decreased the
gut microbiota production of short chain fatty acids (acetate,
butyrate, and propionate) and amino acids (e.g., alanine, proline
and glycine etc.).

6.4. Concluding Remarks
Due to the central role of the interactome in cellular functions,
we think that the roadmap of individualized medicine is moving
from human genomes to interactomes. However, construction of
a complete human interactome is extremely complex and it might
take at least another decade (Menche et al., 2015). This review
shows that GRNs, PPI networks, GEMs can characterize part of
the interactome in cells. Integrating different type of networks
may contribute to better understanding of the interactome, and
ultimately realizing true individualized medicine.
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