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Purpose: Both cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GSTM1) have been demonstrated to
be involved in the metabolism of polycyclic aromatic hydrocarbons (PAHs). BaP 7,8-diol 9,10-epoxide (BPDE), an
ultimate metabolite of benzo(a)pyrene (BaP), attacks deoxyguanosine to form a BPDE-N2-dG adduct resulting in p53
gene mutations. Our previous report indicated that BPDE-like DNA adduct levels in pterygium were associated with
CYP1A1 gene polymorphisms. Therefore, we hypothesize that the genetic polymorphisms of CYP1A1 and GSTM1
increase the risk for pterygium.
Methods: Two hundred-five pterygial specimens and 206 normal controls were collected in this study. For the analysis of
CYP1A1 and GSTM1 gene polymorphisms, DNA samples were extracted from blood cells and then subjected to restriction
fragment length polymorphism and polymerase chain reaction for the determination of mutation and genotype of CYP1A1
and GSTM1.
Results: There was a significant difference between the case and control groups in the CYP1A1 genotype (p=0.0161) but
not in GSTM1 (p=1.000). The odds ratio of the CYP1A1 m1/m2 polymorphism was 1.327 (95% CI=0.906–2.079, p=0.135)
and the m2/m2 polymorphism was 1.647 (95% CI=1.154–2.350, p=0.006), compared to the m1/m1 wild-type genotype.
The GSTM1 polymorphisms did not have an increased odds ratio compared with the wild type.
Conclusions: In conclusion, a CYP1A1 polymorphism is correlated with pterygium and might become a marker for the
prediction of pterygium susceptibility.

The environmental pollutant, benzo[a]pyrene (BaP),
which is one of the polycyclic aromatic hydrocarbons (PAHs),
has been found to cause p53 gene mutations and then lung
tumorigenesis. The levels of PAHs in airborne particulates in
Taiwan are higher than levels found in other countries,
especially levels of BaP, benzo[b]fluoranthrene and
benzo[g,h,i]perylene [1,2]. BaP 7,8-diol 9,10-epoxide
(BPDE), an ultimate metabolite of BaP, attacks
deoxyguanosine to form a BPDE-N2-dG adduct which results
in p53 mutations [3]. The p53 tumor suppressor gene is one
of the most commonly mutated genes observed in human
tumors. Our previous study indicated that mutations within
p53 were detected in 15.7% of the pterygial samples and
deletion mutations were found in the same samples with p53
negative staining and substitution mutations were found in
samples with p53 positive staining [4]. However, the cause of
p53 mutations in pterygium is still unclear.
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BaP is oxidized by a series of well characterized enzymes
such as cytochrome p450 1A1, 2C9 and 3A4 [5,6]. A thymine/
cytosine point mutation in the MSPI restriction site of
CYP1A1 has been reported to result in increased enzyme
activity [7]. The CYP1A1 MspI polymorphism has been linked
to the susceptibility for smoking-related cancers, such as oral,
colon, breast, and lung cancers [8-10]. Not only cytochrome
P450 but other enzymes, such as glutathion s-transferase M1
(GSTM1) have been shown to be involved in BaP metabolism
[11-13]. GSTM1 has also been shown to be polymorphic. A
deletion is responsible for the existence of a null allele
associated with the lack of expression of a functional protein
[14,15]. The polymorphic GSTM1 null genotype has been
found in 20%–50% of populations of various ethnic origins,
and this genotype has been correlated with the risk for various
tobacco-related cancers [16-19]. Therefore, the genetic
polymorphisms of CYP1A1 and GSTM1 may contribute to
BPDE-like DNA adduct formation and pterygium
progression.

Our previous report indicated that BPDE-like DNA
adducts were detected in pterygium samples and the DNA
adduct levels were associated with the genetic polymorphisms
of CYP1A1 [20]. Additionally, the risk of BPDE-like DNA
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adduct formation for patients with CYP1A1 m2/m2 and m1/
m2 was 9.675 fold higher than that of patients with m1/m1
types. Therefore, we hypothesize that that the genetic
polymorphisms of CYP1A1 and GSTM1 increase the risk of
pterygium.

In this study, we try to analyze the CYP1A1 and GSTM1
gene polymorphisms using PCR-RFLP (Polymorphism Chain
Reaction-Restriction Fragment Length Polymorphism) and
PCR (Polymorphism Chain Reaction) methods in 205
pterygium specimens and 206 controls to understand how
CYP1A1 and GSTM1 polymorphisms increase the risk of
pterygium.

METHODS
Patients: Pterygial samples were harvested from 205 patients
(136 males and 69 females) undergoing pterygium surgery at
China Medical University Hospital (Taichung, Taiwan). All
of the samples were from patients who had primary
pterygium. The age range was 52 to 85 and the average age
was 72.4 years old. The control blood samples were collected
from patients without pterygium and pinguecula including
126 males and 80 females in the control group (age range from
55 to 75 years, mean of 62 years). There were no significant
differences between both groups in age and sex. This study
was performed with the approval of the Human Study
Committee at China Medical University Hospital.
Polymorphisms of CYP1A1 and GSTM1: DNA was extracted
from the paraffin-embedded pterygium tissues for genetic
polymorphism analysis [4]. DNA lysis buffer was applied to
lyse the epithelial cells on the slide and then the DNA solution
was transferred into eppendorf tubes for traditional proteinase
K digestion and phenol-chloroform extraction. Finally, the
DNA was precipitated by ethanol with the addition of linear
polyacrylamide to increase DNA amounts [21]. Genotyping
of the MspI polymorphism of CYP1A1 was performed by PCR
amplification using the primer set of 5′-TAG GAG TCT TGT
CTC AGT CCT-3′ and 5′-CAG TGA AGA GGT GTA GCC
GCT-3′ [22]. The amplified products were digested with MspI
and analyzed by electrophoresis on a 1.5% agarose gel. The
MspI restriction site polymorphism resulted in three
genotypes: a predominant homozygous m1 allele without the
MspI site (genotype m1/m1; C/C), the heterozygote (genotype

m1/m2; C/T) and a rare homozygous m2 allele with the MspI
site (genotype m2/m2; T/T). Detailed information of the PCR
assays used in this study has been described previously [23].
Genotypes of GSTM1 were determined by the presence or
absence of PCR product, according to the method of Groppi
et al. [23]. The genotypes of GSTM1 are defined as present
and null type. Two primers, 5′-GAA GGT GGC CTC CTC
CTT GG-3′ and 5′-AAT TCT GGA TTG TAG CAG AT-3′,
were used for PCR. If samples had no PCR product, the PCR
experiment was repeated by adding a set of β-actin (ACTB)
primers together with GSTM1 primers, to confirm that the
absence of GSTM1 PCR product represented the null
genotype.
Statistical analysis: Statistical analysis of frequency
distributions was done by the χ2-test, and the correlations
between various genotypes of CYP1A1 and GSTM1 from the
case and control groups were analyzed by statistical software
SPSS 10.0 (SPSS, Chicago, IL). Adjusted odd ratios (ORs)
and a 95% confidence interval (95% CI) for various factors of
pterygium were evaluated using a multiple logistic regression
model.

RESULTS
Relationship of CYP1A1 and GSTM1 gene polymorphisms
and pterygium: To verify the association of risk and the
genetic change in the metabolic genes in pterygium
development, polymorphisms of CYP1A1 and GSTM1 in the
pterygium and control groups were analyzed. The results of
the genotypes of CYP1A1 and GSTM1 in the pterygium and
control groups are shown in Table 1. The analysis of the
CYP1A1 polymorphisms in pterygium showed that 68
(33.2%) were homozygous for the m1/m1 genotype, 29
(14.1%) were homozygous for the m2/m2 genotype, and 108
(52.7%) were heterozygous for the m1/m2 genotype. There
was a significant difference between the case and control
groups in the CYP1A1 genotype (p=0.016). However, no clear
patterns were observed between the pterygium and control
groups for significant associations with GSTM1
polymorphisms.
The CYP1A1 gene polymorphism but not GSTM1 is a risk
factor for pterygium: To understand whether polymorphisms
of CYP1A1 and GSTM1 increased the risk of pterygium

TABLE 1. GENOTYPE DISTRIBUTION OF CYP1A1 AND GSTM1 GENES AMONG PTERYGIUM PATIENTS AND CONTROL GROUP.

Gene Pterygium group (%) [n=205] Control group (%) [n=206] p-value
CYP1A1

m1/m1 68 (33.2) 89 (43.2)
m1/m2 108 (52.7) 103 (50.0)
m2/m2 29 (14.1) 14 (6.8) 0.016

GSTM1
Null 83 (40.5) 84 (40.8)

Present 122 (59.5) 122 (59.2) 1.000
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development, the different genotypes and the risk of
pterygium were compared. The odds ratio of the CYP1A1 (m1/
m2) polymorphism was 1.327 (95% CI=0.906–2.079,
p=0.135) and the m2/m2 polymorphism was 1.647 (95%
CI=1.154–2.350, p=0.006), compared to the m1/m1 wild-type
genotype (Table 2). The GSTM1 polymorphisms did not
increase the odds ratio compared with the wild type (Table 2).
The multiple logistic regression analysis showed that the
CYP1A1 genotype is related to the risk of pterygium after an
adjustment with GSTM1 polymorphisms. Subjects who were
heterozygous (m1/m2) or homozygous (m2/m2) for the
CYP1A1 polymorphisms appeared to experience a higher risk
of pterygium than those who were homozygous for the wild-
type allele (m1/m1; OR: 1.553; 95% CI: 1.07–2.290, p=0.037;
Table 3). No significance was found in GSTM1
polymorphisms.

DISCUSSION
Our previous study indicated that BPDE-like DNA adducts
were detected in pterygium paraffin sections [24]. We also
found that CYP1A1 polymorphisms correlated with the
BPDE-like DNA adduct formation in pterygium [20].
Therefore, we considered that not only UV radiation, but also
environmental exposure is involved in pterygium
pathogenesis. In this study, we analyzed the PAHs metabolic
enzymes, CYP1A1 and GSTM1, and their gene
polymorphisms in pterygium and compared them with control
groups. Our data indicated that the CYP1A1 polymorphism is
a risk factor for pterygium. To our knowledge, this is the first
study to analyze the correlation of genetic polymorphisms of
CYP1A1 and GSTM1 with the risk of pterygium. GST is one
of the antioxidant defense enzymes which contributes to the
protection against ROS [25,26]. The GSTM1 null type has
been reported to be associated with cutaneous photosensitivity
[27,28], so the GSTM1 null may be associated with

photosensitivity of corneal limbal cells. Our previous report
indicated that lack of GSTM1 (GSTM1 null type) contributes
to susceptibility of pterygium formation in early onset
pterygium but is not associated with late onset pterygium
[29]. In this study, we did not find an association between the
GSTM1 polymorphism and the risk of pterygium. Therefore,
we suggest that the role of GSTM1 in pterygium formation is
more important in antioxidant defense than in PAH
metabolism.

PAH compounds are the products of incomplete
combustion of organic material and are thus ubiquitous in the
environment (International Agency for Research on Cancer
[IARC] World health Organization, 1983). Occupational
exposure to PAH-compounds increases the risk of lung, and
putatively, other cancers, and is the highest in coke oven
workers, other workers in the steel industry, asphalt and
bitumen workers, and those exposed to exhaust and working
with gasoline. BaP, the well known carcinogen in cigarette
smoke, induces G:C-T:A transversions experimentally [30]
which are the main mutation types in smoking-related lung
cancer [31].

Our previous study showed that BPDE-like DNA adduct
levels correlate with CYP1A1 gene polymorphism in
pterygium [20]. An evaluation of DNA adducts induced by
BaP and other PAHs is suitable as a risk marker of p53
mutation. The mutation of the p53 gene has been noted in more
than 50% of all human cancers [32-34]. Additionally, our
previous study showed that BPDE-like DNA adducts are
indeed detected in pterygium samples and they are minor
contributors to the abnormal p53 gene [24]. In this study, we
found that CYP1A1 with the m1/m2 and m2/m2 genotype has
a 1.553 fold risk for pterygium compared with the m1/m1
genotypes. Therefore, we hypothesize that after exposure to
environmental PAHs, the CYP1A1 gene polymorphism may
result in high levels of BPDE-like DNA adduct formation

TABLE 2. RISK OF PTERYGIUM IN RELATION TO POLYMORPHISMS IN GENES INVOLVED IN BAP METABOLITES IN A POPULATION-BASED
SAMPLE.

Gene OR 95% CI p-value
CYP1A1

m1/m1 1 - -
m1/m2 1.327 0.906–2.079 0.135
m2/m2 1.647 1.154–2.350 0.006

GSTM1
Present 1 - -

Null 1.012 0.683–1.500 0.952

TABLE 3. MULTIPLE LOGISTIC REGRESSION ANALYSIS OF CYP1A1 AND GSTM1 GENOTYPES AND THE RISK OF PTERYGIUM.

Variable Groups unfavorable/ favorable OR (95% CI) p-value
CYP1A1 Polymorphism/wild type 1.553 (1.027–2.290) 0.037
GSTM1 Null/present type 0.990 (0.666–1.471) 0.959
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contributing to the risk of pterygium formation. The CYP1A1
MspI polymorphism may be used as a risk factor for
pterygium.
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