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Abstract. Diosgenin is a type of steroid extracted from the 
rhizome of Dioscorea plants. In traditional Chinese medicine, 
Dioscorea has the effect of ‘eliminating phlegm, promoting 
digestion, relaxing tendons, promoting blood circulation and 
inhibiting malaria’. Recent studies have confirmed that dios‑
genin exhibits a number of pharmacological effects, including 
antitumor activities. Through its antitumor effect, diosgenin is 
able to block tumor progression and increase the survival rate of 
patients with cancer; ultimately improving their quality of life. 
However, the mechanism underlying its pharmacological action 
remains unclear. Once tumor cells reach a metastatic phase, it 
can be fatal. Increased migration and invasiveness are the hall‑
marks of metastatic tumor cells. Invadopodia formation is key 
to maintaining the high migration and invasive ability of tumor 
cells. Invadopodia are a type of membrane structure process 
rich in filamentous‑actin and are common in highly invasive 
tumor cells. In addition to actin, numerous actin regulators, 
including cortical actin‑binding protein (Cortactin), accumulate 
in invadopodia. Cortactin is a microfilament actin‑binding 
protein with special repetitive domains that are directly 
involved in the formation of the cortical microfilament actin cell 
skeleton. Cortactin is also one of the main substrates of intracel‑
lular Src‑type tyrosine protein kinases and represents a highly 
conserved family of intracellular cortical signaling proteins. In 
recent years, great progress has been made in understanding the 
role of Cortactin and its molecular mechanism in cell motility. 
However, the diosgenin‑Cortactin‑invadopodia mechanism is 
still under investigation. Therefore, the present review focused 
on the current research on the regulation of invadopodia by 
diosgenin via Cortactin.
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1. Introduction

Cancer is one of the leading causes of mortality worldwide, it 
was estimated that 14.1 million new cancer cases and 8.2 million 
cancer mortalities occurred in 2012, worldwide (1,2). Metastasis 
is the most dangerous stage in the occurrence and development 
of cancer (3). Clinically, numerous patients with malignant 
tumors present with metastases at the time of diagnosis (4). 
Therefore, the prevention and suppression of tumor metastasis 
is a critical issue that requires attention.

Tumor metastasis is a complex, multifactorial dynamic 
process (5). Tumor metastasis involves the activation and 
interaction of complex signaling pathways in the tumor micro‑
environment, the invasion and survival of tumor cells in the 
blood circulatory system or lymphatic circulatory system, and 
the proliferation of tumor cells at target‑shifting sites (6).

Invadopodia is an important structure formed in cancer 
metastasis, therefore, it is considered promising to investigate 
the suppression of cancer metastasis from the perspective 
of inhibiting invadopodia. In addition, the topic concerning 
traditional Chinese medicine, including diosgenin suppressing 
cancer metastasis through inhibiting invadopodia has been 
paid more attention. The present review will discuss and 
summarize the potential molecular mechanism of diosgenin 
inhibiting the formation and function of invadopodia.

2. Formation and function of invadopodia

Several studies have demonstrated that invadopodia are 
formed in the early stages of invasion and metastasis of tumor 
cells (7,8). The invadopodium is an essential structure that is 
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involved in the invasion and metastasis of cancer cells (9). The 
invadopodium is a type of special membrane structure process 
that is rich in actin and involved in the degradation and 
remodeling of the extracellular matrix (10). Electron micros‑
copy has revealed that invadopodia are slender, protruding 
structures (11). 

The formation of invadopodia is generally divided into 
three stages (Fig. 1): i) formation of the core of the invadopodia 
precursor ii) stabilization of the invadopodia precursor and 
iii) maturation of the invadopodia (12). The core of the invado‑
podia precursor is formed by neural Wiskott‑Aldrich syndrome 
protein (N‑WASP), the Arp2/3 complex and cofilin recruitment 
around the actin‑Cortactin complex (7). The core can be formed 
in a few seconds, but it is unstable (13). After the core is formed, 
tyrosine kinase substrate with 5 SH3 domains (Tks5) rapidly 
binds the core (within ~20 sec) (14). Tks5 mediates the binding of 
the precursor complex to PI(3,4)P2 located on the cell membrane 
to stabilize the precursor structure (14‑16). Lamellipodin 
protein causes the MenaArg‑SH2‑domain‑containing 5 inositol 
phosphatase (SHIP2) complex (Mena is a well‑known cytoskel‑
eton regulator that regulates the assembly of actin filaments 
and modulates cell adhesion and motility by interacting with 
Lamellipodin) (17) to be recruited as a precursor (15,16). SHIP2 
promotes the production of PI(3,4)P2, which is beneficial for 
fixation of the precursor to the cell membrane and stabiliza‑
tion of precursors. Cofilin and Arp2/3 complexes mediate two 
different actin aggregation pathways, the cooperation of which 
greatly enhances further aggregation of actin (18). Actin polym‑
erization then prolongs and forms the invadopodia, resulting in 
increased matrix metalloproteinase (MMP) content, degraded 
extracellular matrix and invadopodia maturation (12,14,19).

In other words, to break through the barrier of the extracellular 
matrix, tumor cells need to extend cellular protrusions, which 
reconstruct and degrade the extracellular matrix (13). These types 
of cell protrusions are essential for the ability of tumor cells to 
break through the basement membrane and vascular wall (10,13). 
The protruding structures (protrusions) formed by invasive 
tumor cells on one side of the basement membrane are the inva‑
dopodia, which are rich in actin regulatory proteins, adhesion 
molecules, signaling or receptor proteins, cell membrane recom‑
binant proteins, and matrix proteolytic enzymes (10,13,19‑23). 
Invadopodia are involved in the process of tumor cell invasion 
through the basement membrane as follows: i) The structure forms 
first, and then the invadopodia perforate the basement membrane; 
ii) the invadopodia then elongate and extend through and beyond 
the basement membrane; and iii) finally, the invadopodia lead to 
the migration of tumor cells (19).

As invadopodia are so important for cancer metastasis, 
an improved understanding of the formation of and regula‑
tory mechanism controlling invadopodia is critical. Research 
results in this field are expected to provide new therapeutic 
targets and directions for tumor treatment.

3. Antitumor effects and mechanisms of diosgenin

Research on the effects of artemisinin against malaria by Youyou 
Tu (24) won the 2015 Nobel Prize in Physiology or Medicine. 
Therefore, the discovery of natural products from traditional 
Chinese medicine may be beneficial for the development of, and 
investigation into, innovative drugs for other diseases.

Diosgenin (Fig. 2) (25) is a type of steroid extracted from 
the rhizome of Dioscorea (26‑28), it is the hydrolysate of 
dioscin and is abundant in Dioscorea (27,28). Its multiple phar‑
macological effects have been confirmed in previous studies; 
it has been demonstrated to exhibit antitumor (27,29,30) and 
anti‑inflammatory activity (27,29,30), as well as improving 
cardiovascular function (27), lowering blood lipids (29,30), 
regulating immunity (27,29), and inhibiting platelet aggrega‑
tion (31). Diosgenin can also decrease visceral injury and 
protect visceral organs, including the liver (29,30), kidney (29), 
brain (29) and gastrointestinal tract (29,30). Diosgenin repre‑
sents an important raw material for the synthesis of various 
steroid drugs (27). Research has revealed that the toxicity and 
side effects of diosgenin are low (29,32).

Diosgenin inhibits the metastasis of various cancers, such 
as prostate (28,30,33‑36), gastric (30,36‑38), lung (39,40), 
breast (30,41), liver (30), renal (30) and colon (41) cancer, 
and melanoma (29). Diosgenin inhibits metastasis in 
multiple types of cancer primarily by suppressing constitu‑
tively‑activated pro‑inflammatory and pro‑survival signaling 
pathways and factors (42), such as NF‑κB‑associated path‑
ways (28,42,43), focal adhesion kinase (FAK)‑associated 
pathways (44), p38/mitogen‑activated protein kinase (MAPK) 
signaling pathways (42,45), and Src (46). Further studies 
have also found that diosgenin inhibits other functions 
in tumorigenesis, including tumor cell proliferation, 
apoptosis, epithelial‑to‑mesenchymal transition and angio‑
genesis (33,47‑51). Shishodia and Aggarwal (42) revealed 
that diosgenin inhibits the invasion of human lung cancer 
H1299 cells via suppressing TNF‑induced NF‑κB activation. 
Li et al (28) found that diosgenin induces the expression of 
Src homology 2 phosphatase 2 (SH‑PTP2), thus blocking 
the STAT3‑associated signaling pathway, and also that it 
inhibits the development of human hepatocellular carcinoma. 
Diosgenin was demonstrated to inhibit tumor growth in both 
MDA‑231 and MCF‑7 xenografts in vivo by inhibiting Akt, 
the Raf/MEK signaling pathway and NF‑κB activity to induce 
apoptosis (40,52,53). Therefore, diosgenin may be a potential 
option for the treatment of cancer (27,29,34,35,37,39).

4. Structure and regulation of Cortactin

Cortical actin‑binding protein (Cortactin) has been demon‑
strated to be associated with cancer. Previous studies have 
demonstrated that Cortactin is upregulated in a variety 
of tumors, such as breast cancers and head and neck 
tumors (54,55). It is involved in a variety of cell activities, 
including invadopodia formation and cell adhesion, invasion, 
migration and division (54,56). 

Human Cortactin is encoded by the CTTN gene (formerly 
known as the EMSl gene), which is located on chromosome 
11q13 (57). Cortactin protein has three main domains: 
i) The N‑terminal acidic region (NTA); ii) filamentous actin 
(F‑actin) repetitive domain (ABR) and iii) the SH3 domain in 
the C‑terminal (54,58) (Fig. 3). The NTA binds with Arp in 
the Arp2/3 complex and can also regulate the polymerization 
and shrinkage of F‑actin (54,56,58). The ABR is responsible 
for the binding of Cortactin to F‑actin (58). The function of 
Cortactin is also regulated at the ABR via post‑translational 
modifications (56,58). A study by Uruno et al revealed that 
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the number of repeats in the ABRs determines the affinity 
of Cortactin to F‑actin, as well as its ability to regulate cell 
migration (57). The SH3 domain is a conserved protein 
module found in various signaling proteins that mediates 
the interaction with various other proteins, such as neural 
Wiskott‑Aldrich syndrome protein (N‑WASP) (59), WASP 
binding protein (WIP) (60) and missing in metastasis 
(MIM) (61). The tyrosine phosphorylation of Cortactin 
is usually associated with the SH3 domain or proline‑rich 
domain‑binding proteins (58). The molecular structure of 
Cortactin changes after phosphorylation, bringing the SH3 
domain closer to the SH3 binding protein, increasing the 
chances of binding (54,58). Cortactin is the main substrate 
of the Src family tyrosine kinases, and tyrosine phosphory‑
lation serves an important role in the assembly of cortical 
microfilament actin (54). Cortactin phosphorylation via Src 
kinase is required for invadopodia formation mediated by 

Cortactin (62,63); that is, the Src family tyrosine kinases may 
promote cell migration via the phosphorylation of Cortactin. 

Cortactin and its associated proteins perform functions in 
the cortical areas associated with cell membrane deformation 
and the actin cytoskeleton; in pseudopods and cell wrinkles, 
these proteins enhance the formation and/or stability of 
dendritic actin networks (64).

5. Role of Cortactin in invadopodia formation and function

Invadopodia formation requires numerous proteins (65,66). 
Cortactin is an actin‑binding protein that is closely 

Figure 2. Chemical structure of diosgenin (25). (created with KingDraw).

Figure 1. (A) Formation of invadopodia can be divided into three stages. (B) Schematic diagram of the formation and maturation of invadopodia. (created in 
BioRender.com).

Figure 3. Cortactin consists of parts including NTA, ABRs, phosphorylation 
sites and SH3 domain (main expression of mentioned parts). NTA, N‑terminal 
acidic region; ABRs filamentous actin repetitive domain; F‑actin, filamen‑
tous actin; N‑WASP, neural Wiskott‑Aldrich syndrome protein; WIP, WASP 
binding protein; MIM, missing in metastasis.
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associated with invadopodia through its interaction with other 
proteins (67). Cortactin is key for invadopodia formation and 
interacts with various proteins, such as Arp2/3, N‑WASP, and 
F‑actin (7,65,68). Furthermore, Cortactin activates and stabi‑
lizes the phases of branched actin assembly via the Arp2/3 
complex of invadopodia (69‑71). In addition, Cortactin can 
increase the endurance of invadopodia and promote molecular 
adhesion and cell movement (72,73).

Previous studies have reported that Cortactin phos‑
phorylation is associated with the rate of cell migration in 
a number of different types of tumor cell (54,55,74,75). The 
upregulation of Cortactin promotes the formation of inva‑
dopodia, the degradation of the extracellular matrix and the 
invasiveness of cancer cells (54,61,76). Cortactin is positively 
correlated with tumor invasiveness and metastasis and is 
closely associated with the synaptic membrane structure of 
tumor cells (54,55,61,76).

Other studies have demonstrated that Cortactin binds the 
Arp2/3 complex and N‑WASP and regulates the formation 
of invadopodia via the Nck1‑N‑WASP/Arp2/3 signaling 
pathway (76,77). WASP family proteins can induce the rear‑
rangement of actin molecules in cells by activating Arp2/3 
and thus promote the rapid formation and maturation of 
invadopodia (78). Genna et al (79) revealed that the tyro‑
sine kinase Pyk2 activates Abl‑related gene (Arg) through 
the EGFR‑Pyk2‑Src‑Arg‑cortactin signaling pathway, and 
directly or indirectly mediates the phosphorylation and 
polymerization of Cortactin induced by epidermal growth 
factor (EGF). This results in invadopodia actin polymer‑
ization, invadopodia maturation and enhanced invasion of 
breast cancer cells.

Overall, the aforementioned studies indicate that Cortactin 
serves a pivotal role in the formation of invadopodia and the 
degradation of the extracellular matrix to promote cancer cell 
migration and invasion.

6. Potential diosgenin‑Cortactin‑invadopodia mechanism

Invadopodium is a convergence point for a number of signals that 
regulate tumor cell behaviors, particularly systemic dissemina‑
tion and metastasis (13). Cortactin is the switch that mediates 
invadopodia formation (54,55,67,74,75,80). It is regulated by 
numerous signaling pathways and factors, including the FAK 
pathway (81), Src (82), NF‑κB (54,55), and other pathways that are 
closely associated with tumor metastasis (54,55,74,75,80). Several 
studies have reported that diosgenin is closely associated with 
the FAK pathway, Src, NF‑κB and MMPs (43,83). A potential 
mechanism of action underlying diosgenin‑Cortactin‑invado‑
podia is presented in Fig. 4.

In prostate cancer, diosgenin inhibits MMP expression 
and, therefore, cancer metastasis (33), while MMP expression 
promotes cortactin, and both MMPs and cortactin are required 
for form and function of invadopodia (84). This suggests that 
the potential mechanism of diosgenin involves the downregu‑
lation of MMPs, and inhibition of Cortactin and invadopodia, 
ultimately inhibiting prostate cancer metastasis. It has also 
been demonstrated that diosgenin downregulates the NF‑κB 
signaling pathway, thus inhibiting the metastasis of prostate 
cancer, suggesting another mechanism: Downregulation 
of the NF‑κB signaling pathway results in inhibition of 
Cortactin, and hence, inhibition of invadopodia (33). In 
addition, diosgenin can inhibit colon cancer metastasis via 
regulating the Akt/MAPK signaling pathway (85), while Akt 
can activate Cortactin (86,87), thus suggesting that diosgenin 
downregulates the Akt/MAPK signaling pathway, which 
inhibits Cortactin and hence, inhibits invadopodia, resulting 
in inhibition of colon cancer metastasis. It was also reported 
that diosgenin can activate the p38 and JNK pathways and 
thus inhibit Cortactin in colon cancer (88), suggesting that 
diosgenin inhibits the formation and function of invadopodia 
via the downregulation of Cortactin via activating the p38 
pathway (89). In breast cancer, it was revealed that diosgenin 
downregulates Akt, thus inhibiting the metastasis of breast 
cancer (40,90), similar to the mechanism in colon cancer. 
Diosgenin can serve as a dual inhibitor of the MEK/ERK and 
PI3K/Akt signaling pathways to overcome tyrosine kinase 
inhibitor resistance, resulting in clinical benefits for lung 
cancer treatment (91). Furthermore, diosgenin downregulates 

Figure 4. Potential diosgenin‑Cortactin‑invadopodia mechanism. FAK, 
focal adhesion kinase; MMPs matrix metalloproteinases; MAPK, mitogen‑ 
activated protein kinase.

Figure 5. Interactions between NF‑κB, the FAK pathway and Src. FAK, focal 
adhesion kinase.
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the NF‑κB‑p65/p50 and p38‑MAPK pathways and attenuates 
acute lung injury in mice (92). In human erythroleukemia, 
diosgenin inhibits the NF‑κB signaling pathway and thus 
suppresses metastasis (43).

Diosgenin inhibits the activity and amount of transcription 
factor NF‑κB (40,93), and can also inhibit the function of the 
FAK pathway (FAK is a regulator of cell migration, prolifera‑
tion, survival and transcription) (44). In addition, it was found 
endothelial‑cell FAK is required for DNA‑damage‑induced 
NF‑κB activation (94). It was revealed that NF‑κB activation 
can activate the FAK pathway, which is activated via FAK 
phosphorylatio (95,96). Tyr397 is the main phosphoryla‑
tion site of FAK; in addition to its autophosphorylation, 
Tyr397 can also interact with the SH2 domain of Src family 
proteins (97,98) to activate other phosphorylation sites, thus 
promoting the activation of the signaling pathway downstream 
of the FAK pathway and causing migration and invasion of 
tumor cells (97,99‑101). Furthermore, Src promotes NF‑κB 
transcriptional activity (102‑104), and Src and FAK also serve 
as a signaling pathway, whereby Src promotes the FAK pathway 
activity (99‑101). The interactions between Src, NF‑κB and the 
FAK pathway are presented in Fig. 5. It was also revealed that 
diosgenin can decrease the activities of MMP‑2 and MMP‑9, 
and the two combined with NF‑κB form an axis (105‑108). 
Inhibiting MMP‑2/‑9 can suppress the activity of AKT/NF‑κB 
in HeLa cells (107), while suppressing NF‑κB can also down‑
regulate MMPs in nude mice which are injected HepG2‑HBx 
cells (108,109). This suggests that the diosgenin mechanism of 
action may be extensive, involving multiple pathway links that 
are very complex.

7. Clinical application of diosgenin

On the basis of its various functions, diosgenin has been 
used medicinally to treat a number of diseases and improve 
several physiological functions. Diosgenin has been applied 
in many cases, such as treating inflammation (27,29,30), 
improving cardiovascular function (27), lowering blood lipid 
levels (29,30) and regulating immunity (27,29,30).

Traditionally, diosgenin was used for the treatment of 
various symptoms such as cold hands and feet (by its func‑
tion of activating blood), loss of appetite caused by diseases 
including cancer, and frequent urination (by its function of 
protecting kidney) (27,29,30). Currently, diosgenin is widely 
used for the treatment of cardiovascular diseases (110,111). 
Several extensive clinical cases (particularly for cardiovas‑
cular diseases) have validated diosgenin as a drug for treating 
diseases (110). In addition, certain studies have demonstrated 
that psychobehavioral interventions of traditional Chinese 
medicine can benefit patients with cancer by multiple roles, 
such as decreasing functional impairments, leading to pain 
relief, easing depression, decreasing time to flatulence 
following surgery and improving sleep quality (112).

Several traditional Chinese medicines, such as artemis‑
inin (113,114), Danshen (113,115), glossy Ganoderma (116), 
and Huangqi (117,118), have been used as anticancer therapies, 
such as being used as supplementary anticancer drugs and 
psychobehavioral interventions (112‑118). This suggests the 
potential for diosgenin as a traditional Chinese medicine in 
clinical antitumor use.

At present, the incidence rate of some kinds of cancers in 
certain areas is increasing, such as colorectal cancer in Latin 
America, Asia, Eastern Europe, breast cancer in low‑income 
countries, gastric cardia cancer in the United States and 
many European countries (119‑121), besides, cancer remains 
a serious threat to human health and mortality (1). Cancer is 
often discovered in the late stages, and in the majority of cases, 
the primary cancer has metastasized into adjacent lymph nodes 
and other sites (3). Diosgenin, as a main component of a tradi‑
tional Chinese medicine, has a suppressing effect on tumor 
metastasis. Numerous anticancer drugs that are currently used 
have toxic side effects, and certain types of cancer develop 
resistance to the drugs to a certain extent (30). Diosgenin may 
have the capability of avoiding these shortcomings (30,110).

The clinical use of diosgenin as an anticancer treatment 
requires further study and testing. Given the multiple path‑
ways and various targets of diosgenin, future research should 
investigate its potential function in cancer inhibition.

8. Conclusions and prospects

Diosgenin may act on: i) Src by inhibiting its phosphorylation 
ii) the FAK pathway by inhibiting the expression of associ‑
ated molecules and activation of the pathway; and iii) NF‑κB 
by inhibiting its level and activity, in addition to other path‑
ways. Furthermore, Src, the FAK pathway and NF‑κB have 
inter‑relationships. The inhibition of diosgenin on Src, the 
FAK pathway and NF‑κB has a negative effect on the main 
switch Cortactin, thus inhibiting invadopodia formation in 
various cancer cells.

Future studies should examine the mechanism of diosgenin 
inhibition of invadopodia formation to suppress the metastasis 
of primary tumors. These findings will aid subsequent clinical 
applications, particularly pharmaceutical use.
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