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INTRODUCTION 
 

Voxel-based morphometry (VBM) is widely used to 

help diagnose Alzheimer’s disease (AD). It is a 

convenient tool that has gained importance due to the 

increasing accessibility of nuclear Magnetic Resonance 

Imaging (MRI). VBM normalizes the 3D MRI data of a 

subject to a standardized space, extracts gray matter 

data by segmentation, undertakes spatial smoothing, and 

statistically analyzes the data using a normal database. 

VBM is able to detect regions that are atrophic relative 

to the entire cerebral cortex. VBM software, such as 

Voxel-Based Specific Regional Analysis System for 

Alzheimer’s Disease (VSRAD ®, Eisai Co., Tokyo, 
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ABSTRACT 
 

Voxel-based morphometry (VBM) analysis of nuclear Magnetic Resonance Imaging (MRI) data allows the 
identification of medial temporal lobe (MTL) atrophy and is widely used to assist the diagnosis of Alzheimer’s 
disease (AD). However, its reliability in the clinical environment has not yet been confirmed. To determine the 
credibility of VBM, amyloid positron emission tomography (PET) and VBM studies were compared 
retrospectively. Patients who underwent Pittsburgh Compound B (PiB) PET were retrospectively recruited. 
Ninety-seven patients were found to be amyloid negative and 116 were amyloid positive. MTL atrophy in the 
PiB positive group, as quantified by thin sliced 3D MRI and VBM software, was significantly more severe (p 
=0.0039) than in the PiB negative group. However, data histogram showed a vast overlap between the two 
groups. The area under the ROC curve (AUC) was 0.646. MMSE scores of patients in the amyloid negative and 
positive groups were also significantly different (p = 0.0028), and the AUC was 0.672. Thus, MTL atrophy could 
not reliably differentiate between amyloid positive and negative patients in a clinical setting, possibly due to 
the wide array of dementia-type diseases that exist other than AD. 
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Japan), provides a score by which medial temporal lobe 

(MTL) atrophy can be assessed objectively, thus, 

bypassing the need of specially trained staff for 

interpretation [1, 2]. 

 

AD has two main pathological features, senile plaques 

made of the β-amyloid (Aβ), which invariably occur as 

a part of the pathological process of AD, and 

neurofibrillary tangles (NFT) made of phosphorylated 

tau. NFT develops first in the MTL [3] causing atrophy. 

The MTL including the hippocampus and entorhinal 

and perirhinal cortices plays a very important role in 

memory [4]. Therefore, it is plausible that MTL atrophy 

might be a useful marker for detecting AD pathology. 

Several studies have reported that MTL atrophy can be 

detected in patients with AD from a very early stage [5–

8] and, therefore, is useful to distinguish prodromal AD 

from normal aging [1, 9–11]. Particularly, the CA1 

region of the hippocampus shows the most severe 

atrophy in AD [12–16]. Hippocampal volume provides 

a quantitative marker of the pathologic substrate that 

produces the observed cognitive deficit in AD [17]. 

 

Although VBM-derived MTL atrophy scores are easy to 

interpret, they are not without fault and can sometimes 

produce false positives, categorizing cognitively normal 

subjects as AD patients. General practitioners in Japan 

often refer healthy patients with high VBM scores to 

dementia specialists and prescribe dementia drugs such 

as donepezil (Aricept ®, Eisai Co., Tokyo, Japan) 

without undertaking memory examinations. This 

overprescribing of AD medications and unnecessary 

referral to dementia specialists places an extraneous 

burden on the Japanese health insurance system and 

medical infrastructure. 

 

Although a previous study showed that MTL atrophy 

scores calculated using VSRAD ® Advance have a high 

sensitivity (86.4%) and a high specificity (97.5%) [2], 

there are two serious limitations of the study, which 

impede its reliability in an actual clinical setting. First, 

the study population included only AD and cognitively 

normal subjects. In reality, however, clinicians must be 

able to differentiate between the different types of 

cognitive disorders such as dementia with Lewy bodies 

(DLB), fronto-temporal lobe dementia (FTLD), 

progressive supranuclear palsy (PSP), cortico-basal 

degeneration (CBD), neurofibrillary tangle-predominant 

dementia (NFTD), and argyrophilic grain dementia 

(AGD). Representative MTL images are shown in 

Figure 1. A previous study showed that only 34% of 

patients with neurodegenerative dementia (clinical 

dementia rating scale; CDR ≥ 1) had AD pathology [18] 

and another showed that there was no significant 

difference in MTL atrophy between subjects with AD 

and non-AD dementia [17]. Therefore, while VSRAD ® 

Advance may be useful for differentiating AD from 

cognitive normal subjects, the score alone is not 

sufficient to diagnose AD. Second, the patients assigned 

to the AD arm of the study were diagnosed based on 

clinical criteria. However, false positive diagnosis of 

AD is possible when using clinical criteria alone and 

similarly, patients with AD pathologies are often 

misdiagnosed with normal cognition [19]. A paper 

reviewing the reliability and validity of NINDS-ARDA 

Alzheimer’s criteria [20] found that the sensitivity and 

specificity of the ‘probable AD’ category was 76.6 – 

70.9% and 59.5 – 70.8%, respectively; and those of the 

‘probable AD’ and ‘possible AD’ categories combined 

were 87.3 – 82.7% and 44.3 – 54.5%, respectively [21]. 

Lim et al. [22] also showed that the ‘probable AD’ 

category had 83% sensitivity and 55% specificity; 

‘probable AD’ and ‘possible AD’ categories combined 

had 85% sensitivity and 50% specificity. In a 

population-based study by Petrovitch et al. [23], only 

65% of the clinically diagnosed AD was reported to be 

pathologically accurate. Amyloid imaging is reported to 

alter the presumptive diagnosis in approximately 30% 

of cases, increase the diagnostic confidence in about 

60% of cases, and change the patient management in 

about 60% of cases [24]. Owing to the high reliability 

of amyloid positron emission tomography (PET), a 

positive result can be considered as a clear confirmation 

of AD pathology. 

 

This study aimed to investigate the clinical reliability of 

VBM in diagnosing AD. We compared hippocampal 

atrophy assessed using VSRAD Z-score and amyloid 

PET retrospectively. 

 

RESULTS 
 

Demographics 
 

Seventy-three out of 286 patients were excluded from 

the analysis. Eighteen patients did not have 3D MRI 

data suitable for VBM. MR images of 46 patients 

showed bad segmentation, two images were of low 

quality due to the head movement, and one showed 

susceptible artifact due to a cochlea implant. One 

patient had a large arachnoid cyst, one had a large 

infarction, and one had normal pressure 

hydrocephalus. Three patients with cerebral amyloid 

angiopathy were also excluded, as they may show 

amyloid positivity in the absence of senile plaques and 

MRI can be influenced by hemorrhage. Of the 213 

remaining patients, 97 were amyloid negative and 116 

were amyloid positive. Patient characteristics are 

shown in Table 1. For all patients, the diagnosis at the 

time of scanning and the most recent diagnosis by 

neurology specialists are shown in Supplementary 

Figure 1. 
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Distribution of hippocampal atrophy 
 

VSRAD Z scores of PiB negative and positive patients 

were significantly different (p = 0.00393). However, 

histograms showed a vast overlap of scores between the 

two groups (Figure 2A). A Receiver Operating 

Characteristic (ROC) curve of VSRAD Z values is 

shown in Figure 2B. VSRAD ® had 78.4% sensitivity, 

54.6% specificity, and 67.6% accuracy at a Z value of 

1.20. The Area Under the ROC curve (AUC) was 0.646.  

 

MMSE 

 

The histogram of MMSE scores is shown in Figure 3A. 

It also showed a vast overlap of scores between the two 

groups. 

 

The ROC curve of MMSE scores is shown in Figure 

3B. As calculated, the sensitivity, specificity, and 

accuracy of MMSE was 64.3%, 65.2%, and 64.7%, 

respectively, at MMSE 24.5. AUC was 0.672.  

 

Correlation analysis 
 

We assessed the correlation between amyloid positivity 

and MMSE score, VSRAD Z score, age, and sex. The 

model was significant (χ2 = 23.42, p = 0.0029). The lack-

of-fit test by logistic regression analysis showed that 

amyloid positivity was significantly correlated with the 

MMSE score (χ2 = 4.97, p = 0.0258), but not with the 

VSRAD Z score (χ2 = 1.44, p = 0.2301). Moreover, age 

(χ2 = 0.61, p = 0.4366) and sex (χ2 = 0.59, p = 0.4428) 

were not significantly correlated with amyloid positivity. 

This indicates that MMSE has a closer correlation with 

amyloid positivity than VSRAD Z scores.  

 

DISCUSSION 
 

We observed that MTL atrophy, determined using VBM 

with MRI was not a reliable indicator of Aβ deposition. 

The significant difference between the VSRAD Z scores 

of Aβ positive and negative patients can be explained 

by a difference in MMSE score. The ROC analysis of 

VSRAD Z scores showed a low AUC value (0.646), 

which was similar to the AUC value of MMSE scores 

(0.672). Since MMSE is much simpler and inexpensive 

than MRI examination, MMSE would be preferable to 

VBM as a tool to diagnose AD.  

 

The low reliability of VBM observed in this study is 

likely attributable to the existence of many different 

forms of dementias other than AD, a factor not 

 

 
 

Figure 1. Representative medial temporal lobe images, VSRAD Z scores, and amyloid positivity. 
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Table 1. Demographics. 

 Aβ (−) Aβ (+) p 

n (male/female) 97 (42/55) 116 (40/76) 0.188 

age 71.8±10.2 72.7±10.0 0.515 

age range 43 – 88 48 – 97  

MMSE* 24.0±6.8 20.6±7.5 0.003 

± denotes standard deviation. *MMSE were available for 153 patients. χ2-test for sex ratio and t-test (bilateral) for age and 
MMSE were executed. 

 

 
 

Figure 2. (A) Histogram of VSRAD Z scores. VSRAD Z scores of PiB negative and positive patients were significantly different. 
However, histogram showed a vast overlap of scores between PiB positive and negative patients. (B) ROC analysis of VSRAD 
Z values. 

 

 
 

Figure 3. Histogram (A) and ROC analysis (B) of MMSE scores. 
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accounted for in the previous study on VBM [2]. 

Although MTL atrophy detected by MRI correlates with 

NFT pathology, it is not specific to AD [17]. 

Furthermore, hippocampal-sparing AD, which does not 

involve hippocampal atrophy, is reported in 

approximately 11% of cases, which should also be 

taken into consideration when designing a study 

involving AD patients [25]. Early stage AD before 

hippocampal shrinkage [26] (preclinical stages of  

AD or MCI due to AD) would also result in a false 

negative VBM. 

 

VBM for MTL atrophy and PiB PET for Aβ deposition 

target two different components of AD pathology, NFT 

and senile plaques, respectively. Tateno et al. [27] 

reported no correlation between Aβ deposition and 

MTL atrophy, while Jack et al. [28] reported a weak 

correlation. Studies showed that Aβ deposition in the 

neocortex is related to MTL atrophy only at a very early 

stage [29–31], and moreover the relationship is of a 

weak and inconsistent nature [32]. This phenomenon 

can be explained by the fact that Aβ accumulation 

reaches a plateau very early during the disease 

progression [26, 28]. Within Aβ (+) patients, 

hippocampal atrophy showed a significant correlation 

with Braak and Braak staging and the level of tau  

in the cerebrospinal fluid (CSF), moreover, 

hippocampal atrophy showed a weak correlation with 

Aβ burden [33]. 

 

Although our study demonstrated that VBM is not 

useful in diagnosing AD, it may be useful in other 

situations. VBM can be used to access MTL atrophy for 

research purpose [34]. It has been reported that the 

pattern of gray matter atrophy is associated with NFT 

pathology in Braak stage V and VI patients [35]. 

Identification of the atrophy pattern would be useful for 

classifying patients into the pathological subtypes of 

AD, i.e. typical AD, hippocampal-sparing AD, and 

limbic-predominant AD [36], and to distinguish nonAD 

degenerative dementia from MCI due to AD [37, 38]. 

Moreover, VBM is routinely used to evaluate disease-

specific atrophic regions [39]. 

 

There are several limitations to this study. First, it 

should be noted that amyloid positivity does not 

conclusively equate to a diagnosis of AD, although an 

amyloid negative result can rule out the possibility of 

AD. Moreover, it takes many years to develop 

hippocampal atrophy after amyloid deposition [26]. 

Second, although the study population was large, this 

retrospective study might be biased since patients who 

are difficult to be diagnosed require amyloid PET 

scanning. Therefore, the patient population in this study 

may not be a true representation of the wider 

population. However, a pathological study showed that 

the proportion of patients with cognitive impairment 

with pure Alzheimer’s disease was as little as 34% [18]. 

Third, the MRI machine was updated to a newer model 

during the studied period. The difference in machines 

may influence the VBM results obtained. However, the 

effect is likely to be insignificant in clinical settings. 

 

In conclusion, our study demonstrated that VBM based 

analysis of MRI data reliably detects hippocampal 

atrophy, but is not useful for the diagnosis of AD. 

 

MATERIALS AND METHODS 
 

Patients 
 

286 patients, who underwent Pittsburgh Compound B 

(PiB) PET between March 2, 2006 and January 25, 

2017, were retrospectively recruited. For patients who 

underwent PiB PET no less than twice during this 

period, the first scan was used. 

 

Ethical approval and consent to participate 

 

The study was conducted in accordance with the Ethical 

Guidelines for Medical and Health Research Involving 

Human Subjects in Japan and conformed to the Helsinki 

Declaration. The study protocol was approved by the 

institutional review board of the Tokyo Metropolitan 

Institute of Gerontology. Patients and their families 

were provided with detailed information, and written 

informed consents were obtained from all participants. 

 

Amyloid PET 
 

555 MBq of [11C] PiB was administered intravenously. 

Patients underwent either a 70 minute dynamic scan or 

a 20 minute static scan 40 or 50 minutes after 

administration of the radiotracer using PET scanner. 

Discovery PET/CT 710 (GE Healthcare, Waukesha, 

WI, USA) and Headtome V (Shimadzu Corporation, 

Kyoto, Japan) were the two machines used. 

 

Amyloid positivity was determined by two experts 

(MK, K. Ishibashi) according to the standard criteria. 

Images in which the tracer accumulation was higher in 

the cortex or striatum than in the white matter were 

considered amyloid positive. Where the opinions of the 

two experts differed, categorization was determined 

through discussion. 

 

MRI 
 

MR images for VBM (3D T1-weighted images) were 

executed on Signa Excite HD (1.5T), Signa HDxt (1.5T) 

or Discovery 750w (3T) (GE Healthcare, Waukesha, WI, 

USA). A VBM program based on Statistical Parametric 
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Mapping (SPM) 8 with Diffeomorphic Anatomic 

Registration Through Exponentiated Lie algebra 

(DARTEL) (VSRAD ® Advance 2, Eisai Co., Tokyo, 

Japan) [2] was applied and a VSRAD Z score, 

representing MTL atrophy, was obtained. 

 

Segmentation error was assessed by two experts (MK, 

K. Ishibashi). Again, where the opinions of the two 

experts differed, a consensus was reached through 

discussion. 

 

Statistical analysis 

 

All statistical analyses, excluding logistic regression 

analysis, were performed using a standard spread sheet 

software, Excel ® 2016, (Microsoft Corporation, 

Redmond, WA, USA). Logistic regression analysis was 

performed using JMP ® version 11.0.0 (SAS Institute 

Inc., Cary, NC, USA). 

 

Abbreviations 
 

AD: Alzheimer’s disease; AGD: argyrophilic grain 

dementia; DARTEL: diffeomorphic anatomical 

registration through exponentiated lie algebra; FTLD: 

fronto-temporal lobe dementia; DLB: dementia with 

Lewy bodies; MCI: mild cognitive impairment; MMSE: 

Mini-Mental State Examination; MRI: nuclear magnetic 

resonance imaging; PET: positron emission 

tomography; PiB: Pittsburgh Compound B; PSP: 

progressive supranuclear palsy; ROC: receiver 

operating characteristic analysis; SPM: statistical 

parametric mapping; VBM: voxel-based morphometry 
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Supplementary Figure 1. Clinical diagnosis of participants. Inside: before amyloid PET; Outside: latest diagnosis. 

 

 

 


