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Abstract
Chemical identification involves finding chemical entities in text (i.e. named entity recognition) and assigning unique identifiers to the entities 
(i.e. named entity normalization). While current models are developed and evaluated based on article titles and abstracts, their effectiveness has 
not been thoroughly verified in full text. In this paper, we identify two limitations of models in tagging full-text articles: (1) low generalizability to 
unseen mentions and (2) tagging inconsistency. We use simple training and post-processing methods to address the limitations such as transfer 
learning and mention-wise majority voting. We also present a hybrid model for the normalization task that utilizes the high recall of a neural 
model while maintaining the high precision of a dictionary model. In the BioCreative VII NLM-Chem track challenge, our best model achieves 
86.72 and 78.31 F1 scores in named entity recognition and normalization, significantly outperforming the median (83.73 and 77.49 F1 scores) 
and taking first place in named entity recognition. In a post-challenge evaluation, we re-implement our model and obtain 84.70 F1 score in the 
normalization task, outperforming the best score in the challenge by 3.34 F1 score.
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Introduction
Chemical entities include drugs, compounds, chemical for-
mulas, identifiers, etc. (1). Extracting chemical entities from 
a vast amount of literature is an essential step in various 
downstream tasks such as relation extraction (2, 3) and lit-
erature search (4). Chemical identification is a task to support 
this scenario, which consists of (i) named entity recogni-
tion (NER) that locates chemical entities in the provided 
text and (ii) named entity normalization (NEN or normaliza-
tion) that links the entities to unique identifiers pre-defined in 
biomedical knowledge bases.

Several datasets such as BC5CDR (5) are proposed to facil-
itate research on chemical identification. Most consist of the 
titles and abstracts of PubMed articles with manually anno-
tated chemical mentions and the corresponding identifiers. 
Recent studies put a lot of effort into achieving high perfor-
mance on these abstract-level datasets in the NER (6–8) and 
NEN tasks (9, 10). However, there are few studies on tagging 
a full-text corpus consisting of the main body of a paper as 
well as the title and abstract. Since detailed descriptions of 
background, methodology and findings are mostly included 
in the main body, automatically annotating the full text can 
be more informative than annotating only the abstract (‘title 
and abstract’ and ‘abstract’ are interchangeable).

In this work, we conduct a systematic study of full-text 
chemical identification. We analyze two limitations of current 
models in tagging full-text PubMed articles. First, models’ 
generalizability to unseen entity mentions is limited (11), 
especially when entities appear in the main body. Our pilot 
experiment shows that the performance of an NER model on 
unseen mentions in the main body is lower than those in the 
abstract. Second, models make inconsistent predictions for the 
same entities within the same article due to the tagging incon-
sistency problem (6), which is worse in the main body than in 
the abstract.

We suggest using two methods to address the limitations. 
To improve the generalization ability of the model to unseen 
mentions, we use transfer learning, where the model is pre-
trained on source data and then fine-tuned on the target 
data. This exposes models to more diverse chemical entities 
and contexts, improving entity coverage and generalizability. 
For the source data, we use existing chemical NER datasets
(1, 5) and a synthetically generated dataset by synonym 
replacement (12).

To mitigate tagging inconsistency, we use a rule-based 
post-processing method called mention-wise majority vot-
ing. (While majority voting generally refers to an ensemble 
method in the context of machine learning, in this paper, it
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refers to our method for tagging consistency (Section Majority 
voting)). The method aggregates all inconsistent predictions 
for the same phrase in an article and changes all minority 
predictions to the majority, based on the assumption that 
(i) the majority is more accurate than the minority and (ii) 
the same words or phrases within the same article refer to 
the same concepts (e.g. entities). Our experiments show the 
method effectively improves NER performance despite its
simplicity.

Additionally, we present a hybrid approach to improve 
recall while maintaining precision in the normalization task. 
Dictionary models usually achieve high precision but low 
recall due to the limited coverage of their dictionaries, whereas 
neural network models achieve higher recall but lower accu-
racy. We attempt to leverage the strengths of both while 
compensating for the weaknesses of each model. We first 
perform dictionary lookup and then use a neural model to 
further predict entities that do not match the dictionary. The 
hybrid model significantly improves recall, resulting in strong 
normalization performance.

We experiment with our methods using the NLM-Chem 
dataset (13), which consists of 150 full-text articles with 
chemical entity annotations. Based on the experiments, we 
submit our best models to the BioCreative VII NLM-Chem 
track challenge (14) and obtain 86.72 and 78.31 F1 scores 
in NER and NEN, significantly outperforming the median 
(83.73 and 77.49 F1 scores) and ranked first in NER. We 
found that our NEN models were underestimated in the offi-
cial challenge evaluation due to implementation errors—after 
fixing the errors, we achieve 84.70 F1 score in NEN, surpass-
ing the best score in the challenge by 3.34 F1 score. In sum, 
we make the following contributions:

• We identify the limitations of existing models in terms of 
full-text chemical identification: (i) low generalizability to 
unseen mentions and (ii) tagging inconsistency.

• We address the limitations using simple transfer learning 
and mention-wise majority voting methods. For normal-
ization, we present a hybrid model combining dictionary 
and neural models to achieve higher recall while maintain-
ing accuracy.

• Our system significantly outperforms the median in the 
official evaluation of the BioCreative VII NLM-Chem 
track challenge and even achieves the best score in NER 
(86.72 F1 score). In the post-challenge evaluation, our 
hybrid normalization model obtains the best score (84.70 
F1 score).

Background
This section describes the background to understand the task 
and our methodology. We deal with full-text chemical iden-
tification as two separate tasks: NER and NEN. Specifically, 
we train NER and NEN models independently and combine 
them at the inference time. The NER model takes a sentence as 
input and is optimized to predict each token in the sentence. 
The NEN model uses the predictions of the NER model as 
input (i.e. predicted entity mentions) and assigns them to cor-
responding identifiers pre-defined in biomedical knowledge 
bases.

Named entity recognition
Let 𝒟 = {D1,…,D𝑁} be a dataset, where N is the number 
of documents in the dataset and each document D𝑛 (𝑛 ∈
[1,𝑁]) consists of sentences. While entities are represented by 
character-level start and end indexes in the sentence (In a strict 
NER evaluation, models should predict the exact character-
level indexes during inference.), they are usually treated as 
token-level labels in practice since most entity boundaries are 
per-token. In other words, we split the given sentence into L
tokens and feed it into an NER model ENER to predict the 
label of each token as follows:

where xl and ̂𝑦𝑙 (𝑙 ∈ [1,𝐿]) are the l-th token and the predicted 
label. Following the BIO format (15), each label is assigned 
either B (Beginning) or I (Inside) or O (Outside). Finally, con-
tiguous tokens with the first token corresponding to B and the 
others corresponding to I are considered a predicted entity ̂𝑒.

Normalization
Once the corpus is annotated by the NER model, an NEN 
model then links the predicted mentions to pre-defined 
biomedical identifiers. Each ̂𝑒 is fed into the NEN model ENEN, 
and the model produces the identifier ̂𝑐 as follows:

where 𝒱 is a dictionary consisting of identifier–mention pairs. 
The model ENEN searches the most similar entity in the dic-
tionary to the given mention ̂𝑒 and outputs the identifier of 
the entity as the final prediction ̂𝑐. While a dictionary model 
performs string matching between the input mention ̂𝑒 and 
candidate entities in the dictionary 𝒱, neural network mod-
els convert them into dense representations and compute the 
vector similarity between them (9, 10).

Full-text dataset
Previous datasets for chemical NER and NEN have a lim-
itation in that they consist only of the title and abstract 
of the paper (1, 5, 16). Recently, Islamaj et al. (13) pro-
pose NLM-Chem, the first large-scale dataset with manually 
annotated chemical entity mentions and identifiers, consist-
ing of 150 full-text PubMed articles. The data are designed 
to be rich in chemical entities that are difficult for mod-
els trained on other previous chemical NER datasets to
identify.

NLM-Chem challenge
BioCreative VII introduces a new challenge, ‘NLM-Chem
Track: Full-text Chemical Identification and Indexing
in PubMed articles’ (14) (https://biocreative.bioinformatics.
udel.edu/tasks/biocreative-vii/track-2/). The challenge pres-
ents two tasks, but we focus on the Chemical Identification 
task in this work and leave the Chemical Indexing task for 
future work. In addition to 150 annotated articles in the orig-
inal NLM-Chem data, the challenge provides additional 54 
full-text articles manually annotated in a similar process when 
constructing NLM-Chem. Table 1 shows the statistics of the 
NLM-Chem and challenge data. We use the test set of NLM-
Chem (50 articles) as the validation set. The additional 54 
articles are used for the official evaluation. 

https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-2/
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Table 1. Statistics of the BioCreative VII NLM-Chem track challenge data. 
The test set is only used in the official challenge evaluation. # Articles: the 
number of articles. # Sentences: the number of sentences. # Mentions: 
the number of annotated entity mentions. # CUIs: the number of concept 
unique identifiers.

Type # Articles # Sentences # Mentions # CUIs

Train 100 23 560 26 566 29 089
Valid 50 11 183 11 772 12 211
Test 54 17 703 22 942 25 316

Table 2. Performance of Bio-LM-large (17) on the abstract and main body 
in the NLM-Chem validation set. Prec., Rec. and F1: entity-level precision, 
recall and F1 score, respectively. Δ: performance difference. Note that 
we report only recall on Mem, Syn and Con since it is impossible to clas-
sify false positives into the splits, and precision for each split cannot be 
calculated (11).

Type Prec. Rec. F1 Mem Syn Con

Full 86.5 88.7 87.6 92.6 77.8 86.7
 Abstract 87.6 89.2 88.4 93.3 80.6 87.7
 Main body 86.4 88.6 87.5 92.5 77.5 86.6

Δ −1.2 −0.6 −0.9 −0.8 −3.1 −1.1

Preliminary study
We determine whether a current model is sufficient or lim-
ited in its ability to tag full-text articles. We focus on NER 
in this analysis because a strong NER model is a prerequisite 
for high normalization performance. We use the Bio-LM-large 
model (17) with a linear output layer as the NER model. We 
train the model on the full NLM-Chem training set and mea-
sure the performance on the abstract and the main body of 
the validation set separately. Table 2 shows that the perfor-
mance on the main body is lower by 0.9 F1 score than that 
on the abstract, indicating that tagging full text is relatively 
challenging compared to tagging only abstract. We systemati-
cally analyze what factors make this difficulty in the following 
sections.

Generalization to unseen mentions
In the biomedical domain, it is of paramount importance to 
generalize unseen mentions that the model did not experi-
ence during training because synonyms and newly discovered 
biomedical concepts constantly emerge in the literature (11). 
Since the main body contains more diverse entities and com-
plex context than the abstract, the generalizability issue
(11, 18, 19) can be critical in the main body. Follow 
Kim et al. (11), we partition all mentions e in the NLM-Chem 
validation set into three splits as follows:

where 𝔼train is the set of all entity mentions in the training set 
and ℂtrain is the set of all Concept Unique Identifiers (CUIs) 
in the training set. Specifically, Mem consists of memorizable
mentions that were seen during training. Syn consists of syn-
onyms, where their surface forms are new/unseen but their 
CUIs are not. Con consists of new entities whose surface forms 
and CUIs are both unseen. Each data split corresponds to one 

Table 3. Label inconsistency and tagging inconsistency in the abstract and 
main body of the NLM-Chem validation set.

Type Label inconsistency Tagging inconsistency

Abstract 0.02 6.4
Main body 0.04 9.7

of the recognition abilities that reliable NER models should 
possess: (i) memorization, (ii) synonym generalization and (iii) 
concept generalization. We focus on the last two abilities that 
are related to identifying unseen mentions.

Table 2 shows the performance on Syn and Con in the main 
body is consistently lower than that in the abstract, indicat-
ing that the model is limited in terms of generalizability to 
unseen mentions. Interestingly, the performance difference is 
very noticeable on Syn (3.1 F1 score). This may be because 
entities are often represented in different ways throughout the 
paper, especially in the main body.

Tagging inconsistency
Since identical words or phrases within the same article often 
refer to the same concepts or entities, models should be 
consistent in predicting the same text spans. Unfortunately, 
current sentence-level models classify the same spans into dif-
ferent ones, which leads to the tagging inconsistency problem
(6, 20). In this section, we measure how much tagging incon-
sistency occurs in the abstract and main body, respectively. Let 
W𝑛 be all unique phrases (i.e. n-grams) within the n-th article, 
𝑔𝑛(𝑝) be the total number of a phrase p within the n-th article 
and ℎ𝑛(𝑝) be the total number of positive predictions for the 
phrase p within the n-th article. We consider model prediction 
for the phrase p to be inconsistent if a function 𝜙n returns 1, 
which is defined as follows:

Finally, we calculate tagging inconsistency in the dataset 𝒟 as 
the average of inconsistent predictions for all unique phrases 
in the corpus as follows: 

Similarly, we define label inconsistency by assuming that 𝑔𝑛(𝑝)
returns the total number of gold annotations for the phrase p
within the n-th article.

Table 3 shows that label inconsistency is insignificant, sup-
porting our assumption that phrases within the same surface 
forms are likely to be the same entity (or not entity). On the 
other hand, tagging inconsistency occurs frequently, and it 
is more pronounced in the main body than in the abstract, 
indicating that it needs to be addressed to obtain satisfactory 
performance in full-text chemical identification.

Method
From our analysis, we identified low generalizability to unseen 
mentions and tagging inconsistency as obstacles to tagging 
full-text articles. We use transfer learning and mention-wise 
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majority voting methods to address them. In normalization, 
we use a hybrid model to improve recall using a neural model 
while maintaining high precision of a dictionary model. See 
the paper (21) for a simpler system description.

Transfer learning
We pre-train a model on source data and then fine-tune it 
on the target data (i.e. NLM-Chem). Since pre-training with 
additional datasets exposes models to more diverse chemical 
entities and contexts, this can improve the generalizability. We 
use two popular chemical NER datasets CHEMDNER (1) and 
BC5CDR (5) as the source data. At the fine-tuning stage, we 
randomly initialize the output layer and only reuse the rest of 
the model parameters.

Data augmentation
Dai et al. (12) augment training data by replacing entity men-
tions with their synonyms. This allows the model to learn 
different representations of entities, which can help improve 
generalizability to morphological variations. Following the 
work, we generate the new synthetic data NLM-Chem(syn) by 
replacing the mentions in NLM-Chem with their synonyms, 
which are sampled from the Comparative Toxicogenomics 
Database. We use NLM-Chem(syn) as additional source data 
for transfer learning. 

Majority voting
To alleviate tagging inconsistency, we use a majority vot-
ing method that aggregates model predictions in full text 

Figure 1. The tagging inconsistency problem and our majority voting 
method. We underline positive predictions and italicize negative 
predictions for the entity “FLLL32”. Our method improves tagging 
consistency by changing the minority to the majority.

(Figure 1). First, we collect all inconsistent predictions in 
the same article, where the inconsistency is defined by 
Equation (4). We then compute the majority for model predic-
tions and change all the minority predictions to the majority. 
Luo et al. (6) used a similar post-processing method to ours 
in their work, but the method only changes negative predic-
tions to positives, which might be detrimental to precision. 
On the other hand, we also consider the direction from posi-
tives to negatives, which reduces false positives and improves 
precision. Since majority voting can be noisy if the target 
phrase does not frequently appear in the article, we apply the 
method only when the number of the phrase is greater than a
threshold 𝜏.

Hybrid model
Hybrid model consists of a dictionary model and a neural 
network model. The dictionary model first performs normal-
ization based on string matching between the target mentions 
and the dictionary after applying several pre-processing rules 
such as lowercasing and removing punctuation. For mentions 
that are not normalized by the dictionary model, the neu-
ral model further performs the process. The neural model 
retrieves top-k similar entities to the given mention from the 
biomedical dictionary 𝒱. To deal with the CUI-LESS class, 
which means that a given entity does not match any CUIs 
in the dictionary, we add a special embedding and classify 
mentions into the class if the embedding is included in top-k
results.

Experiments
Evaluation
We evaluate our models in the BioCreative VII NLM-Chem 
track challenge. For NER, entity-level precision (Prec.), recall 
(Rec.) and F1 score (F1) are used. For normalization, unique 
CUI predictions and labels for each article are compared 
first and then precision, recall and macro-averaged F1 score 
are calculated based on the article-level true positives, false 
positives and false negatives (13, 14). 

Implementation details
We select Bio-LM-large (17) as our NER model for its supe-
riority compared to others (See Table 6). For NER, we search 
best checkpoints and hyperparameters of NER models, based 
on F1 score on the validation set at every training epoch. We 
further trained NER models on the validation set by 20 epochs 
for the final submission. The max length of input sequence 
is set to 512. We use the batch size of 24 and the learning 
rate of 1e−5. In synonym augmentation, NLM-Chem(syn) 
is 3x larger than the original data. For the majority vot-
ing method, we only use entities that are longer than 2 and 
appear more than 40 times in the same article (i.e. 𝜏 = 40). For 
normalization, we use the 1 April 2021 version of the Com-
parative Toxicogenomics Database as our chemical dictionary. 
We further expand the dictionary using mentions annotated in 
NLM-Chem. For the neural model, we train BioSyn (9) with 
the SapBERT encoder (10) on NLM-Chem using the same 
hyperparameters as suggested by the authors. We search for 
the best neural NEN model checkpoints using F1 score in the 
validation set.
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Figure 2. Overview of our final system for the BioCreative VII NLM-Chem track challenge.

Table 4. Top ten models and the scores in the official challenge evaluation.

 NER  NEN

Team (Run) Prec. Rec. F1 Team (Run) Prec. Rec. F1

139 (3)a 87.59 85.87 86.72 110 (4) 86.21 77.02 81.36
139 (1)a 87.47 85.23 86.33 128 (2) 77.92 84.34 81.01
139 (2)a 87.75 84.47 86.07 110 (1) 85.82 76.41 80.84
128 (1) 85.44 86.58 86.00 128 (1) 78.33 83.39 80.78
143 (1) 85.35 86.08 85.71 121 (1) 78.74 82.81 80.72
128 (4) 84.57 86.17 85.36 121 (3) 78.76 82.72 80.69
128 (2) 86.43 84.03 85.21 110 (2) 82.21 78.98 80.56
121 (2) 84.61 85.83 85.21 128 (4) 77.55 83.18 80.27
121 (1) 86.16 84.15 85.15 121 (2) 77.48 83.15 80.21
121 (3) 85.80 84.09 84.94 121 (5) 78.21 82.26 80.19
Median 84.76 81.36 83.73 Median 71.20 77.60 77.49

aour models. The best scores in the table are underlined. See the challenge overview paper (14) for a full list of results.

Table 5. Performance of our NEN models on the test set. The best 
scores are underlined. Note that ‘post-challenge’ models were unofficially 
evaluated after the challenge was over, but on the same test set.

 Official  Post-challenge

Run Prec. Rec. F1 Prec. Rec. F1

1 72.12 84.71 77.91 85.39 83.27 84.32
2 72.56 85.05 78.31 85.80 83.64 84.70
3 71.20 84.99 77.49 85.42 83.49 84.44

Sub-token entities
The NLM-Chem data have many sub-token entities that 
are sub-strings of a token rather than the whole string. 
For example, the token ‘Gly104Cys’ has two sub-token 
entities ‘Gly’ and ‘Cys’. In the official evaluation of the 
challenge, models should predict sub-token entities, not 
the whole tokens. We found that sub-token entities mostly 
appear within mutation names, and about 90% of sub-token 
entities can be processed with simple regular expressions. 
Based on this, we perform post-processing on sub-token 
entities, which greatly improves performance in the official
evaluation.

Final submission
Ensemble methods theoretically reduce expected generaliza-
tion errors by reducing the variance. To boost the performance 
in the challenge evaluation, we build majority voting ensem-
ble models that combines predictions from different models 
trained on different datasets (See Table 7). For NEN, we use 

Table 6. Differences between biomedical pre-trained language models.
Vocab. and Corpus: the vocabulary and corpus type used in pre-training, 
respectively. The Bio-LM-large is the best in our experiment.

Model Vocab. Corpus Size F1

BioBERT (8) Wiki+Books Abstract Base 84.8
PubMedBERT (23) PubMed Abstract Base 87.2
PubMedBERT(full) (23) PubMed Full text Base 87.4
Bio-LM-base (17) PubMed Full text Base 87.0
Bio-LM-large (17) PubMed Full text Large 87.6

a single hybrid model. Figure 2 illustrates our final system for 
the challenge.

Results
Table 4 shows top ten submission results in NER and NEN, 
respectively. In NER, our top three systems significantly out-
performed the median and other 88 submission results from 
17 teams and ranked first, second and third, respectively. On 
the other hand, our systems did not make it into the top ten 
in NEN despite high performance in NER. After the chal-
lenge, we found some errors in our implementation of the 
normalization model, which significantly degraded the per-
formance. Thus, we re-evaluate the NEN performance on the 
test set published after the challenge. As shown in Table 5, 
we achieved 84.70 F1 score after fixing the errors, which is 
higher than the best score in the challenge by 3.34 F1 score. 
From these results, we can conclude that the hybrid model is 
promising for future practical applications. Consistent with 



6 Database, Vol. 00, Article ID baac074, Vol. 00, Article ID baac074

Table 7. Ablation study for NER on the validation set. Standard: a single 
Bio-LM-large model. Performance differences between the standard and 
other models are shown in parentheses.

Model Prec. Rec. F1

Single model
 Standard 86.5 88.7 87.6

+ BC5CDR 86.0 (−0.5) 89.4 (+0.7) 87.7 (+0.1)
+ CHEMDNER 86.5 89.5 (+0.8) 88.0 (+0.4)
+ NLM-Chem(syn) 86.7 (+0.2) 89.3 (+0.6) 88.0 (+0.4)

Ensemble model
 Fine-tune only 86.8 (+0.3) 89.2 (+0.5) 87.9 (+0.3)
 Transfer only 87.2 (+0.7) 89.9 (+1.2) 88.5 (+0.9)
 Both 87.2 (+0.7) 89.6 (+0.9) 88.4 (+0.8)
Ensemble model (with majority voting)
 Fine-tune only 87.3 (+0.8) 89.6 (+0.9) 88.4 (+0.8)
 Transfer only 87.6 (+1.1) 90.1 (+1.5) 88.8 (+1.2)
 Both 88.0 (+1.5) 89.8 (+1.1) 88.9 (+1.3)

our results, a concurrent work shows the hybrid approach 
improves the performance (22).

Analysis
Language model selection
We experiment with several pre-trained language models 
common in the biomedical domain to select the best sen-
tence encoder in NER: BioBERT (8), PubMedBERT (23) and 
Bio-LM (17). As shown in Table 6, Bio-LM-large outper-
forms the other models. Although BioBERT usually performs 
well on many tasks and achieves similar performance with 
PubMedBERT and Bio-LM, it performed much worse on 
NLM-Chem. Differences in vocabulary may have a signifi-
cant impact on chemical NER performance. Also, PubMed-
BERT-full performed better than PubMedBERT, indicating 
that pre-training on full-text articles may be effective for 
chemical NER at the full-text level. Bio-LM-large performed 
better than Bio-LM-base, showing that model size can affect
performance.

Ablation study
Effect of transfer learning
Table 7 shows that transfer learning improved models’ perfor-
mance, especially recall. Although the synonym replacement 
method does not require the cost of manual annotations, it can 
be more effective than using existing hand-labeled datasets.

Effect of model ensemble
Table 7 shows that ensemble models outperform single mod-
els. Besides, we analyzed how the effect of ensembling varies 
according to the combinations of single models. We designed 
three ensemble models, ‘Fine-tune only’, ‘Transfer only’ and 
‘Both’, which indicate the combination of models trained only 
with NLM-Chem, the combination of only transferred models 
and the combination of both types of models, respectively. As 
a result, we found that ensembling models trained on different 
sources can be effective. 

Effect of majority voting
Table 7 shows that majority voting is simple but consis-
tently improves the performance of ensemble models. Also, 
we see how the performance of the single Bio-LM-large 

Figure 3. Performance of majority voting with different thresholds of 
occurrence 𝜏 on the validation set. Standard: a single Bio-LM-large 
model.

Table 8. Ablation study for NEN on the validation set. Gold NER annota-
tions are used as input in this experiment.

Model Prec. Rec. F1

Dictionary 94.4 83.8 88.8
Neural 83.9 88.4 86.1
Hybrid 91.6 87.2 89.3

model changes when changing the threshold of occurrence 𝜏. 
Figure 3 shows the performance peaks at 𝜏 = 40 and decreases, 
indicating that finding the optimal 𝜏 is important.

Effect of hybrid model
As shown in Table 8, the dictionary model works very well in 
normalization if we have a high-quality dictionary. However, 
the method has low recall due to the limited coverage of the 
dictionary. Our hybrid model significantly improved recall, 
resulting in a higher F1 score.

In-depth analysis
We pointed out the two limitations of existing models that 
hinder tagging full-text articles. We confirmed that transfer 
learning and majority voting improve the overall performance 
in Table 7 and Figure 3, but further analysis is needed to figure 
out the effect of the methods in depth.

Q1. Does transfer learning actually improve generalization 
ability to unseen entities?
Table 7 shows that transfer learning improves model perfor-
mance, especially recall. Furthermore, we see whether this 
performance improvement was achieved by simply increasing 
entity coverage during training or by improving true generaliz-
ability to unseen entities. A way of measuring generalizability 
is to split the dataset as in Equation  (3) and compare perfor-
mance of a model with/without applying transfer learning on
Syn and Con, where the set of mentions 𝔼train and the set of 
CUIs ℂtrain include the NLM-Chem training set and a source 
dataset used in transfer learning scenarios. Figure 4 shows the 
number of mentions of Mem, Syn and Con of the validation set 
and the model performance, when source data are BC5CDR 
and NLM-Chem(syn). Regardless of source datasets, perfor-
mance on Syn is improved, indicating that transfer learning 
can improve generalizability to synonyms. From these results, 
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Figure 4. The number of mentions of Mem, Syn and Con and model 
performance on each split, when using BC5CDR and NLM-Chem(syn) as 
source data in transfer learning. The blue circles indicate the mentions in 
the validation set, and the others are the mentions in training sets ( i.e. 
𝔼train). Standard and Transfer: Bio-LM-large without/with applying 
transfer learning, respectively.

Table 9. Detailed analysis on majority voting using the validation set. Stan-
dard and Majority: Bio-LM-large without/with the majority voting method, 
respectively. Δ: performance difference.

Model Prec. Rec. F1 Mem Syn Con

Abstract
 Standard 87.6 89.2 88.4 93.3 80.6 87.7
 Majority 87.7 89.5 88.6 94.0 80.6 87.7

Δ +0.1 +0.3 +0.2 +0.7 0.0 0.0
Main body
 Standard 86.4 88.6 87.5 92.5 77.5 86.6
 Majority 86.9 89.1 88.0 93.5 77.5 86.4

Δ +0.5 +0.5 +0.5 +1.0 0.0 −0.2

we confirm that the performance improvement is not simply 
due to increased entity coverage.

Q2. When is majority voting particularly effective?
The method is particularly effective when there are many men-
tions of the same entity in one article, and there is severe 
tagging inconsistency. For instance, the article with PMID 
2 902 420 has 137 mentions of the entity ‘FLLL32’, and mod-
els predicted about 70% of the mentions as entities and 
the rest as not. In this case, the method corrected about 
30% errors, which significantly improves performance. Also, 
Table 9 shows that majority voting is particularly effective in 
the main body, where the problem is much more severe than 
in the abstract.

Q3. Can majority voting improve generalization ability to 
unseen entities?
Since recognizing unseen mentions is more difficult than rec-
ognizing memorizable mentions, tagging inconsistency will 
occur more for unseen mentions. It will be interesting to see 
if majority voting can effectively mitigate tagging inconsis-
tency for unseen mentions. As shown in Table 9, while the 
method significantly improved performance on Mem, it was 

not effective on Syn and Con. Since recall on unseen enti-
ties (i.e. entities in Syn and Con) is insufficient, the majority 
may be false negatives, and thus the method may not be as
effective.

Error analysis (NER)
We analyze 100 error cases of our NER model using the
test set.

Reoccurrence of the same errors
We found that the model repeated the same errors within 
the same article. For instance, 5% of the whole error cases 
occurred since the model failed to extract the entity mention 
‘pKAL’ (the Korean plant Artemisia annua L.). Majority 
voting can be effective against these repeated errors if the 
majority predictions are correct and are greater than the 
minority repeated errors. However, since the model predicted 
all occurrences of ‘pKAL’ as negative, majority voting could 
not correct the repeated errors, which is a limitation of the
method.

Abbreviations
Forty percentage of errors are due to abbreviations. It is chal-
lenging to deal with abbreviations as their names are ambigu-
ous and have less information. The full names of abbreviations 
are often defined in the front parts of the paper such as the 
abstract or introduction; thus in further work, we can utilize 
these definitions to help identify abbreviations.

Other insights
The model sometimes made unexpected predictions includ-
ing special characters, and these false positives accounted 
for 6% of all errors. For instance, the model predicted 
‘APO(’ as an entity given the context ‘The stability of 
APO(ANTR) nanodrugs was tested by storing them at 4 
C for 30 days.’, while the model correctly extracted ‘APO’ 
in most other contexts. Also, the model sometimes did not 
extract the entire entity ‘Mg-PCL’, rather it extracted ‘Mg-’ 
and ‘PCL’ separately. Many chemical entities are composed 
of complex combinations of alphabets and special charac-
ters, making it difficult for the model to distinguish exact
boundaries.

The model appears to be sensitive to even small changes in 
entity forms. We found that the model successfully extracted 
the entity ‘11Cha1’ but failed to extract other entities with 
similar forms, such as ‘11Cha2’, ‘11Cha3’, ‘11Cha10’ and 
‘11Cha11’, even when they appeared in the same sentence 
‘Less hindered groups on ring A such as hydroxyl, methoxyl, 
and/or methoxymethoxyl (MOM) (e.g. 11Cha1, 11Cha2, and 
11Cha3) increased the activity.’ It seems that the model lacks 
the ability to understand sentence structure or context pat-
tern. Such ability should be improved by developing better 
language models or incorporating syntactic information into 
the model.

Error analysis (NEN)
We manually analyze 300 error cases from the test set. The 
most common errors (71.3%) occurred due to limited cover-
age of the dictionary, and so the model incorrectly predicted 
entity as CUI-LESS. The second type of error, accounting 
for 14.3%, occurred when the model was misled by entities 
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with similar forms to a target entity. For instance, the target 
entity ‘polyamide’ and a synonym ‘nylon’ are not similar even 
though they are the same entity, so the model chose a more 
similar entity ‘polymer’. Finally, some entity mentions with the 
same surface form can have different CUIs depending on the 
context, producing 14.3% errors. For instance, while ‘DHA’ 
in a test article refers to ‘Docosahexaenoic Acid’, in the dic-
tionary, ‘DHA’ refers to ‘Dihydroartemisinin’, making a false 
prediction.

All types of errors we mentioned above can be addressed 
by using contextual information. Our model relies on sur-
face forms of mentions to perform the task, which limits 
the NEN performance. Adopting recent models using con-
textual information (24, 25) to full-text chemical normal-
ization would be interesting, and we leave this for future
research.

Conclusion
In this paper, we studied chemical identification in full-text 
articles. We found that low generalizability to unseen entities 
and tagging inconsistency are problems and should be con-
sidered to effectively perform the task. We showed that the 
problems are addressable using transfer learning and mention-
wise majority voting. Also, we showed that combining dic-
tionary and neural models is effective for normalization. 
We demonstrated the effectiveness of all methods using the 
NLM-Chem dataset through ablation studies and achieved 
strong performance in the BioCreative VII NLM-Chem track 
challenge.

Supplementary data
Supplementary data are available at Database Online.
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