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Abstract Autologous, CCR5 gene-edited hematopoietic stem and progenitor cell (HSPC)

transplantation is a promising strategy for achieving HIV remission. However, only a fraction of

HSPCs can be edited ex vivo to provide protection against infection. To project the thresholds of

CCR5-edition necessary for HIV remission, we developed a mathematical model that recapitulates

blood T cell reconstitution and plasma simian-HIV (SHIV) dynamics from SHIV-1157ipd3N4-infected

pig-tailed macaques that underwent autologous transplantation with CCR5 gene editing. The

model predicts that viral control can be obtained following analytical treatment interruption (ATI)

when: (1) transplanted HSPCs are at least fivefold higher than residual endogenous HSPCs after

total body irradiation and (2) the fraction of protected HSPCs in the transplant achieves a threshold

(76–94%) sufficient to overcome transplantation-dependent loss of SHIV immunity. Under these

conditions, if ATI is withheld until transplanted gene-modified cells engraft and reconstitute to a

steady state, spontaneous viral control is projected to occur.

Introduction
The major obstacle to HIV-1 eradication is a latent reservoir of long-lived, infected cells (Chun et al.,

1997; Chun et al., 1995; Finzi et al., 1997). Cure strategies aim to eliminate all infected cells or per-

manently prevent viral reactivation from latency. The only two known cases of HIV cure, the ‘Berlin

Patient’ and ‘London Patient’, resulted from allogeneic hematopoietic stem cell (HSC) transplant

with homozygous CCR5D32 donor cells (Allers et al., 2011; Hütter et al., 2009; Gupta et al., 2019;

Gupta et al., 2020), a mutation that makes cells resistant to CCR5-tropic HIV-1. The Berlin Patient

was diagnosed with HIV in 1995 and received total body irradiation and allo-HSC transplantation for

the treatment of his acute myeloid leukemia in 2007 and 2008. On the day of his first transplantation,

antiretroviral therapy (ART) was interrupted, and HIV viremia never returned (Allers et al., 2011;

Hütter et al., 2009; Peterson and Kiem, 2019). In 2019, an HIV-1 remission for more than 18

months was reported in the London Patient as part of the IciSTEM cohort (Gupta et al., 2019). The

London Patient underwent one allo-HSC transplantation for treatment of Hodgkin Lymphoma in

2016, but with a less aggressive conditioning compared to the Berlin patient without irradiation

(Gupta et al., 2019). This individual stopped ART 17 months after transplantation and as of March,

2020 his viremia remains suppressed, representing a possible case of HIV-1 cure (Gupta et al.,

2020). The success of the allo-HSC transplantation is likely multifactorial—in part attributable to HIV

resistance of the transplanted cells, the conditioning regimen that facilitates engraftment and
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eliminates infected cells, graft-versus-host effect against residual infected cells, and immunosuppres-

sive therapies for graft-versus-host disease (Henrich et al., 2016; Henrich et al., 2014;

Henrich et al., 2013; Salgado et al., 2018).

We are interested in recapitulating this method of cure but with reduced toxicity. Specifically, we

are investigating the use of autologous transplantation following ex vivo inactivation of the CCR5

gene with gene-editing (Tebas, 2014; Peterson et al., 2016). This procedure is safe and feasible in

pigtail macaques infected with simian-HIV (SHIV) (Peterson et al., 2016; Peterson et al., 2017;

Peterson et al., 2018) and is currently being investigated in a Phase I clinical trial in suppressed,

HIV-1-infected humans (NCT02500849). Also, this approach is more broadly applicable because an

allogeneic CCR5-negative donor is not needed. However, current data suggests that protocols do

not achieve sufficient fractions of genetically modified HIV-resistant hematopoietic stem and progen-

itor cells (HSPCs). In contrast, in allogeneic transplant, nearly 100% of circulating immune cells after

engraftment consist of donor-derived CCR5D32 cells. This leads to a key question: what threshold

percentage of CCR5-edited, autologous HSPCs is necessary for the cure/long-term remission

observed in the Berlin and London patients?

To answer this question, we developed a mathematical model that predicts the minimum thresh-

old of gene-modified cells necessary for functional cure. First, we modeled the kinetics of CD4+-

CCR5+, CD4+ CCR5-, and CD8+ T cell reconstitution after autologous transplantation. Then, we

modeled SHIV kinetics during acute infection and rebound following ATI to identify the degree of

loss of anti-HIV cytolytic immunity following transplantation as presented before but including some

Figure 1. Study design and mathematical modeling. (A) Twenty-two pig-tailed macaques were infected with SHIV and suppressed with ART. Next, 17/

22 underwent hematopoietic stem and progenitor cell (HSPC) transplantation following myeloablative conditioning (TBI), including 12 animals that

received CCR5-edited products and five that received non-edited products (DCCR5 and WT groups, respectively). A control group (n = 5) did not

receive TBI or HSPC transplantation. Fourteen animals underwent ATI approximately 1 year after ART initiation, while the remaining eight animals were

necropsied prior to ATI (see Materials and methods for details). (B) We first developed mathematical models for T cell dynamics and reconstitution

following transplant and before ATI (purple), assuming that low viral loads on ART do not affect cell dynamics. After validation of that model, we

introduced viral dynamics and fit those to the T cell, primary infection, and viral rebound dynamics from the animals pre- and post-ATI (blue).

Cardozo-Ojeda et al. eLife 2021;10:e57646. DOI: https://doi.org/10.7554/eLife.57646 2 of 25

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.57646


Figure 2. Post-transplantation, pre-ATI CD4+ and CD8+ T cell dynamics. (A) Empirical data for peripheral CD4+ CCR5+ (top row), CD4+CCR5- (middle

row), and CD8+ T cell counts (bottom row) for control (blue), wild-type (red), and DCCR5 (green) transplantation groups. Each data point shape and

color is a different animal sampled over time. (B) Distributions of blood CD4+ and CD8+ T cell counts for weeks 0, 10, and 25 after transplantation (p-

values calculated with pairwise Mann-Whitney test with Bonferroni correction comparing control group with transplant groups. *p<0.05, **p<0.01 and

Figure 2 continued on next page
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additional data (Peterson et al., 2017; Reeves et al., 2017). Finally, we applied our models to pre-

dict the proportion of gene-modified cells, the dose of these cells relative to the intensity of the pre-

parative conditioning regimen (total body irradiation, TBI), and the levels of SHIV-specific immunity

required to maintain virus remission following ATI. Results from this three-part modeling approach

support strategies that (1) increase stem cell dose, (2) enhance potency of conditioning regimen to

reduce the number of endogenous HSPCs that compete with transplanted CCR5-edited HSPCs, (3)

increase the fraction of gene-modified SHIV-resistant cells, (4) extend periods between HSPC trans-

plantation and ATI with tracking of CCR5- cell recovery and/or (5) augment anti-HIV immunity to

achieve sustained HIV remission.

Results

Study design and mathematical modeling
We analyzed data from 22 juvenile pig-tailed macaques that were intravenously challenged with

9500 TCID50 SHIV1157ipd3N4 (SHIV-C) (Figure 1A). After 6 months of infection, the macaques

received combination ART that included tenofovir (PMPA), emtricitabine (FTC), and raltegravir (RAL).

When on ART, 17/22 received total body irradiation (TBI) followed by the transplantation of autolo-

gous HSPCs with (n = 12) or without (n = 5) CCR5 gene editing (DCCR5 and WT groups, respec-

tively). A control group (n = 5) did not receive TBI or HSPC transplantation. 14 of the animals

underwent ATI approximately 1 year after ART initiation. The remaining eight animals were necrop-

sied at an earlier time relative to the other animals’ ATI (see Materials and methods for details).

To analyze the data and estimate thresholds for viral control under this approach, we used ordi-

nary differential equation models. We performed multi-stage modeling (Figure 1B). First, we mod-

eled the kinetics of CD4+ and CD8+ T cell subsets after autologous HSPC infusion following

transplant and before ATI, assuming that ART suppression decouples SHIV-dynamics from

cellular dynamics. After validation of the first-stage model, we introduced a second-stage of model-

ing to (1) explain virus and T cell kinetics during primary infection and ATI and to (2) identify the

degree of loss of anti-HIV cytolytic immunity due to the preparative conditioning. Then, we used the

final validated model to project SHIV kinetics assuming different transplantation conditions.

CD4+CCR5+ and CD8+ T cells recover more rapidly than CD4+CCR5- T
cells after HSPC transplantation
We analyzed the kinetics of peripheral blood CD4+CCR5+ and CD4+CCR5- T cells, and total, Tnaive,

TCM, and TEM CD8+ T cells in macaques after HSPC transplantation.

In untransplanted controls, levels of CD4+ and CD8+ T cells oscillated around a persistent set

point (blue data-points in Figure 2A). Also, CD4+ CCR5+ T cell levels were ~100 cells/mL and were

uniformly lower than the CD4+CCR5- T counts (each ~1000 cells/mL) (Figure 2—figure supplement

1A). Finally, total CD8+ T cell levels in the control group were ~1400 cells/mL with a greater contribu-

tion from TEM (73%) than TN+TCM (27%) (based on median values, Figure 2—figure supplement 1).

In the transplant groups, post-TBI levels of CD4+CCR5+, CD4+CCR5-, and CD8+ T cells were sig-

nificantly lower than in the control group but expanded at different rates during the following weeks

(Figure 2A–C). The levels of CD4+CCR5+ T cells started at 1–10 cells/mL and reconstituted to levels

similar to the control group over 5–10 weeks (Figure 2A–B). CD4+CCR5- T cells remained at higher

levels (~100 cells/mL) than CD4+CCR5+ T cells after TBI but expanded more slowly and did not reach

Figure 2 continued

***p<0.001). (C) Expansion-rate estimates of CD4+CCR5+, CD4+CCR5-, and CD8+ T cells (p-values calculated with paired Mann-Whitney test with

Bonferroni correction comparing expansion rates of CD4+CCR5- with CD4+CCR5+ and CD8+ in transplant groups. **p<0.01 for both). Colors for

boxplots in B and C are matched to A (blue: control, red: wild-type-transplantation, and green: DCCR5-transplantation groups).

The online version of this article includes the following source data, source code and figure supplement(s) for figure 2:

Source code 1. R code for plots and tests in Figure 2.

Source data 1. Complete data set of blood T cell counts for Figures 2 and 3.

Figure supplement 1. CD4+ and CD8+ T cell levels pre-ATI in control group (n = 5) at times relative to post-transplantation in WT and DCCR5

transplant groups.
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Figure 3. Mathematical model of T cell reconstitution after hematopoietic stem and progenitor cell (HSPC)

transplantation. (A) Schematics of the model. Each circle represents a cell compartment: T represents the HSPCs

from the transplant; P, the progenitor cells in bone marrow (BM) and thymus; S and N, CD4+CCR5+ and

CD4+CCR5- T cells, respectively; Tp, the protected (DCCR5), gene-modified cells from transplant; Pp, protected

(DCCR5) progenitor cells in BM/thymus; Np1 and Np2 the protected (DCCR5) CD4+ T cells; M the CD8+ T cells with

naive and central memory phenotype and E CD8+ T cells with effector memory phenotype. The initial fraction of

protected cells in the product is represented by the parameter fp. Gray panels represent mature blood CD4+ and

CD8+ T cells, and the green panel all DCCR5 cells in the model. Red, dashed arrows represent discarded terms

after model selection and validation (see text for details). (B) Model predictions using the maximum likelihood

estimation of the population parameters (solid black lines) for all blood T cell subsets before ATI for all animals in

the transplant groups using model with DAIC = 0 (Figure 3—source datas 2–3). Each gray line is one animal. (C)

Model predictions of the total concentration of CD4+CCR5- T cells generated by CCR5 downregulation (dashed

line) or thymic export (solid line), and of the total concentration of CD4+CCR5+ T cells generated by proliferation

(solid line) or by upregulation of CCR5 (dashed line) over time using the maximum likelihood estimation of the

population parameters.

The online version of this article includes the following source data, source code and figure supplement(s) for

figure 3:

Source code 1. Best model file for T cell reconstitution in Monolix format.

Source code 2. R code for plots in Figure 3.

Source data 1. Values of the fraction of protected cells in transplant product fp, dose or number of hematopoietic

stem and progenitor cell (HSPCs) in transplant product D and time of transplantation tx of each animal for model

fitting and projections.

Source data 2. Competing models for fitting T cell reconstitution with respective AIC values.

Source data 3. Population parameter estimates for the best fits of the model in Equation 2 in the main text (low-

est AIC in Figure 3—source data 2) to the T cell reconstitution dynamics.

Source data 4. Individual parameter estimates for the best fits of the model in Equation 2 in the main text (lowest

AIC in Figure 3—source data 2) to the T cell reconstitution dynamics.

Source data 5. Population parameter estimates for the best fits used in the R code for Figure 3.

Figure supplement 1. Individual fits of the best model to the blood T cell observations pre-ATI in control group

from a time relative to post-transplantation in transplant groups.

Figure 3 continued on next page
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the values of the control group after 25 weeks (Figure 2A–B). The CD4+CCR5+ T cell compartment

expanded eightfold more rapidly than the CD4+CCR5- compartment (p=0.008, paired Mann-Whit-

ney test, Figure 2C). CD8+ T cells decreased to levels between 10 and 100 cells/mL after TBI but

recovered to levels just below the control group in 5 weeks (Figure 2A–B); CD8+ T cells recovered

as rapidly as the CD4+CCR5+ population (Figure 2C).

Overall, these results show that after transplantation CD4+CCR5+ and CD8+ T cells recover faster

than CD4+CCR5- cells. This suggests that each cell subset may have different and/or complementary

mechanisms that drive their expansion. To explore these mechanisms, we analyzed the data with a

mechanistic mathematical model of cellular dynamics.

Lymphopenia-induced proliferation drives early CD4+CCR5+ and CD8+

T cell reconstitution after HSPC transplantation
To identify the main drivers of T cell reconstitution after transplant, we developed a mathematical

model that considered plausible mechanisms underlying reconstitution of distinct T cell subsets fol-

lowing autologous transplantation (Figure 3A). We assumed that T cell reconstitution may have two

main drivers: (1) lymphopenia-induced proliferation of mature cells that persist through myeloabla-

tive TBI (Jameson, 2002; Schluns et al., 2002; Schluns et al., 2000; Goldrath et al., 2004;

Voehringer et al., 2008) and (2) differentiation from naive cells from progenitors in the thymus

(from transplanted CD34+ HSPCs (Douek et al., 2000; Douek et al., 1998) or residual endogenous

CD34+ HSPCs that persist following TBI) and further differentiation to an activated effector state

(Voehringer et al., 2008; Bender et al., 1999; Kieper and Jameson, 1999; Sallusto et al., 2004;

Le Saout et al., 2008; Sprent and Surh, 2011). We also assumed the infused product dose D con-

tains a fraction fp of transplanted, gene-edited HSPCs that do not express CCR5 (see Figure 3—

source data 1 for individual values of D and fp). Thus, in our model, DCCR5-gene-modified CD4+ T

cells differentiating from these modified HSPCs are a subset of the total CD4+CCR5- cell compart-

ment (Figure 3A).

We built 24 versions of the model by assuming that one or multiple mechanisms are absent, or by

assuming certain mechanisms have equivalent or differing kinetics (Figure 3—source data 2). Using

model selection theory, we identified the most parsimonious model that reproduced the data (sche-

matic in Figure 3A without red-dashed lines). The best model predictions for each cell subset using

maximum likelihood estimates of the population parameters (Figure 3—source data 3) are pre-

sented in Figure 3B. Individual fits are visualized in Figure 3—figure supplement 1–

3 and parameter estimates are collected in Figure 3—source data 4.

Model selection illuminated several likely biological phenomena: (1) CD4+CCR5+ T cell reconstitu-

tion after transplant is determined by cell proliferation and to a minor degree by upregulation of

CCR5 (Figure 3C); (2) CD4+CCR5- T cell expansion is driven primarily by new naive cells from the

thymus and to a lesser extent by CCR5 downregulation (Figure 3C); and (3) thymic export is not sig-

nificantly different for CD4+ or CD8+ T cells (Figure 3—source data 2). However, model selection

could not distinguish between the two models where DCCR5-gene-modified CD4+ T cells have the

kinetics of both non-modified CD4+CCR5+ and CD4+CCR5- versus only the kinetics of non-modified

CD4+CCR5- (i.e. having compartment Np2 or not in Figure 3A). Regardless, these two best models

were identical in all other respects (Figure 3—source datas 2 and 3).

This first-stage modeling suggested additional testable biological predictions. First, the estimated

CD4+CCR5+ T cell proliferation rate (~0.1/day) far exceeds the estimated CCR5 upregulation

(~0.004/day) and thymic export rates (~0.002/day). Therefore, 1 month after transplantation, the

total concentration of CD4+CCR5+ T cells generated by proliferation is predicted to be 40-fold

higher than the concentration generated by upregulation of CCR5 (Figure 3C). Second, the CD8+

Figure 3 continued

Figure supplement 2. Individual fits of the best model to the blood T cell observations post-transplantation, pre-

ATI for the wild-type-transplant group.

Figure supplement 3. Individual fits of the best model to the blood T cell observations post-transplantation, pre-

ATI for the DCCR5-transplant group.

Figure supplement 4. Predictions of the best model for the contributors to cell expansion in CD8+ TEM cells in

animals from the transplant groups.
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TEM cells comprise the majority of the total CD8+ T cell compartment (Figure 3B) with a proliferation

rate up to 10-fold higher than the CD8+ TCM cell differentiation rate (Figure 3—figure supplement

4). In this way, CD8+ T cells follow a similar pattern to CD4+CCR5+ T cells (Figure 3B).

In summary, following autologous HSPC transplant: (1) thymic export and downregulation of

CCR5 drive a modest expansion of CD4+CCR5- T cells, whereas (2) rapid lymphopenia-induced pro-

liferation after TBI is the main driver for CD4+CCR5+ and CD8+ T cell expansion, which are derived

from both the transplanted HSPC product and residual endogenous cells that persisted through the

myeloablative conditioning regimen.

Figure 4. Plasma viral load and CD4+ T cell kinetics after ATI. (A) Empirical data for viral load (top row) and

peripheral T cell counts (middle and bottom rows) for control (blue), wild-type (red) and DCCR5 (green)

transplantation groups. Each data point shape and color represent a different animal sampled over time. (B)

Distributions of the ratio at ATI vs pre-ART of final, nadir, and median viral load. Dotted horizontal lines represent

a ratio equal to one (or no difference between ATI vs nadir).

The online version of this article includes the following source data, source code and figure supplement(s) for

figure 4:

Source code 1. R code for plots and test in Figure 4.

Source data 1. Complete data set of blood T cell counts and viral load for Figures 4 and 5.

Figure supplement 1. Blood CD4+CCR5+ and CD4+CCR5- T cell kinetics post-ATI.
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Plasma virus and blood CD4+CCR5+ dynamics are heterogenous among
transplanted, SHIV-infected animals
To build a mathematical model for the virus and T cell dynamics, we analyzed plasma viral load kinet-

ics and CD4+CCR5+/CCR5- T cell subset dynamics after ATI with respect to kinetics pre-ART

(Peterson et al., 2017; Reeves et al., 2017). Figure 4A presents the plasma viral loads and the

blood CD4+CCR5+ and CD4+CCR5- T cell kinetics before and after transplantation in the three

groups.

We calculated the ratio of the viral load at necropsy versus at initiation of ART (Figure 4B) and

the ratio of the nadir and median viral load after ATI versus pre-ART (Figure 4C–D). In general, the

viral burden after ATI compared to pre-ART was slightly lower for the control group. However, for

transplanted animals the viral load changes were heterogeneous, having much higher ratios for the

wild-type (WT) group and slightly higher for CCR5-edited (DCCR5) group. For the three computed

ratios, the viral load change after ATI was between 10- and 100-fold for the wild-type group

(Figure 4B–D).

During ATI, CD4+CCR5+ T cells declined heterogeneously in the transplanted groups

(Figure 4A), but CD4+CCR5+ T cell nadirs in the transplanted groups were consistently lower than

those of control animals whose CD4+CCR5+ T cell levels did not decrease (Figure 4—figure supple-

ment 1A). On the other hand, blood CD4+CCR5- T cell levels decreased to a similar nadir in all

groups during ATI (Figure 4A and Figure 4—figure supplement 1B).

To summarize, SHIV viral load and CD4+CCR5+ dynamics are heterogeneous among transplanted

animals. Higher ATI versus pre-ART viral load ratios in transplanted animals suggest that transplanta-

tion affects the host response against SHIV-replication, but this damage to host response may be

mitigated somewhat when transplantation includes CCR5-edition.

A reduction in SHIV-specific immunity leads to higher viral rebound set
points following ATI in transplanted animals
We simultaneously analyzed the viral and T cell subset data using mechanistic mathematical models

in order to recapitulate the heterogeneity of plasma viral load and CD4+CCR5+ T cell kinetics and

how transplantation may modify the immune response during ATI compared to the pre-ART stage.

We extended our T cell reconstitution model to include SHIV infection of CD4+CCR5+ T cells

(Figure 5A and Methods) and used this second-stage model to analyze virus and T cell dynamics

during primary SHIV-infection, ART, transplant, and ATI.

Again, following model selection theory based on AIC, we compared six mechanistic models and

found a parsimonious model to explain the data (Figure 5A, Figure 5—source data 1). This model

simultaneously recapitulates plasma viral load and the kinetics of CD4+ CCR5+ and CCR5- T cells as

shown in Figure 5B and Figure 5—figure supplements 1–3 with corresponding estimated parame-

ters in Figure 5—source datas 2 and 3. In the best fitting model, parameters related to immune

response against infection: the SHIV-specific CD8+ T cell proliferation (!8), saturation (I50), and death

rates (dh) were different during ATI and the pre-ART stage (see Figure 5—source data 1;

Reeves et al., 2017). SHIV-specific CD8+ effector cells reduce virus production rather than killing

infected cells (Elemans et al., 2011; Klatt et al., 2010; Wong et al., 2010), possibly by secretion of

HIV-antiviral factors (Shridhar et al., 2014; Blazek et al., 2016; Zhang et al., 2002)—not explicitly

included in the model. The model also suggests that infection enhances upregulation of CD4+CCR5-

T cells. This upregulation transiently reduces the CD4+CCR5- compartment and replenishes CD4+-

CCR5+ T cells after ATI (Douek et al., 2003; Okoye et al., 2007; Okoye et al., 2012). Finally, in this

model, some of the DCCR5-gene-modified CD4+ T cells also have kinetics similar to non-modified

CD4+CCR5+ cells (i.e. it includes the compartment Np2 as in Figure 5A), whereas this was not able

to be differentiated in the first-stage modeling.

We used our model to compute the SHIV-specific CD8+ T cell turnover rates after ATI and during

pre-ART as measures of SHIV-specific immunity (SI) for each stage, that is, SIATI ¼
!ATI
8

dATI
h

and

SIpreART ¼
!preART

8

d
preART

h

, respectively. We found that the SHIV immunity ATI/pre-ART ratio SIATI
SIpreART

� �

correlated

negatively with the ATI/pre-ART ratio of the observed nadir and median viral loads (Figure 5C–D). In

this sense, the viral burden increase during ATI (viral burden ratio >1) in animals in the transplant

groups might be due to the underlying loss of the immune response to the virus ( SIATI
SIpreART

<1,
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Figure 5. Mathematical model of virus and T cell dynamics following ATI. (A) Model: Susceptible cells, S, are infected by the virus, V, at rate b. Ip
represents the fraction t of the infected cells that produce virus, and, Iu, the other fraction that becomes unproductively infected. Total CD4+CCR5+ T

cell count is given by the sum of S, Ip and Iu. All infected cells die at rate dI. IP cells arise from activation of latently infected cells at rate ��L and produce

virus at a rate p. Virus is cleared at rate g . CD8+ M cells proliferate in the presence of infection with rate w8 from which a fraction f become SHIV-specific

Figure 5 continued on next page
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Figure 5C–D). Similarly, decrease in viral burden during ATI (viral burden ratio <1) in animals in con-

trol and DCCR5 groups might be due immune response memory or its recovery, respectively

( SIATI
SIpreART

>1, Figure 5C–D).

In conclusion, we developed a second-stage model that simultaneously recapitulates viral and T

cell dynamics from SHIV-infected animals receiving autologous HSPC transplantation. The model

suggests that transplant may reduce host T-cell immunity resulting in higher viral loads after ATI

compared to the pre-ART stage. However, SHIV immunity might be recovered if CCR5 disruption is

added in the transplant resulting in lower viral loads after ATI.

Post-ATI viral control requires a large HSPC dose containing a high
fraction of CCR5-edited cells
An important advantage of our model is the ability to calculate the conditions required for post-ATI

viral control (viral load set point <30 copies/ml) after CCR5-edited autologous transplant. To this

end, we used our second-stage model to approximate an effective reproductive ratio Reff to

describe the ability of the virus to sustain infection after ATI in transplanted animals (see

Materials and methods):

Reff ¼ RT 1�
fpD

DþPr

� �

: (1)

Here, fp describes the fraction of protected HSPCs in the transplant product, D the dose or total

number of infused HSPCs, and Pr the number of residual endogenous HSPCs after conditioning

(variable P at time of transplant, Figure 3A). RT is the approximate number of new infections caused

by one infected cell after T cell complete reconstitution post-conditioning as defined in Equation 4

(see Materials and methods) and is inversely related to the anti-SHIV immune response at the time

of ATI. Post-ATI viral control depends on the fraction of protected HSPCs in the body immediately

after transplant that are protected from SHIV infection, or
fpD

DþPr

� �

.

To estimate the values of fp, D, and Pr needed for viral control, we first estimated RT for each ani-

mal based on individual parameter estimates pertaining to SHIV virulence and anti-SHIV immunity.

We then simulated the model for each animal using varying values of fp from zero to one (0–100%

CCR5-edited HSPCs), values of D from 106 to 109 HSPCs, and values of Pr from zero to 107 HSPCs.

Figure 5 continued

CD8+ effector T cells, Eh, that are removed at a rate dh. These effector cells reduce virus production (p) by 1/ (1+qEh). Non-susceptible CD4+ T cells that

were not CCR5-edited upregulate CCR5 in the presence of infection and replenish the susceptible pool at rate w4. Gray panels represent mature blood

CD4+ and CD8+ T cells, and the green panel represents DCCR5 cells. (B) Individual fits of the model (black lines) to SHIV RNA (left column), blood

CD4+CCR5+ T cells (middle column), and CD4+CCR5- T cells (right column) for one animal in the control (top row), wild type (middle row), and DCCR5

groups (bottom row). Shaded areas represent time during ART and dashed-point line, the time of transplantation. (C–D) Scatterplots of observed ATI/

pre-ART ratio of the (C) nadir viral load, and the median viral load ratio versus the SHIV-specific CD8+ T immunity ATI/pre-ART ratio:
!ATI
8
=dATI

h

!preART

8
=dpreART

h

(p-values

calculated by Pearson’s correlation test); a higher ratio means a better immune response post-ATI. (D) Individual estimates of the SHIV-specific CD8+ T

immunity ATI/preART ratio. Blue: control, red: wild type, and green: DCCR5 transplant group.

The online version of this article includes the following source data, source code and figure supplement(s) for figure 5:

Source code 1. Best model file for T cell and virus dynamics from acute infection after ATI in Monolix format.

Source code 2. R code for plots in Figure 5B.

Source code 3. R code for plots and tests in Figure 5C–D.

Source data 1. Competing models for fitting T cell and viral dynamics (Equations 2-3 in main text) using the best model in Figure 3—source data 2

and fixing parameter values as in Figure 3—source data 3, with AIC values.

Source data 2. Population parameter estimates for the fits of the model with lowest AIC in Figure 5—source data 1 to the T cell and virus dynamics.

Source data 3. Individual parameter estimates for the fits of the model in Equations 2-3 in main text (lowest AIC in Figure 5—source data 1) to the T

cell and virus dynamics.

Source data 4. Individual parameter estimates obtained from Monolix for the best fits used in the R code for Figure 5.

Figure supplement 1. Individual fits of the best model to the blood T cell and viral load observations before/after ATI for control group.

Figure supplement 2. Individual fits of the best model to the blood T cell and viral load observations before/after ATI for the wild-type-transplant

group.

Figure supplement 3. Individual fits of the best model to the blood T cell and viral load observations before/after ATI for the DCCR5-transplant group.
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Figure 6. Model predictions of factors governing post-rebound viral control after CCR5 gene-edited hematopoietic stem and progenitor cell (HSPC)

transplant. (A) Predictions for plasma viral loads post-ATI using the optimized mathematical model. Here, Reff ¼ RT 1� fpD

DþPr

� �

and is the composite

determinant of viral control. Parameter estimates for animal A11219 (Figure 5—source data 3) were used to compute the effective reproductive ratio

RT . Higher values of RT imply poorer anti-SHIV immunity and high virulence (see Equation 4 in Materials and methods). We varied values of the

fraction of HSPCs in transplant fp, the stem cell dose D as shown, and fixed the remaining number of HSPCs after TBI before transplant Pr ¼ 6� 10
6.

Reff<1 predicted spontaneous viral control 40–60 weeks after ATI. (B) A simulation with Reff ¼ 0:7 demonstrates CCR5-edited CD4+ T cell recovery is

concurrent with viral control. (C) Model predictions of the fraction of protected HSPCs in the transplant fp (y-axis) and the ratio of transplanted HSPCs to

total infused plus remaining post-TBI HSPCs D:Pr (x-axis) required for spontaneous viral control. The heatmap shown corresponds to animal A11200

which has RT ¼ 4 , the lowest predicted fp (76%) and D:Pr (~5) required for post-ATI viral control (heatmaps for other animals in Figure 6—figure

supplement 2). Blue shaded region represents the parameter space with post-ATI viral control or Reff<1. Yellow-to-red region represent the parameter

space with no control or Reff>1. Data points represent the individual values of fp and D:Pr from each transplanted animal in the study. (D) Model

predictions of the minimum fraction of protected HSPCs in the body fp for viral control (y-axis) for each animal given their calculated values for RT (x-

axis). In all cases, the minimum fp corresponded to D
Pr
>100 (Figure 6—figure supplement 2). Each color is an animal, and A11200 is the red diamond

with the lowest value of min fp. p-Value calculated using Pearson’s correlation test.

Figure 6 continued on next page
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As an illustration, Figure 6A depicts projections of the model for DCCR5-transplanted animal

A11219 for a range of values of fp when D ¼ 10
7 HSPCs/kg and Pr ¼ 6� 10

6 HSPCs. When fp, D and

Pr resulted in Reff � 1, plasma virus was not controlled following viral rebound post-ATI. When Reff <

1, post-rebound control was observed, but only at weeks 40–60 post-ATI, following an initial

decrease in viral loads beginning 30–40 weeks after ATI. In this case, post-rebound control occurred

concomitantly with DCCR5 CD4+ T cell complete reconstitution relative to non-edited CCR5+/- CD4+

T cells (Figure 6B). Lower values of Reff resulted in earlier post-rebound control (earliest ~40 weeks).

Indeed, for all animals, post-treatment control occurred when values of fp, D, and Pr resulted in

Reff<1 (Figure 6—figure supplement 1). Model predictions for animal A11200 demonstrate that

regardless of the fraction of protected HSPCs in the transplant (fp), viral control is possible only when

the ratio of HSPCs in the transplant to the residual endogenous HSPCs in the body post-TBI (D:Pr) is

above 5 (Figure 6C). Moreover, if the ratio D:Pr is greater than 5, the minimum fraction of protected

cells required is 76%, and further increasing D:Pr does not decrease fp significantly. From all trans-

planted animals we found that the minimum fraction of protected cells in the transplant fp varied

from 76% to 94% and was positively correlated with a weaker anti-SHIV immune response of the

given animal defined by RT (Figure 6D and Figure 6—figure supplement 2). This is consistent with

Equation 1 as Reff »RT 1� fp
� �

when D � Pr. RT varied from 4 to 16 across animals using individual

parameter estimates in Figure 5—source data 3. The required levels for fp are lower in the context

of more intense anti-SHIV immunologic pressure and lower viral strength. This result argues for strat-

egies that (1) augment anti-SHIV immunity despite conditioning (lower RT using SHIV-specific CAR T

cells, therapeutic vaccination, etc.), (2) increase the stem cell dose relative to the residual endoge-

nous stem cells (D:Pr) after transplant—perhaps by enhancing potency of the conditioning regimen,

and (3) increase the fraction of gene-modified, SHIV-resistant cells fp
� �

.

Based on the observation that viral control occurred when CD4+ T cell subsets approached a

steady state in the simulations (Figure 6A–B), we simulated the model again to determine whether

viral control might occur faster if ATI was postponed at a time when more mature, protected cells

have expanded. As an illustration, we simulated animal A11219 under conditions that lead to viral

control: fp ¼ 0:95, D ¼ 10
8 HSPCs and Pr ¼ 10

7 HSPCs with ATI occurring at 3, 14, 25, or 37 weeks

after transplantation. Indeed, time to post-ATI viral control (shaded areas in Figure 7A) decreased

as time to ATI was extended after transplant and as the difference between CD4+CCR5- cell density

at ATI and its expected set point decreased (shaded areas in Figure 7B). In this case, DCCR5 CD4+

T cells comprised the majority of the CD4+CCR5- T cell compartment (Figure 7B). Further, we simu-

lated increasing times of ATI using parameter estimates for all transplanted animals but under condi-

tions that lead to viral control (fp>0:95, D ¼ 10
8 HSPCs and Pr ¼ 10

7 HSPCs). The model predicted

the same decreasing pattern with times between transplant and ATI required to avoid viral rebound

from 20 to 60 weeks (Figure 7C). This timeframe allowed all animals to achieve viral control due to

CD4+CCR5- cell densities at ATI exceeding 60–90% of the ultimate steady state value (Figure 7D).

As in Figure 7B for all animals DCCR5 CD4+ T cells comprised the majority of the CD4+CCR5- T cell

compartment.

In summary, our model predicts that post-ATI viral control during autologous HSPC transplanta-

tion is obtained when (1) the transplanted HSPC dose is significantly higher than the residual endog-

enous HSPCs that persist through myeloablative conditioning (in this case TBI) and (2) the fraction of

protected (i.e. CCR5-edited) HSPCs in the transplant fp
� �

is sufficiently high to outcompete cells sus-

ceptible to infection and disrupt ongoing cycles of viral replication. Spontaneous post-rebound

Figure 6 continued

The online version of this article includes the following source data, source code and figure supplement(s) for figure 6:

Source code 1. R code for plots in Figure 6A–B.

Source code 2. R code for plots in Figure 6C–D.

Source data 1. Results from all simulations varying fp, D, and Pr.

Figure supplement 1. Model predictions for post-rebound viral control after CCR5 gene-edited hematopoietic stem and progenitor cell (HSPC)

transplantation based on Reff .

Figure supplement 2. Model predictions of the fraction of protected hematopoietic stem and progenitor cell (HSPCs) in the transplant fp (y-axis) and

the fraction of transplanted HSPCs with respect to the total infused plus remaining post-TBI HSPCs D:Pr (x-axis) required for spontaneous viral control.
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Figure 7. Model predictions of time to post-ATI viral control given varying times for the start of ATI. (A-B) Examples of projected (A) viral load and (B)

total, modified and unmodified CD4+ CCR5- (solid) and DCCR5 CD4+ T cells (dashed) from the model for animal A11219 when fp ¼ 0:95, D ¼ 10
8:5

HSPCs and Pr ¼ 10
7 HSPCs, for different times of ATI (tATI=3, 14, 25, and 37 weeks after transplantation). Dashed-dotted vertical lines represent time of

transplant. Shaded areas between the dotted lines in (A) describe the time from ATI until spontaneous viral control. Shaded areas between the blue

dashed lines in (B) represent the difference between the CD4+ CCR5- T cell concentration at ATI and the projected steady state. Dotted lines in (B)

represent time of ATI. (C–D) Model predictions of the (C) time until viral control after ATI and (D) the fraction of total CD4+ CCR5- T cell concentration

at ATI with respect to its steady state conditions given actual estimated parameter values for each transplanted macaque when fp ¼ 0:95, D ¼ 10
8:5

HSPCs and Pr ¼ 10
7 HSPCs.

The online version of this article includes the following source data for figure 7:

Source data 1. Results from all simulations varying time to ATI.
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control occurs after CCR5- CD4+ T cells achieve a steady state approximately 1-year after transplan-

tation. Hence, our model suggests that, under the two described conditions, prolonging time to ATI

(at least 1-year post-transplantation) may increase the likelihood of rapid viral control post-ATI.

Moreover, specifically tracking CD4+CCR5- (or CCR5-edited CD4+) T cell growth and waiting for

steady-state could be used as a surrogate for the decision to undergo ATI.

Discussion
Here we introduce a data-validated mathematical model that, to our knowledge, is the first to simul-

taneously recapitulate viral loads as well as CD4+ and CD8+ T cell subset counts in a macaque model

of suppressed HIV-1 infection. In addition, our model is the first to describe dynamics of CCR5+ and

CCR5- T cells within the CD4 compartment. We performed extensive, systematic data fitting com-

paring 30 mechanistic models to arrive at a set of equations that most parsimoniously explains the

available data. In multiple stages of modeling, we recapitulated (1) peripheral CD4+ and CD8+ T cell

subset reconstitution dynamics following transplant and (2) T cell subset dynamics and SHIV viral

rebound following ATI. Before ATI, all animals had suppressed plasma viral loads below the limit of

detection, allowing analysis of T cell reconstitution dynamics independent of virus-mediated pres-

sure. At each step, we applied model selection theory to select the simplest set of mechanisms

capable of explaining the observed data (Burnham et al., 2002). Our model predicts that post-

rebound viral control might be possible during autologous gene-edited HSPC transplantation if ther-

apy achieves (1) a sufficient fraction of gene-protected, autologous HSPCs (2) a high dose of trans-

plant product relative to a residual endogenous population of stem cells that persists following

conditioning, and (3) enhancement of SHIV-specific immune responses following transplantation.

Further, our model predicts, that under these conditions, spontaneous viral control after ATI is likely

if DCCR5 T cells (tracked by CD4+CCR5- T cells) are allowed to reconstitute prior to ATI. These

results are consistent with the cure achieved by the Berlin and London Patients who received a trans-

plant with 100% HIV-resistant cells after intense conditioning (Allers et al., 2011; Hütter et al.,

2009). In the autologous setting where 100% CCR5 editing may not be feasible, adjunctive meas-

ures that augment virus-specific immunity, such as therapeutic vaccination, infusion of HIV-specific

chimeric antigen receptor (CAR) T cells or use of neutralizing antibodies, may synergize with HSPC

transplantation to achieve post-treatment control (Haworth et al., 2017; Zhen et al., 2017).

Although the model predicts a potential benefit for more potent conditioning that favors engraft-

ment of SHIV-resistant cells, a more aggressive conditioning regimen may also deplete SHIV-specific

immune responses and lead to less favorable toxicity profiles. On the other hand, in the absence of

conditioning, the number of endogenous HSPCs will remain too high. Thus, post-rebound control

following DCCR5 transplant requires not only highly potent myeloablative conditioning, it also

requires a higher percentage of gene-edited cells to counteract the loss of SHIV-specific immunity.

Furthermore, due to the high levels of endogenous HSPCs and lack of an engraftment ‘niche’, the

long-term persistence of transplanted, CCR5-edited HSPC would be exceedingly low. Alternatively,

non-genotoxic conditioning regimens that target only HSPC for transplantation may prevent the loss

of SHIV-specific immune cells (Palchaudhuri et al., 2016; Czechowicz et al., 2019;

Srikanthan et al., 2020).

We previously demonstrated the link between disruption of the immune response during trans-

plant and increased magnitude of viral rebound during treatment interruption (Peterson et al.,

2017; Reeves et al., 2017). Here, we confirm that the increase of viral load median and nadir at ATI

compare to the pre-ART stage is correlated with the reduction of the SHIV-specific immune response

during transplant, but also predict that a reduction of viral load burden at ATI compared to pre-ART

in animals receiving CCR5-edited cells in the transplant is correlated to a recovery of the SHIV-spe-

cific immunity.

Our results are somewhat limited by a small sample size of 22 animals, only 12 of which under-

went DCCR5 transplant. For that reason, several model parameters were assumed to be the same

among all animals (i.e. without random effects). However, the number of observations for each ani-

mal was large enough to discriminate among several different plausible model candidates. Due to

the small sample size, we also performed projections by varying the parameters related to transplan-

tation (i.e. dose, fraction of protected cells, and residual endogenous HSPCs) and using only the esti-

mated individual parameters rather than sampling from estimated population distributions.

Cardozo-Ojeda et al. eLife 2021;10:e57646. DOI: https://doi.org/10.7554/eLife.57646 14 of 25

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.57646


Reassuringly, our results align with prior mechanistic studies of cellular reconstitution after stem cell

transplantation (Jameson, 2002; Douek et al., 2000; Guillaume et al., 1998; Krenger et al., 2011;

Roux et al., 2000). Our analysis also suggests that the majority of reconstituting CD4+CCR5- T cells

do not proliferate and have slow rates consistent with estimates of thymic export from previous stud-

ies (Douek et al., 2000; Krenger et al., 2011; Roux et al., 2000).

Recent studies from our group and others make clear that although a preparative conditioning

regimen (e.g. TBI) is essential to maximize engraftment of transplanted HSPCs, it does not clear

100% of host lymphocytes, especially those in tissues (Peterson et al., 2017; Peterson et al., 2018;

Donahue et al., 2015; Radtke et al., 2017). The best fitting model predicts that incomplete elimina-

tion of lymphocytes by TBI prevents CD4+CCR5- cells from predominating post-transplant. We

found that the rapid expansion of CD4+CCR5+ and CD8+ T cells during the first few weeks after

HSPC transplantation is most likely due to lymphopenia-induced proliferation of residual endoge-

nous cells after TBI rather than thymic reconstitution. CD4+CCR5- T cells arising from thymic export

of both transplanted and remaining cells are overwhelmed by more rapidly populating CD4+CCR5+

T cells within weeks of transplantation. Going forward, we will need to identify anatomic sites

(namely viral reservoir tissues such as spleen and lymph nodes) and associated mechanisms that

allow activated CD4+CCR5+ to survive conditioning.

A final important observation from our model is that CD4+ T cell kinetics conducive to viral con-

trol may not be reached until 20–60 weeks after transplant. Therefore, our model suggests that ATI

should be delayed until CD4+CCR5- T cells reconstitute (as a proxy for DCCR5 CD4+ T cell reconsti-

tution) to their natural steady state. Furthermore, optimized timing of ATI would ideally be based on

reconstitution of all CD4+ and CD8+ T cell subsets ensuring approximately steady state levels before

discontinuing ART.

In conclusion, our mathematical model recapitulates, to an unprecedented degree of accuracy

and detail, the complex interplay between reconstituting SHIV-susceptible CD4+ T cells, SHIV-resis-

tant CD4+ T cells, infected cells, virus-specific immune cells, and replicating virus following autolo-

gous, CCR5-edited HSPC transplantation. Our results illustrate the capabilities of mathematical

models to glean insight from preclinical animal models and highlight that modeling will be required

to optimize strategies for HIV cure.

Materials and methods

Study design
We employed a multi-stage approach using ordinary differential equation models of cellular and viral

dynamics to analyze data from SHIV-infected pig-tailed macaques that underwent autologous HSPC

transplantation during ART and to find conditions for post-rebound control when gene-edited cells

were included in the transplant product. First, we modeled T cell dynamics and reconstitution follow-

ing transplant and before ATI, assuming that low viral loads during suppressive ART do not affect

cell dynamics (Figure 1B). In the second stage, we added viral load data during primary infection

and after ATI and fit models to the T cell and viral dynamics simultaneously from data pre- and post-

ATI (Figure 1C). We then used the most parsimonious model, as determined by AIC, to perform sim-

ulated experiments for different transplant conditions, focusing on variables including fraction of

protected cells, dose, depletion of HSPCs after conditioning, and time of ATI after transplant to find

thresholds for viral control post-ATI.

Experimental data
Twenty-two juvenile pigtail macaques were intravenously challenged with 9500 TCID50 SHIV-

1157ipd3N4 (SHIV-C) (Peterson et al., 2017; Peterson et al., 2018). After 6 months, the macaques

received combination antiretroviral therapy (ART): tenofovir (PMPA), emtricitabine (FTC), and ralte-

gravir (RAL). After ~30 weeks on ART, 17 animals received total body irradiation (TBI) followed by

transplantation of autologous HSPCs. In 12/17 animals the transplant product included CCR5 gene-

edited HSPCs (DCCR5 group); HSPC products in 5/17 animals were not edited (WT group). After an

additional 25 weeks following transplant, when viral load was well suppressed, animals underwent

ATI (Peterson et al., 2017). A control group of five animals did not receive TBI or HSPC transplanta-

tion and underwent ATI after ~50 weeks of treatment. One and six of the animals in the WT and
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DCCR5 groups, respectively, were necropsied before ATI. One of the animals in the control group

was necropsied before ATI (Figure 1A). Plasma viral loads and absolute peripheral T-cell counts

from CD4+CCR5-, CD4+CCR5+ and total CD8+ and subsets (naive, central memory [TCM], and effec-

tor memory [TEM]) were measured for the control and WT group as described previously

(Peterson et al., 2017). We analyzed peripheral T cell counts and plasma viral load from infection

until 43 weeks post-transplant (~25 weeks pre-ATI and ~20 weeks post-ATI).

Mathematical modeling of T cell reconstitution dynamics
We modeled the kinetics of CD4+ and CD8+ T cell subsets in blood including residual endogenous,

transplanted cells that home to the BM, and progenitor cells in the BM/thymus both from transplant

and residual endogenous. We included CD8+ T cells in the model because CD8+ and CD4+ T cells

may arise from new naı̈ve cells from the thymus and compete with each other for resources that

impact clonal expansion and cell survival (Jameson, 2002; Mehr and Perelson, 1997;

Margolick and Donnenberg, 1997). We assumed that expansion of CD4+ and CD8+ T cells in the

blood derives from: (1) export of naı̈ve cells differentiated from a progenitor compartment in the

BM/Thymus (Guillaume et al., 1998; Spits, 2002) ([either from transplanted (Douek et al., 2000;

Douek et al., 1998)] or residual endogenous CD34+ HSPCs) and further differentiation to an acti-

vated effector state (Voehringer et al., 2008; Bender et al., 1999; Kieper and Jameson, 1999;

Sallusto et al., 2004; Le Saout et al., 2008; Sprent and Surh, 2011; Buchholz et al., 2013;

Farber et al., 2014; Kaech et al., 2002), or (2) lymphopenia-induced division of mature, residual

endogenous cells that persist through myeloablative TBI (Jameson, 2002; Schluns et al., 2002;

Schluns et al., 2000; Goldrath et al., 2004; Voehringer et al., 2008) as factors that drive T cell pro-

liferation are more accessible (i.e. self-MHC molecules on antigen-presenting cells [Bender et al.,

1999; Kieper and Jameson, 1999; Tanchot, 1997] and g-chain cytokines such as IL-7 and IL-15

[Schluns et al., 2002; Schluns et al., 2000; Goldrath et al., 2004; Tan et al., 2001]). However, as

they grow, cells compete for access to these resources, limiting clonal expansion (Jameson, 2002)

such that logistic growth models are appropriate (Mehr and Perelson, 1997).

In our mathematical model, transplanted HSPCs T home to the bone marrow at a rate ke. We

assumed a single-cell compartment for T cell progenitors in the bone marrow (BM)/thymus repre-

sented by variable P. We assumed that P renew logistically with maximum rate rp, differentiate into

naı̈ve CD4+ and CD8+ T cells at rates lf and le, respectively, or are cleared at rate dp (Stiehl and

Marciniak-Czochra, 2011; Stiehl et al., 2014; Stiehl and Marciniak-Czochra, 2017). We assumed

two CD4+ T cell compartments: SHIV-non-susceptible, i.e. CD4+ T cells that do not express CCR5

(CD4+CCR5- T cells) N, and a SHIV-susceptible compartment, S (CD4+CCR5+ T cells). Only the N

compartment includes CD4+ naı̈ve cells migrating from the thymus (Bleul et al., 1997;

Zaitseva et al., 1998; Berkowitz et al., 1998) at an input rate lfP cells per day (Douek et al., 2000;

McCune, 1997). N cells grow with maximum rate rn, upregulate CCR5 (27) at rate ln, and are

cleared from the periphery at rate dn. The S compartment does not have a thymic input but can

grow with maximum division rate rs, downregulate CCR5 (27) at a rate ls, and are cleared at rate ds.

We model CD8+ T cell reconstitution assuming a compartment for naı̈ve and central memory cells,

M, and a compartment for the effector memory subset, E. We assumed that M cells have thymic

input of leP cells per day, grow logistically with maximum division rate rm, differentiate to effector

memory at rate lm, and are cleared at rate dm. The E compartment grows with maximum division

rate re and is cleared at rate de. We added variables Tp, Pp, Np1 and Np2, representing CCR5 gene-

modified- transplanted HSPCs, T cell progenitor cells in BM/thymus, and blood CD4+CCR5- T cells

with CD4+CCR5- and CD4+CCR5+ kinetics, respectively. These compartments have the same struc-

ture as T, P, N and S, but with two differences. First, the value of Tp at transplantation is a fraction fp
of the total number of infused cells. Second, the Np1 cell compartment do not upregulate CCR5

when transitioning to Np2. We model the competition of CD4+ and CD8+ T cells for resources that

allow cell division using a logistic equation that depends on the difference between the total number

of competing cells, i.e. A = Np1+Np2+N+S+M+E, and a carrying capacity K (Jameson, 2002). Under

these assumptions we constructed the following model form:
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dTp
dt
¼�keTp

dPp

dt
¼ keTp þ r̂P 1� A

Kp

� �

Pp

dNp1

dt
¼ lfPpþ r̂n 1� A

Kn

� �

Np1 þlsNp2

dNp2

dt
¼ r̂s 1� A

Ks

� �

Np2 þlnNp1

dT
dt
¼�keT

dP
dt
¼ keT þ r̂p 1� A

Kp

� �

P

dN
dt
¼ lfPþ r̂n 1� A

Kn

� �

NþlsS

dS
dt
¼ r̂s 1� A

Ks

� �

SþlnN

dM
dt
¼ leðPþPpÞþ r̂m 1� A

Km

� �

M

dE
dt
¼ lmMþ r̂e 1� A

ke

� �

E

; (2)

where r̂p ¼ rp � lf þle þ dp
� �

, r̂n ¼ rn � lnþ dnð Þ, r̂s ¼ rs� lsþ dsð Þ, r̂m ¼ rm� lmþ dmð Þ, r̂e ¼ re � de, as

well as Kw ¼K r̂w
rw

for each model variable w2 p;n; s;m;ef g. We did this re-parameterization to have

compound parameters that were identifiable.

When simulating the model, we assumed t0 as the time of transplantation. For the transplant

groups the system is in a transient stage due to conditioning (TBI) at t0, therefore initial values can-

not be obtained from steady state equations. Transplantation is modeled as T t0ð Þ ¼ 1� fp
� �

D and

Tp t0ð Þ ¼ fpD. For the control group we used t0 at a similar time relative to the transplant groups.

Since the control group did not have any transplantation or TBI, we assumed

T t0ð Þ ¼ Tp t0ð Þ ¼ Pp t0ð Þ ¼ Np t0ð Þ ¼ 0. Other initial values were calculated assuming steady state:

P t0ð Þ ¼ q2q3q4Kp

q1þ1ð Þq3q4þq2 q4þ1ð Þ, N t0ð Þ ¼ q1q3q4Kp

q1þ1ð Þq3q4þq2 q4þ1ð Þ, S t0ð Þ ¼ q3q4Kp

q1þ1ð Þq3q4þq2 q4þ1ð Þ, M t0ð Þ ¼ q2q4Kp

q1þ1ð Þq3q4þq2 q4þ1ð Þ and

E t0ð Þ ¼ q2Kp

q1þ1ð Þq3q4þq2 q4þ1ð Þ. Here q1 ¼
r̂s
ln

Kp

Ks
� 1

� �

, q2 ¼
r̂n
lf

q1
Kp

Kn
� 1

� �

� ls

� �

, q3 ¼
r̂m
le

Kp

Km
� 1

� �

and

q4 ¼
r̂e
lm

Kp

Ke
� 1

� �

. A parsimonious, curated version of this model was selected from a series of models

with varying mechanistic and statistical complexity (Figure 3—source data 2).

Mathematical modeling of SHIV infection and T cell response dynamics
We next adapted the curated T cell reconstitution model by combining several adaptations of the

canonical model of viral dynamics (Reeves et al., 2017; Perelson, 2002; Perelson et al., 1997;

Hill et al., 2018; Borducchi et al., 2016; De Boer, 2007; Wodarz and Nowak, 1999; Pandit and

de Boer, 2016). Here, virus V infects only CD4+CCR5+ T cells (Ho et al., 2009) S at rate b. We mod-

eled ART by reducing the infection rate to zero. A fraction t of the infected cells produce virus, Ip,

and the other fraction become unproductively infected, Iu (Reeves et al., 2017; Doitsh et al., 2010;

Matrajt et al., 2014). IP cells arise only from activation of a persistent set of latently infected cells at

rate ��L. We modeled ATI by assuming infection b is greater than zero after some delay following

ATI. We approximate this delay as the sum of the time of ART to washout (~3 days) and the time of

successful activation (tsa) of a steady set of latently infected cells. For simplicity, we assumed that

��L ¼ 1

tsa
and assumed that tsa has lognormal distribution among the animal population with high vari-

ance (Conway et al., 2019; Hill et al., 2014; Prague et al., 2019). All infected cells die at rate dI

(Reeves et al., 2017). IP cells produce virus at a rate p per cell, that is cleared at rate g. CD8+ M

cells proliferate in the presence of infection with maximum rate !8. A fraction f of these cells become

SHIV-specific CD8+ effector T cells, Eh, that are removed at a rate dh (De Boer, 2007; Wodarz and

Nowak, 1999; Wodarz et al., 2000). These effector cells may reduce virus production (p) or

increase infected cell clearance (dI) by 1/ (1+�Eh) or by (1+kEh), respectively (Elemans et al., 2011;

Klatt et al., 2010; Wong et al., 2010; Borducchi et al., 2016; Cardozo et al., 2018). We assumed

that non-susceptible CD4+ T cells may upregulate CCR5 and replenish the susceptible pool during

infection (Okoye et al., 2007; Okoye et al., 2012; Okoye and Picker, 2013) with rate !4. For cell
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growth the total number of competing cells is given by A =Np1+Np2+N+S+Ip+Iu+M+E+Eh. The

model in Equation 2 is modified to include:

dN
dt
¼ lfPþ r̂n 1� A

Kn

� �

NþlsS�!4

IpþIu

1þ
IpþIu

I50

N

dS
dt
¼ r̂s 1� A

Ks

� �

SþlnN�bVSþ!4

IpþIu

1þ
IpþIu

I50

N

dIp
dt
¼ t bVS� dIð1þkEhÞIp þ ��L

dIu
dt
¼ ð1� t ÞbVS� dIð1þkEhÞIu

dV
dt
¼ 1

1þ�Eh
pIp�gV

dM
dt
¼ leðPþPpÞþ r̂m 1� A

Km

� �

Mþ!8ð1� 2f Þ IpþIu

1þ
IpþIu

I50

M

dEh

dt
¼ !8f

IpþIu

1þ
IpþIu

I50

M� dhEh:

(3)

When simulating this model, we assume t0 ¼ 0 as the moment of SHIV challenge, and tx as the

moment of transplantation after challenge. We modeled conditioning by: (1) adding a term �kTC in

all blood cell compartments C 2 N;S; Ip; Iu;M;E;Eh

� 	

and (2) the term �kHP for the HSPC compart-

ment P. kT and kH are different than zero only during the 2 days before transplant (tx � 2� t<tx).

Transplantation is modeled as an input only when t¼ tx to cell compartments T and Tp with amounts

1� fp
� �

D and fpD, respectively. A parsimonious version of this model was selected from a series of

models with varying mechanistic and statistical complexity (Figure 3—source data 2).

Nonlinear mixed-effects modeling
To fit our models (Equations 2, 3) to the transplant data, we used a nonlinear mixed-effects model-

ing approach (Lavielle, 2014). Within this approach, we modeled a state variable vector v with

observations at time i for each animal j as log10vij ¼ fv tij;	j

� �

þ �v. Here, fv describes the solution of

the nonlinear models in Equations 2 or 3 for the state variable vector v at observation time tij with

animal-specific parameter set 	j. The distribution of measurement noise is assumed as �v ~N 0;s2

v

� �

.

In the mixed-effects model, it is assumed that for an animal j each single parameter  j 2 	j is

drawn from a probability distribution across the population. This distribution includes the fixed

effects � representing the median value over the population, and the random effects hj representing

its variability in the population, assumed to be normally distributed with standard deviation s , that

is hj ~N 0;s2

 

� �

. We assumed that the random effects of the parameters hj might not be indepen-

dent. In that case, the vector of random effects hj follows a multinormal distribution: h~N 0;Wð Þ,

being W the variance-covariance matrix based on the values s and correlations between the individ-

ual parameters in h.

We fit each model to all data points from all animals simultaneously using a maximum likelihood

approach. We assumed that individual observations of each state variable vij for each animal j at

each time point tij are independent. For each model, we obtained the Maximum Likelihood Estima-

tion (MLE) of the standard deviation of the measurement error for the observations sv, and each

parameter fixed effects � and standard deviation of the random effects s (or elements in matrix W

when applicable) using the Stochastic Approximation of the Expectation Maximization (SAEM) algo-

rithm embedded in the Monolix software (http://www.lixoft.eu).

Fitting T cell reconstitution before ATI
We first fit the observed blood T cell kinetics after HSPC transplantation and before analytical treat-

ment interruption (ATI) using the model in Equation 2. During this procedure, we defined the vector

v 1ð Þ to model the log10 of the observed blood CD4+CCR5-, CD4+CCR5+, total CD8+, CD8+ TN +

TCM, and CD8+ TEM cell counts which are represented in Equation 2 by the

variables N þ Np1 þ Np2; S;C;M;E
� 	

, respectively with C ¼ M þ E and solution f 1ð Þ.

We defined the statistical form of each parameter in 	
1ð Þ in the following form: parameters

r
j
p; r

j
m; r

j
e; l

j
f ; l

j
e; l

j
n; l

j
s; l

j
m were modeled as  j ¼ � enj ; parameter K j

p was modeled as  j ¼ 10
� þnj ;

K j
n;K

j
s;K

j
m;K

j
e were modeled as  j ¼ 10

K
j
p� � enj ; and initial values in the transplant group:
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N j t0ð Þ; Sj t0ð Þ;Mj t0ð Þ and Ej t0ð Þ had the model  j ¼ 10
� þnj : We explored the possibility that rn ¼ 0, in

that case we assumed d̂jn ¼ ljn 1þ � enj
� �

. We fixed the HSPC homing rate ke = 1/day (Lapidot et al.,

2005; Chute, 2006), and fp and D as described in Figure 3—source data 1. Since at t0 the system is

in a transient stage due to conditioning (TBI), we estimated blood cell concentrations at t0, but fixed

the number of HSPCs that remained in the BM/thymus P t0ð Þ to 6� 10
6 based on the estimated mini-

mum number of infused HSPCs needed for engraftment in the same animal model (Radtke et al.,

2017).

We fit instances of models with varying statistical and mechanistic complexity in Equation 2 to

blood T cell counts during transplant and before ATI (Figure 1B) assuming that one or multiple

mechanisms are absent, or that certain mechanisms have equal kinetics (Figure 3—source data 2

includes all 24 competing models with the different statistical assumptions).

Fitting T cell and viral load dynamics before and after ATI
Next, we fit the model in Equations 2-3 to the pre- and post-ATI blood T cell counts and plasma

viral loads (Figure 1B). Here, we defined v 2ð Þ for variables N þ Np1 þ Np2;R;C4;C8;M;E;V
� 	

with V

indicating the observed plasma viral load, N þ Np1 þ Np2 indicating the observed blood CD4+CCR5-

T cell concentration, R ¼ Sþ Ip þ Iu the observed blood CD4+CCR5+ T cell concentration, C8 the

total CD8+ T cell concentration, C4 ¼ Rþ N þ Np1 þ Np2 the total CD4+ T cell concentration and the

others state-variables as specified for v 1ð Þ. We included C4 because we had total CD4+ T cell counts,

but CD4+ T subset counts during the primary infection stage were not available in many of the ani-

mals. For this model, we defined the parameter set 	 2ð Þ by adding to the parameters in the previous

section the parameters relative to virus dynamics (i.e. 	 2ð Þ ¼ 	
1ð Þ; kj; �j;bj;pj; !j

4
; !j

8
; I j

50
; djh; t

j
sa

� 	

but

fixing the values in 	
1ð Þ to the MLE values using Figure 3—source data 3). For parameters

kj; �j; bj;pj; !j
4
; !j

8
; I j

50
, we used a model with form  j ¼ 10

� þnj , and for d
j
h and tjsa we used

 j ¼ � enj . We included the possibility that immunity might be different at ATI compared to pre-ART

by assuming the forms  j;ATI ¼ 10
� þnjþ& ;ATI for !j

8
and I

j
50
, and  j;ATI ¼ � enjþ& ;ATI for djh during ATI. We

evaluated single or combination of mechanistic hypotheses along with different statistical assump-

tions as listed in Figure 5—source data 1 using AIC. V 0ð Þ was fixed to a small value below the limit

of detection, and Ip 0ð Þ and Iu 0ð Þ were calculated as t cV 0ð Þ=p and 1� tð ÞcV 0ð Þ=p, respectively. We

fixed the following parameters: g ¼ 23/day (Ramratnam et al., 1999), dI ¼ 1/day (Markowitz et al.,

2003; Cardozo et al., 2017), t ¼ 0:05 (Doitsh et al., 2010), and f ¼ 0.9 (Borducchi et al., 2016).

The value of kh was constrained to obtain a value of the HSPCs after conditioning

P txð Þ ¼ Pr ¼ 6� 10
6 (Radtke et al., 2017). We fixed values of tx, fp and D as described in Figure 3—

source data 1.

We fit several instances of the model in Equation 3 to pre- and post-ATI blood T cell counts and

plasma viral loads (Figure 1B) using the best model obtained for Equation 2 (Figure 5—source

data 1 includes all four competing models and respective statistical assumptions). At the time of

SHIV infection, values for the cell compartments were calculated from steady state equations with

the same form as for the group without transplantation (‘control’) in the previous section.

Model selection
To determine the best and most parsimonious model among the instances, we computed the log-

likelihood (log L) and the Akaike Information Criteria (AIC=-2log L+2 m, where m is the number of

parameters estimated) (Burnham et al., 2002). We assumed a model has similar support from the

data if the difference between its AIC and the best model (lowest) AIC is less than two

(Burnham et al., 2002).

Effective reproductive ratio when rn ¼ 0 and k ¼ 0

We calculated an approximate effective reproductive ratio Reff for our model (Equations 2, 3) by

computing the average number of offspring produced by one productively infected cell Ip at ATI

assuming all cell compartments have reached steady state after transplantation during ART. This

number is the product of the average lifespan of one Ip, the virus production rate by this latently

infected cell, the lifespan of produced virions from this cell, the rate at which each virion infects the
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pool of susceptible cells at steady state, the fraction of these infections that become productive and

the reduction of virus production, cell infection, and cell death by SHIV-specific immune cells at ATI.

Using this approach, we obtain that Reff ¼
t b�Sp

gdI 1þ��Ehð Þ
, with �S »

lf �P
d̂n r̂s
ln

Kp

Ks
�1ð Þ�ls

and �Eh »
f!8leKp

adhdI tsa r̂m
Kp

Km
�1ð Þ

the

steady state values of variables S (SHIV-susceptible cells) and Eh (SHIV-specific effector cells) during

ART, with a ¼ le

r̂m
Kp

Km
�1ð Þ

þ lf ln

d̂n r̂s
Kp

Ks
�1ð Þ�lsln

þ
lf r̂s

Kp

Ks
�1ð Þ

d̂n r̂s
Kp

Ks
�1ð Þ�lsln

þ lelm

r̂m
Kp

Km
�1ð Þr̂e Kp

Ke
�1ð Þ

þ f!8le

dhdI tsa r̂m
Kp

Km
�1ð Þ

. By assuming that

the total amount of infused cells (dose D and fraction of CCR5-editing fp) home to the BM/Thymus

rapidly, and that the amount of remaining HSPCs after TBI and immediately before transplant is

P txð Þ ¼ Pr, the approximate steady state for P is �P »
Kp

a
�

1�fpð ÞDþPr

DþPr
¼ Kp

a
1� fpD

DþPr

� �

. Together this gives

the following expression for the effective reproductive ratio:

Reff ¼ RT 1�
fpD

DþPr

� �

; with RT ¼
t bpleKp

agdI
d̂n r̂s
ln

Kp

Ks
� 1

� �

�ls

h i

1þ ��Ehð Þ
(4)

Here, RT then represents the effective reproductive ratio during transplant in the absence of

gene-editing when cells have reached steady state.
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