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ABSTRACT: Electrical submersible pumps (ESPs) are consid-
ered the second-most widely used artificial lift method in the
petroleum industry. As with any pumping artificial lift method,
ESPs exhibit failures. The maintenance of ESPs expends a lot of
resources, and manpower and is usually triggered and accompanied
by the reactive process monitoring of multivariate sensor data. This
paper presents a methodology to deploy the principal component
analysis and extreme gradient boosting trees (XGBoosting) in
predictive maintenance in order to analyze real-time sensor data to
predict failures in ESPs. The system contributes to an efficiency
increase by reducing the time required to dismantle the pumping
system, inspect it, and perform failure analysis. This objective is achieved by applying the principal component analysis as an
unsupervised technique; then, its output is pipelined with an XGBoosting model for further prediction of the system status. In
comparison to traditional approaches that have been utilized for the diagnosis of ESPs, the proposed model is able to identify deeper
functional relationships and longer-term trends inferred from historical data. The novel workflow with the predictive model can
provide signals 7 days before the actual failure event, with an F1-score more than 0.71 on the test set. Increasing production
efficiencies through the proactive identification of failure events and the avoidance of deferment losses can be accomplished by
means of the real-time alarming system presented in this work.

1. INTRODUCTION

Recently, the trends of automation and digitalization, artificial
intelligence (A.I.), and machine learning have gained
momentum. Also, oil field digitization is considered a whole
new opportunity for further production optimization in the oil
and gas industry.1 The key question arises of how to
implement these tools in such a way that all known risks are
managed, value is genuinely delivered, and the actual results
make a measurable difference to the profitability of the
operation and, of course, that they are applicable to specified
and predefined production optimization goals.
Previous research in this area promised to further

revolutionize key aspects of oil production applications
including well monitoring and control, reservoir manage-
ment,2−4 production optimization,5,6 artificial lift,7−10 flow
assurance,11,12 and predictive maintenance. In general, this
research area focuses on the utilization of machine learning in
order to understand the status of equipment so as to facilitate
predictive maintenance and to avoid operation downtime.
One of the most widely used artificial lift technologies is the

electrical submersible pump (ESP).13 They are installed in
many producing wells that are subject to harsh environments
and need to pump complex fluid mixtures that on their turn
undergo changes in composition, pressure, and temperature
over time. For assuring a reliable fluid delivery, on time

interventions are required in case of upcoming problems.
Hence, strong efforts are undertaken in the area of a “digital oil
field” that focus on deploying machine learning and data-
driven models in the area of predictive pump maintenance of
electrical submersible pumps.14

Beyond only creating a relation between continuous data, a
data-driven model can be used to understand the internal
relations between the parameters generating these data.
Therefore, the key to perform fault detection on the ESP
can be better defined as a problem to build an accurate data-
driven model that describes the ESP system dynamics. Table 1
shows various contributions in the area of predictive
maintenance of electrical submersible pumps.
The previous literature includes applications that only deal

with statistical analysis in a descriptive way,15−17,36 while the
rest are diagnostic analyses. The diagnostic analysis literature
can be divided into two groups. The first group encompasses
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applications that rely on ammeter charts, which is an old
technology in ESP troubleshooting.18,37,38 The second group
includes applications that depend on pump-deployed sen-
sors.27−34

Regarding the second group, it is noticeable that the
majority of the applications attempts to use the sensor data
transformation on principal component analysis (reduction of
the dimensionality of large data sets). Then, the data are
projected to map the sensor readings. The objective in this
case is to group data from pump sensors based on their
downhole conditions. The majority of the recent research
either only used PCA as an unsupervised learning technique
for real-time diagnosis of the ESP or applied surveillance-by-
exception on the system (detection of disruptive events), but
none of them was a predictive approach. Surveillance-by-
exception is done by using a normal range of the sensor data to
train the algorithms. Then, the algorithm is used on the test
data to detect points located outside the predication
confidence interval.33,39

In this paper, a methodology along with its implementation
is presented for the application of PCA using the so-called
extreme gradient boosted trees machine learning technique, in
order to provide an intuitive way of predicting downhole
failures of the ESP system 7 days ahead, before the workover.
The workflow is arranged in this paper as follows: first the
proposed methodology and its implementation are explained
in detail, followed by introduction of an evaluation technique
and finally presentation and discussion of the results of its
application.

2. PROPOSED METHODOLOGY AND
IMPLEMENTATION

This research intends to develop a model that can predict
downhole electrical submersible pump problems, so that
proper actions might be taken proactively to avoid the
occurrence of such problems. The approach of the supervised
learning is used to train the model. This model will be able to
predict the probability of some abnormal conditions or class
label a few days before events. Finally, its reliability and
accuracy will be tested.

Supervised learning algorithms will be used to analyze the
training data. These algorithms produce an inferred function
capable of mapping the training examples. Also, they will be
allowed to correctly determine the class labels for unseen
instances. This requires the learning algorithm to generalize
from the training data to unseen situations in a “reasonable”
way.40

The study is executed using the Knowledge Discovery in
Databases (KDD) process.41 This process is used to show (1)
data collection, (2) data preprocessing, (3) how to extract the
features, (4) the use of the proper classifier and its relevant
hyperparameter tuning, and (5) the evaluation of the results.
Figure 1 shows the (KDD) phases. In this study, downhole

conditions are considered as the dependent variable. On the
other hand, the dynamometer cards data are considered as the
independent variables.

2.1. Data Collection and Preprocessing. Time-series
data are collected from sensors on electrical submersible
pumped wells. The reported measurements are pump
frequency (FRQ), pump discharge pressure (PDP), pump
intake pressure (PIP), well head pressure and temperature
(WHP/WHT), motor temperature (MT), casing head
pressure (CHP), and variable speed drive output current
(Current). These measurement data have different frequencies.
Also, well status sheets for the same wells are gathered on a
daily basis at the same time periods. These data were collected
from a field undergoing polymer flooding. Based on the status
sheets, pumps exhibited two main problems. These two
problems were motor downhole failures (MDHFs) or

Table 1. Summary of the Most Relevant Studies Related with This Paper

author, year relevant work

(Zhao et al., 2006); (Li et al., 2008); (Zhang, 2017) ESP fault tree diagnosis through a proposed qualitative and quantitative method.15−17

(Xi, 2008) the use of a traditional mechanical fault diagnosis and wavelet analysis
realization of excessive shaft thrust and wear fault characteristic extraction to investigate the fault
diagnostics of the centrifugal pump18

(Wang, 2004) use of Neuro-Fuzzy Petri nets and extracted features for the identification of eccentric wear of both the
impeller and bearing as well as the sand plug of the impeller19

(Zhao, 2011) ESP vibration signal analysis, feature extraction, and establishment of typical fault vibration mechanical
models20

(Tao, 2011) data analysis and application of vibration signals based on wavelet analysis and wavelet transform in the
ESP.21

(Guo et al., 2015) utilization of the support vector method in the prediction of anomalous operation22

(Wang, 2013) (Peng, 2016) utilization of back propagation (BP) neural networks for ESP diagnosis.23,24

(Jansen Van Rensburg, 2019) exploration of surveillance-by-exception on ESP using a train model with normal yet good quality
data25

(Andrade Marin et al., 2019) analysis of random forest to obtain a high value of accuracy and recall of ESP failure prediction in 165
cases26

(Adesanwo et al., 2016); (Adesanwo et al., 2017); (Gupta
et al., 2016); (Abdelaziz et al., 2017); (Bhardwaj et al.,
2019); (Sherif et al., 2019); (Peng et al., 2021); (Zhang
et al., 2017); (Yang et al., 2021)

application of principal component analysis (PCA) for anomaly detection and failure prediction for the
identification of correlations in the dynamic ESP parameters such as intake pressure and temperature,
discharge pressure, vibrations, motor and system current and frequency measured by means of a
variable speed drive (VSD) at regular time intervals27−35

Figure 1. Knowledge discovery in database workflow.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05881
ACS Omega 2022, 7, 17641−17651

17642

https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05881?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


electrical downhole failures (EDHFs); therefore, both failures
are categorized as electrical pump failures.
Electric failure of the downhole facilities constitutes failure

of any of the electrical components in the ESP assembly
including the electric cable, the motor electrical components
such as the stator, and the downhole sensor. Failures associated
with the cable were mainly caused by electric cable failure,
cable insulation failure due to corrosion, material failure, and
abrasion, and cable failure due to overload. Meanwhile,
electrical failures associated with the motor are usually a
resultant of the stator failure. The stator has been reported to
fail due to overheating. As the motor is the hottest point in the
well, this appears to worsen polymer deposition on the motor
body. This in turn reduces heat dissipation, leading to
increasing motor winding temperature, which in turn makes
the deposition worse and causes an eventual ramp down of the
ESP frequency when maximum motor temperatures are
reached. In addition, the high temperatures around the
motor aids the precipitation of solid polymer in fluids flowing
past the motor and are the source of polymer plugging in the
pump inlet.
The workflow in predictive modeling starts with the data

cleaning process, known as cleansing. On one hand, it is
important to eliminate unphysical values (e.g., negative or
enormous pressure values), remove further outliers, and align
units. On the other hand, it is a critical step for handling noise
data while maintaining the realistic anomalies that may identify
downhole problems of the pumps.
After visual inspection of the data, a pipeline of a

preprocessing strategy is created. First, it starts by resampling
the data using a moving median in 1 h steps. Figure 2 shows

the box plot of the data after resampling and before outlier
removal. It is obvious that some measurements include
unreasonable values. For example, the well head temperature
reaches 18 500 °F, which is obviously a measurement error.
Therefore, the second step is removing outliers. It includes first
removing measurements where oil production is zero; then,
outlier removal by limits is applied.
Outlier removal by limits depends mainly on quartiles;

therefore, we used box plots. They summarize sample data
using the 25th, 50th, and 75th quartiles. The midspread or
middle 50th, or technically H-spread, is a measure of statistical
dispersion, being equal to the difference between the 75th and
25th percentiles. It is called the interquartile range (IQR). IQR
is somewhat similar to Z-score in terms of finding the
distribution of data and then keeping some threshold to

identify the outlier. To define the outlier, a base value is
defined above and below the normal range of a data set,
namely the upper and lower bounds. The upper and the lower
bounds are calculated according to eqs 1 and 2.

upper Q3 1.5 IQR= + * (1)

lower Q1 1.5 IQR= − * (2)

Afterward, a standard scaler is employed (subtracting the
mean from each point and dividing by the variance),
transforming the mean value to zero and scaling the data to
unit variance. Finally, the moving difference is applied on all
sensor measurements. Figure 3 shows the box plot after outlier
removal, and Figure 4 shows the box plot after normalization.

Table 2 describes the main signals after outliers and zero
production points are removed without standardization. Table
3 shows the number of available data points after mapping the
sensor data. These data points are classified, based on
workover sheets, into “normal data”, “preworkover”, and
“workover”. Preworkover data are data points that are reported
7 days before the workover day. Workover events are the data
points made available on workover day.

2.2. Principal Component Analysis Application. PCA
is defined as an unsupervised dimensionality reduction
technique. It reduces large dimensionality data sets into
lower dimensions called principal components. This happens
while preserving as much information as possible. It makes use
of the interdependence of original data to build a PCA model.
This results in reducing the dimensions of production
parameters by making the most of the linear combinations
and by generating a new principal component space (PCs).42

2.2.1. Principal Component Analysis Calculations. The
process of obtaining a PCA model from a raw data set is
divided into four steps as follows:
First, the covariance matrix (∑) of the whole data set is

computed. It is important to see whether there is a relationship
between contributing features.

ıÙ
n

X x X x
1

1
( )( )

i

n

ij j ik k
1

∑ ∑=
−

− −
= (3)

Eq 3 is used to find the covariance between each pair of data
set columns.
The second step is to calculate eigenvectors and

corresponding eigenvalues. Let A be the covariance matrix
that has been computed in the first step, ν be a vector, and λ be
a scalar that satisfies Aν = λν; then, λ is the eigenvalue
corresponding to the eigenvector ν of A. This step is

Figure 2. Data box plot before outlier detection.

Figure 3. Box plot after outlier removal.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05881
ACS Omega 2022, 7, 17641−17651

17643

https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05881?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05881?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


considered the calculation of the principal components of the
data.
The third step is determining the number of principal

components. The eigenvectors only define the directions of the
new axis, while the eigenvalues represent the variance of the
data along the new feature axes. Therefore, we sort the
eigenvectors based on the eigenvalues. Hence, a threshold is

chosen on the eigenvalues, and a cutoff is made on the
eigenvectors to select the most informative lower dimensional
subspace. In other words, lower variance dimensions are
omitted. This is because they possess the least information
about the data’s distribution.
The fourth step consists of transforming the samples into the

new subspace. In this last step, the lower dimensional subspace
W is selected. In the current step, the data set samples are
transformed into this new subspace via the equation Y = W′·X
where W′ is the transpose of the matrix W. In the following,
two principal components are computed, and the data points
are reoriented onto the new subspace. Figure 5 shows the
simple geometric meaning of PCA.

Figure 4. Box plot after outlier removal, normalization, and use of moving difference signals.

Table 2. Data Exploration

FRQ (Hz) PDP (Psi) PIP (Psi) WHP (Psi) WHT (F) MT (F) CHP (Psi) CURRENT (A)

mean 52.68 1522.96 855.89 642.20 62.38 137.11 922.13 349.65
std 4.29 187.46 211.08 608.61 11.49 32.39 1883.03 86.90
min 35.00 1086.51 610.45 194.06 60.54 120.62 0 101.59
25% 49.70 1506.13 660.90 213.38 63.23 122.20 91.54 317.00
50% 52.76 1543.80 721.80 243.58 65.99 154.19 261.38 354.00
75% 56.58 1595.04 778.89 547.33 67.65 160.60 405.28 394.73
max 64.96 1893.23 1578.28 845.86 122.84 169.30 986.74 598.21

Table 3. Data Points Classification

condition reported data points

normal 339 089
preworkover 1728
workover 288

Figure 5. Geometric meaning of PCA.
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2.2.2. Application of Principal Component Analysis in
Electrical Submersible Pumps. In ESP systems, sensor data
are generally highly correlated, e.g., wellhead pressure is
directly proportional to discharge and intake pressures.
However, when a downhole problem occurs or is about to
occur, anomalous data can be identified, because it breaks
certain rules in the input signals and their relative changes, i.e.,
if there is a tubing leak, the annulus discharge pressure
decreases, while intake pressure and annulus pressure increase,
etc.
Principal component analysis then serves an engineer’s

purpose in creating an anomaly detection system. This is
mainly because it makes use of the interdependence of original

data to build a model. The primary goal of this step is to create
clusters out of the data.
As discussed earlier, the selection of the principal

components is made based on the maximum variance criterion.
The highest variance is captured in the first principal
component, while the next highest variance is captured in
the second principal component, where information from the
first principal component has already been removed. In a
similar manner, consecutive principal components (third,
fourth, ···, kth) can be constructed to evaluate the original
system.
The PCA model finds the kth principal component to

construct the PCs, where most of the information belonging to

Figure 6. Principal component analysis of ESP wells.

Table 4. Loading for Input Parameters

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

FRQ −0.90 −0.05 0.06 0.05 −0.05 −0.26 0.05 0.01
PDP −0.54 −0.14 −0.70 0.32 −0.07 −0.08 0.04 0.05
PIP 0.03 −0.17 −0.47 0.14 −0.05 0.81 −0.18 −0.04
WHP 0.10 −0.02 −0.79 0.37 −0.01 −0.15 0.23 −0.28
WHT −0.63 0.00 0.35 −0.30 0.18 0.22 0.12 −0.32
MT −0.79 −0.12 −0.07 0.04 −0.12 0.25 −0.16 0.22
CHP −0.85 −0.15 −0.07 0.15 −0.03 −0.27 0.07 0.12
CURRENT −0.84 −0.10 0.21 −0.17 0.07 0.21 −0.06 −0.19
diff_FRQ −0.14 0.78 0.03 0.27 0.09 0.02 −0.22 −0.17
diff_PDP −0.05 0.09 −0.45 −0.54 0.21 −0.19 −0.40 0.28
diff_PIP 0.06 −0.35 −0.34 −0.67 −0.21 0.06 0.18 0.11
diff_WHP −0.03 0.11 −0.42 −0.50 0.36 −0.15 −0.05 −0.42
diff_WHT −0.10 0.43 −0.08 −0.11 0.37 0.23 0.69 0.26
diff_MT −0.15 0.84 −0.10 −0.10 −0.34 0.03 −0.03 −0.03
diff_CHP 0.03 −0.29 0.03 0.30 0.85 0.01 −0.14 0.11
diff_CURRENT −0.13 0.80 −0.14 −0.04 0.16 0.05 −0.09 0.20
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the initial system is contained. The kth principal component is
represented in eq 4 below, where PC1 is given as an example.

PC a P a P a P

a P

...

...etc

k k intake pressure k discarge pressure k motor temperature

pk intake pressure moving difference

1 2 3= * + * + +

+ + (4)

Figure 6 shows the projection of ESP well sensor data on the
principal components. The developed model is used also to
evaluate near failure conditions. The problematic days and 7
days before workover, sensor data clearly show specific failure
patterns in line with the reported motor (MDHF) and electric
(EDHF) downhole failures.
The goal of the PCA is to come up with optimal weights

from each sensor measurement. That means capturing as much
information as possible from the input signals, based on the
correlations among those variables. The loadings are the
correlations between the variables and the component. We
compute the weights in the weighted average from these
loadings. To compute the loading matrix, namely the
correlations between the original variable and the principal
components, the cross-covariance matrix needs to be
computed using eq 5.

cov X Y V E( , ) = (5)

where X represents the original variables, Y represents the
principal components, V represents the principal axes, and E
represents its eigenvalues.
Table 4 represents the load factor for each input parameter

in the relevant principal component up to the eighth principal
component. However, we are mostly interested in parameter
loading factors on the first and second principal components,
because they explain approximately 0.6 of the data variance
(see Figure 7). Large loadings (positive or negative) indicate

that a particular variable has a strong relationship to a
particular principal component. The sign of a loading indicates
whether a variable and a principal component are positively or
negatively correlated.43 Hence, the parameters that exhibit the
highest correlation with the first principal component are
pump frequency, casing head pressure, current, motor
temperature, and well head temperature.
2.3. Extreme Gradient Boosting (XGBoost). XGBoost is

a tree-based ensemble model. Ensemble learning is a
systematic solution that combines the predictive abilities of
multiple models, eventually resulting in a single model. This

single model provides the aggregated output of several models
that, on their turn, only perform slightly better than random
guessing. Therefore, extreme gradient boosting (XGBoost) is
an ensemble set of predictors, with a unified objective of
predicting the same target variable. A final prediction is
performed through the combination of these predictors.

2.3.1. Extreme Gradient Boosting (XGBoost) Calculations.
Building an XGBoost model has the following sequence. It
starts with a single root (contains all the training samples).
Then, an iteration is performed over all features and values per
feature, and subsequently, each possible split loss reduction is
evaluated. Eqs 6 and 7 represent the objective function (loss
function and regularization, respectively) at each iteration that
is needed to be minimized.

l y p O O( , )
1
2

t

i

n

i i value value
( )

1

2∑ λ= + +
= (6)

l y p y p y p( , ) log( ) (1 )log(1 )i i i i i i= −[ + − − ] (7)

where yi is the true value required to be predicted of the i-th
instance; pi is the prediction of the i-th instance; l(yi,pi) is the
loss function for a typical classification problem; Ovalue is the
output of the new tree, and Ovalue

1
2

2λ is the regularization term.

Chen stated “XGBoost objective function cannot be
optimized using traditional optimization methods in Euclidean
space”.44 Therefore, in order to be able to transform this
objective function to the Euclidean domain, the second-order
Taylor approximation is using enabling traditional optimiza-
tion techniques to be employed. Eqs 8 and 9 represent the
Taylor approximation of the loss function.
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where gi is the gradient and calculated by g l y p( , )i p i i
i

= ∂
∂

and hi

is the Hessian and calculated by h l y p( , )i p i i
i

2

2= ∂
∂

.

Finally, removing the constant parts, the simplified objective
to minimize at step t, results in

g O h O O
1
2

1
2

t

i

n

i value i value value
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Eqs 10 and 11 show how to minimize that function
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By combining eq 10 with the first and the second derivatives
of the classification loss functions gi and hi, the similarity
equation is derived. The similarity score is calculated as follows
in eq 12

similarity
residual

previous probability previous probability(1 )
i

i i λ
=

∑
∑ * − +

(12)

Figure 7. Explained variance of the proposed model.
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The similarity score is calculated for a “leaf” of the “tree”.
Various thresholds are used to split the tree into more leaves.
The similarity score is calculated for each new leaf followed by
calculating the so-called gain as presented in eq 13 below

gain left right rootsimilarity similarity similarity= + − (13)

Then, thresholds continue to be set until higher gain
thresholds are reached and the tree keeps growing. There is a
minimum number of residuals in each leaf where the tree stops
growing. This number is determined by calculating a parameter
called cover. It is defined as the denominator of the similarity
score minus lambda. During boosting, the operation is
performed such that trees are sequentially constructed. Each
tree reduces the error of its predecessor and learns from it
while simultaneously updating the residual errors. As a result,
each tree growing in the sequence will learn from a version of
the residuals that is already been updated.
Further, in boosting, the base learners are weak due to their

high bias, and their predictive power has only a slight
improvement over random guessing. Nevertheless, some vital
information for prediction is supplied by each of these weak
learners. By means of boosting, a strong learning effect is
produced through combining these weak learners into a single
strong learner that reduces both the bias and the variance.
2.3.2. Extreme Gradient Boosting (XGBoost) Application.

In our proposed model, principal component analysis (PCA)
for sensor measurements and moving difference is pipelined
with XGBoost and k-folds cross-validation to identify near
failure regions. The data set is divided into two groups: a
training data set containing 70% of the data and a black box
testing set with the remaining 30% of the data.
The importance of principal components is evident, because

it shows to which extent this component is able to explain the
variance in the data set. Therefore, Figure 7 shows the
cumulative explained variance with each principal component.
It is shown that eight principal components will include more
than 90% of the explained variance in the data set of ESP
sensors and their derived features.
In the cross-validation algorithm, the data set is divided into

three components as follows: a training set constituting 70% of
the data, a validation set constituting 15% of the data, and a
testing set constituting the remaining 15% of the data. Each
model is then trained on the training subset only, in order to
infer some hypothesis. Finally, the hypothesis with the smallest
error on the cross-validation set is selected.
A better estimation of each hypothesis is achieved through

testing a set of examples (validation set) that the models were
not trained on. A true generalization error is also obtained. As
a consequence, a single model possessing the smallest
estimated generalization error can be then proposed. Upon
validation set error minimization, this can be further expanded
such that the proposed model is retrained on the entire

training set, including the validation set. It is worth noting that
some risk exists in selecting validation points, which may
contain a disproportionate amount of difficult and obscure
examples. Therefore, the k-fold cross validation maybe applied
to avoid such occurrences.
A K-fold cross validation algorithm aims at selecting

validation sets. Initially, the data set is randomly divided into
(k) disjoint subsets. In each subset, the number of readings is
equal to the total number of data points (m) over (k). These
subsets are indicated by m1 to mk. Then, subset is evaluated for
each model as follows:
All these subsets are used to train the XGBoost model, with

the exception of the subset mj. The intention behind excluding
this subset is to infer a hypothesis that is eventually tested on
(mj). As such, the error of testing the hypothesis on the subset
(mj) is calculated, and the estimated generalization error of the
model is calculated by averaging over (mj). Afterward, the
selection of the model with the lowest estimated generalization
error is performed, and last, the selected model is retained on
the entire training set (m). The hypothesis resulting from such
operation would be the final answer. When performing cross
validation, It is typically a standard that the chosen number of
folds is equal to 10 (k = 10).45

Hyperparameter tuning is considered one of the important
steps while creating any data-driven model to get the best
results from the deployed algorithm. Regarding the XGBoost
algorithm, hyperparameters are divided into three categories.
These categories are known as general parameters, booster
parameters, and learning task parameters.
General hyperparameters define the type of algorithm to be

either linear or tree-based, the verbosity to print results, and
the number of threads to run on. Booster parameters include
the main tuned parameters for the algorithms such as the
learning rate, the minimum sum of weights of all observations
required in an internal node in the tree, and the learning
parameters to specify the minimum loss reduction required to
make a split.46 These parameters are used to define the
optimization objective and the metric to be calculated at each
step. Table 5 shows ranges that are used for hyperparameters
tuning.

3. MODEL EVALUATION
3.1. Evaluation Metrics. Some questions are vital for

understanding the classifier performance. One of which is the
number of signals that have been classified correctly among the
entirety of those that have been classified as “preworkover”.
The answer lies in inspecting the model’s precision. Precision
is the ratio of positives that have been correctly classified to the
sum of both positives and negatives. This is the percent of the
true alarms, which is an important measure to eliminate the
false preworkover alarms as much as possible.41 Eq 14 shows
the precision as per below

Table 5. Hyperparameter Tuning

parameter reference to sampling type range

max_depth control of overfitting, higher depth facilitates such that the model learns relations that are specific to a
particular sample

suggest integer
value

2, 10

min_child_weight a minimum sum of weights is defined for all observations required in a child log uniform 1e−10,
1e10

colsample_bytree the subsample ratio of columns when constructing each tree uniform 0, 1
learning_rate overfitting prevention through step size shrinkage in updates uniform 0, 0.1
gamma specification of the minimum loss reduction required to make a split suggest integer

value
0, 5
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precision true positive true positive false positive/( )= +
(14)

Another common question is the proportion of correctly
classified preworkover signals (TP) to the total preworkover
signals (TP + FN) that are identifiable and nonidentifiable by
the model. This is the recall, or the true positive rate which
indicates how capable the model is of finding the preworkover
signals.41 Eq 15 below shows the recall

recall true positive true positive false negative/( )= + (15)

The F1-score is the harmonic mean of the precision and
recall. F1-score is used for model validation. F-measure has an
intuitive meaning. It describes how precise our classifier is
(how many events are classified correctly) as well as how
robust it is, i.e., not missing a significant number of events.
3.2. Diagnostic Tools. A receiver operating characteristic

curve (ROC) is applied as a diagnostic tool where the
performance of a classification model is summarized with
respect to the positive class. The false positive rate is the x-axis,
and the true positive rate is the y-axis.
The true positive rate is the ratio of the total number of true

positive predictions to the sum of the true positives and the
false negatives (e.g., all examples in the positive class). The true
positive rate is referred to as the sensitivity or the recall as
shown in eq 16.

true positive rate true positives true positives false negatives/( )= +
(16)

The false positive rate is the ratio of the total number of false
positive predictions to the sum of the false positives and true
negatives (e.g., all examples in the negative class).47 Eq 17
calculates the false positive rate.

false positive rate false positives false positives true negatives/( )= +
(17)

4. RESULTS AND DISCUSSION
To reduce the false alarms in our model, data exploration is
performed, and then, raw-sensor data are preprocessed.
Afterward, the “cleaned standardized” time-series data with
their moving difference are entered into feature engineering
transformation through the use of PCA. Finally, an ML model
is used to classify the operating points. The upcoming results
are reported in two different processes. First, validation results
are reported for the 10 folds of the data set. Along with model
training, model validation intends to locate an ideal model with
the best execution. The model performance is optimized using
training and the validation data set. Therefore, ROC curves are
reported for the 10 folds of the data set and their mean value.
Then, the model generalization performance is tested using the
testing set. The test data set remains hidden during the model
training and model performance evaluation stage. In this
regard, the precision recall curve is used.
Figure 8 shows the fraction of correct predictions for the

positive class depicted on the y-axis versus the fraction of errors
for the negative class depicted on the x-axis. For interpreting
the ROC curve, a single score can be given for a classifier
model through the so-called “ROC area under curve” (AUC),
which is attained, as the name implies, by integrating the area
under the curve. The score has a value ranging between 0.0
and 1.0, which indicates a perfect classifier. Figure 8 also shows
the ROC curves for our proposed model with 10-fold

validation sets and its mean curve. The mean value for the
ROC AUC is 0.95.
As mentioned earlier, the second process was testing the

proposed model against a testing set using the precision-recall
curve (PRC), which is a valuable diagnostic tool particularly
when classes are very imbalanced. The PRC trade-off between
a classifier’s precision, a measure of result relevancy, and recall,
a measure of completeness for every possible cutoff, is
depicted. Figure 9 shows a precision recall curve (PRC) for
the preworkover and workover class.
It is clear that the data set is unbalanced. For this reason, it is

important to check the precision and recall for each class of the
pumping conditions for better evaluation of the classifier. From
Figure 9 and Table 6, the precision and the recall for
preworkover and workover condition is less than those in
normal conditions. This is mainly due to a higher number of
data points supporting the normal labeled status. This is an
effect of using an unbalanced data set. One approach to
addressing the imbalanced data sets is to oversample the
minority class. The simplest approach involves duplicating
examples in the minority class, although these examples do not
add any new information to the model. Instead, new examples
can be synthesized from the existing examples. This is a type of
data augmentation for the minority class and is referred to as
the synthetic minority oversampling technique (SMOTE).
This can be part of further work. However, such procedures
are inherently dangerous, because they may result in overfitting
of the model.

5. CONCLUSION
In this application, sensor measurements with a moving
difference are applied to the data set in order to predict the
pumping condition. Then, a dimensionality reduction
technique is used, and the whole data set has been projected
to the new lower dimensions. Finally, these new transformed
data have been pipelined with a supervised algorithm, which is
XGBoosting in our application. The training data set consists
of inputs (PCA projected features) paired with the

Figure 8. ROC for the proposed model.
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representative outputs (in case of ESP failure prediction, the
labeled outputs are the 7 days before the reported failures).
Each of these input−output pairs should be seen as a “data
point” that can be used to train, validate, and test the proposed
model.
Regarding the validation set, the proposed model has a mean

AUC for the 10-fold validation equal to 0.95, which in turn
means that the model has an adequate performance and can be
tested on the upcoming processes against test sets.
Regarding testing sets, the proposed model can report the

preworkover and workover classes with 0.8 precision and 0.6
recall. The model has high precision on testing sets and hence
a small number of false alarms. Of course, the relevant recall is
small, which means not all of the 7 days before the event are
marked as a yellow alarm (preworkover and workover events).
In other words, the model will report alarms with high
precision but not for all days before the workover, which is
acceptable, because it is not necessary that all days before the
event will exhibit a sign of an upcoming workover.
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