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Characterization of states, the essential components of the underlying energy landscapes, is one of the most
intriguing subjects in single-molecule (SM) experiments due to the existence of noise inherent to the
measurements. Here we present a method to extract the underlying state sequences from experimental SM
time-series. Taking into account empirical error and the finite sampling of the time-series, the method
extracts a steady-state network which provides an approximation of the underlying effective free energy
landscape. The core of the method is the application of rate-distortion theory from information theory,
allowing the individual data points to be assigned to multiple states simultaneously. We demonstrate the
method’s proficiency in its application to simulated trajectories as well as to experimental SM fluorescence
resonance energy transfer (FRET) trajectories obtained from isolated agonist binding domains of the AMPA
receptor, an ionotropic glutamate receptor that is prevalent in the central nervous system.

provide valuable information not only on the distribution of the observable but also on the dynamical

pathways molecules may take in route to comprising the distribution. SM time-series measurements enable
us to identify the sequences of states and construct the state-to-state network®™?, from which the underlying
effective free energy landscape the single molecules experience can be inferred'*""*. As such, identification of states
along noisy time-series is one of the most prevalent subjects in SM time-series measurements. Among state
identification methods, perhaps the most widely used for SM trajectories is the hidden-Markov model
(HMM)'®"7. The HMM procedure involves making an initial guess as to the number of states underlying the
system. The stationary and dynamical properties of the underlying states are then extracted via a parameter
optimization procedure, yielding the maximum likelihood HMM. The variational Bayes approach'® is a more
sophisticated HMM that avoids some of the assumptions made in previous HMM applications — namely the need
for the assumption of the number of states underlying the data. Local equilibrium state analysis'>** i

S ingle-molecule (SM) measurements are standard experimental techniques in many fields of study'™®, and

is also aimed at
extracting the sequence of states, each of which is locally equilibrated, along a time-series, resulting in their
Markovian network, and at inferring an effective free energy landscape. Still other methods seek to move past
Markovian assumptions, extracting non-Markovian memory kernels directly from the data®.

Free energy landscapes are usually computed by projecting the landscape onto some chosen coordinates.
However, such projection has been known to mask the real complexity of the underlying conformational net-
works and sometimes yield misleading results®’. Disconnectivity graphs®'~>* have been developed to visualize and
capture the hierarchical organization of minima and saddles on energy landscapes free from any projections,
especially for relatively small systems. However, the original procedure for disconnectivity graphs may not
adequately manage the existence of multiple pathways connecting some pairs of states in a complex conforma-
tional network. Transition disconnectivity graphs**** (TRDGs) based on the max-flow min-cut theorem>**” from
network theory seek to resolve this issue, and are a promising protocol in inferring effective energy landscapes
derived from state-to-state Markovian networks at equilibrium. TRDG methods were designed for application to
conformational space networks derived from noise-free computer simulations, and have yet to be applied to noisy
experimental data that are subject to experimental errors and finite sampling.

Care should be taken in the quantification of SM experiments, as they often suffer from low signal-to-noise
ratio. A recent change-point identification method revealed that the possibility of misidentifying the underlying
SM kinetics exists when a simpler thresholding procedure is used to determine the states or levels comprising the
time-series®®. This was due to large, fast fluctuation of the noise contaminating the signals. It is therefore of crucial
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importance in SM measurements to develop methods that avoid
making such misidentifications and to capture the relevant informa-
tion concerning the SM kinetics from noisy signals. A variety of
single-molecule analysis and denoising methods exist. Photon-by-
photon methods use information theory to detect intensity change
points in SM trajectories® and to bin the data to constant error
precision®, allowing for the subsequent deconvolution of the empir-
ical error from the observable distribution. Using these methods,
kinetic rates were determined without the need for state identifica-
tion®'. Wavelet denoising methods*>** have been used to remove a
portion of the empirical errors from uniformly binned SM photon
signals. For noisy SM time-series of finite lengths, one must consider
not only the contributions of empirical errors arising from various
sources, but also the errors introduced by the finiteness of the time-
series returned by the measurements.

The complications of errors in reconstructing a network, from
which one can infer an effective free energy landscape using the
TRDG protocol**?, in terms of noisy SM FRET experiments are
illustrated in Fig. 1. The segmentation procedure of local equilibrium
state analysis'? is used to construct the state-to-state network directly
along the time-series. In this demonstration we use a SM FRET
efficiency trajectory acquired from a nitrowillardiine-bound agonist
binding domain (ABD) of an AMPA receptor (GluA2)**, but we note
that the procedure does not rely on the nature of the physical quant-
ity being observed. Other physical quantities, such as fluorescence
intensity or donor-acceptor distance are also appropriate as long as
the error in the observable is appropriately considered. In a SM FRET
experiment, photons are detected from both the donor (green ellipse)
and acceptor (red ellipse) fluororphores attached to the molecule of
interest — Fig. 1A depicts the nitrowillardiine-bound ABD of the
GluA2 AMPA receptor®. Arrival times of each emitted photon are
recorded (Fig. 1B), and the photon counts are binned, e.g., in uniform
time intervals or in constant error intervals®. Binned photons are
used to calculate a physical quantity (FRET efficiency in this demon-
stration) vs. time (Fig. 1C). The first step in the extraction of the
underlying states along the time course is the segmentation of the
time-series. Local probability mass functions (pmfs) are then con-
structed from the short segments of uniform length. The pmfs of the
segments highlighted in blue and red in Fig. 1C are shown in Fig. 1D.
Because the projection of motion in multiple dimensions onto a one-
dimensional quantity such as FRET efficiency may result in a degen-
eracy problem, i.e., multiple underlying states yielding the same or
similar efficiencies, local pmfs are used to lift any degeneracy as much
as possible. (See Section S8 in the Supplementary Information (SI)
for more detail.) Once the segment pmfs are obtained, similarity
measures are calculated among all segment pmfs for use in clustering
the segments into a steady-state network. The measure used is the
Kantorovich distance™, illustrated by the shaded area between the
cumulative distribution functions (cdfs) corresponding to the blue
and red segments shown in Fig. 1E. The Kantorovich metric** is used
because it does not require the use of binning in computing the
distance, and is therefore free from any artifact in choosing the bin
size'?, which is crucial, especially in the case of finitely sampled data.
Furthermore, previous studies'*> showed the Kantorovich distance to
capture the actual distance between conformations in computer
simulated data better than the Hellinger distance or the relative
entropy. An underlying assumption in clustering the segments is that
those arising from the same underlying state have small distances
and segments arising from different underlying states have larger
distances.

Clustering segments obtained from empirical data is hindered by
empirical and finite sampling errors. In order to visualize the dif-
ficulties that arise from sources of error, the set of pairwise
Kantorovich distances among the segments in the empirical traject-
ory (Fig. 1C) were mapped to principal coordinates with classical
multidimensional scaling®. Such an algorithm places the objects (i.e.,
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Figure 1 | The complications of error in constructing TRDGs from
experimental time-series. (A) Nitrowillardiine-bound GluA2 receptor
ABD? labeled with donor (green) and acceptor (red) flurorphores.

(B) Arrival times of detected photons. (C) Uniformly binned FRET
efficiency trajectory from the experimental SM FRET results for the
nitrowillardiine-bound ABDs*. (D) The pmfs of the segments highlighted
in blue and red in (C). (E) The area of the shaded region between the cdfs,
corresponding to the pmfs in (D), is the Kantorovich distance between
this pair of segments. (F) A 2-dimensional mapping of the distances among
all the segments in the trajectory. Error bars include the contributions of
empirical and sampling errors. The mapping suggests an underlying
network comprised of 3 states (colored circles, heavy black lines), which is
used to construct the effective energy landscape illustrated by the TRDG
shown in (G). See Text and SI for full details.

segments) in a multidimensional space such that the distance rela-
tionships among the objects are preserved as well as possible in a
lower dimension. Error bars were generated as follows: from each
segment g; containing the set of N data points x; = {xy, ..., xn}, N
resamples were taken from the set x; with replacement, generating
the bootstrapped segment g containing the set of points
x} = {x7,...,xy}. Each of the bootstrapped points x; was then
sampled from its empirical error distribution (e.g., a normal distri-
bution centered at x), producing the set of points
x; ={x},...,xy}. A pmf gF(x) was then constructed from the
set xF, yielding a possible realization of the segment pmf, g¥(x) that
contains contributions from sampling and empirical errors. Pairwise
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Kantorovich distances were calculated among all the segment pmfs
gF(x), from which a new set of principal coordinate values were
calculated. Repeating this process 100 times yields set of possible
values for each segment in the principal coordinate space, from
which the confidence intervals shown in Fig. 1F were estimated.
Examination of Fig. 1F suggests that three states exist (colored cir-
cles), but assignment of many segments to a particular state is ham-
pered by large errors and state overlap. Therefore, in order to obtain a
steady-state network that yields an appropriate effective energy land-
scape, as shown in the TRDG in Fig. 1E, a clustering method that is
amenable to the incorporation of errors is necessary for any applica-
tion to noisy SM signals.

Clustering is a procedure in which a system is reduced from a large
number of data points to a smaller number of clusters that embody
regularities within the data set. In this light, we may view clustering as
a form of compression. Furthermore, grouping elements that are
similar but not identical into the same cluster results in distortion.
Increasing the number of clusters describing the data set subse-
quently decreases distortion, but a small decrease in distortion may
not be worth the ‘price’ paid in decreased compression. Clustering a
data set may then be viewed as a tradeoff between compression and
distortion. Rate-distortion theory is an information-theoretical tech-
nique developed by Shannon for use in communications®?*.
Specifically, the theory provides a mathematical framework to deter-
mine the maximum achievable level of compression for a data setata
desired level of distortion. Rate-distortion theory then addresses the
main objective of clustering, and the original formulation has since
been enhanced towards this end, leading to alternative formulations
such as the information bottleneck method*’ and multi-information-
based clustering*'.

The power of clustering with rate-distortion theory lies in its use of
soft clustering. In contrast to standard (ie., hard) clustering, soft
clustering allows data points to exist in multiple clusters, e.g., a
cluster (i.e., state) Si is assigned to segment g, with conditional
probability p(Sk | g;)- Soft clustering thus reflects the existence of
uncertainty in state assignments arising from experimental errors,
small numbers of data points, rare transitions from one state to
another, efc. These conditional probabilities may be used to generate
not only the most probable state sequence §;5,S,... (i.e., choosing S
at each segment g, with p(Sx ’ g;) = maxgp(Sk | g;)), but many reali-
zations of state sequences by randomly sampling from the con-
ditional probabilities of each state at each segment. The various
properties that are calculated from the most probable sequence
may be calculated from every realization, yielding the most probable
value of the properties as well as an estimation of their errors. For
example, a state’s escape time is commonly estimated by compiling
residence times in the state and finding their mean. Performing this
operation on many state sequence realizations yields a distribution of
escape times from which the error can be inferred.

Here we develop a method combining the segmentation procedure
of local equilibrium state analysis'*> with rate-distortion theory to
construct a steady-state network along a noisy two-color SM FRET
experiment. Our method avoids several assumptions, namely the
need to assume the number of states underlying the system as well
as the need to assume properties of the states’ distributions along the
observable coordinate. In the construction of the network, our
method must cope with experimental noise and the finiteness of the
sampled data points. We describe a bootstrapping method designed to
capture and quantify the effects of these errors. Through the applica-
tion of the TRDG protocol*** to the steady-state network, we extract
an energy landscape that accounts for the existence of multiple
transition pathways. We term this new method Segmentation and
Clustering with Information for Single-Molecule time-series
(SCISM). After briefly describing rate-distortion theory, we concisely
discuss the results of two simulated systems. An overdamped
Langevin diffusion simulation was used to assess the performance

of the SCISM procedure vs. several Gaussian/non-Gaussian noise
levels, and a photon-by-photon simulation was used to validate
the procedure under statistical conditions mimicking those of a
SM FRET experiment. We then apply our method to experimental
SM FRET data obtained from isolated agonist binding domains
(ABDs) of the AMPA receptor**** while bound to a full agonist, a
partial agonist, and an antagonist, extracting steady-state networks
and effective energy landscapes for each of the systems. We discuss
the relationship between the topographies of the energy landscapes
and the ion channel activity, revealing new information about the
activation mechanism of the ion channel.

Results

We use rate-distortion theory to cluster, or compress, the set of N
segments g = {g,, ..., gy} into a smaller set of N; states § = {S;,
... SN, } via the minimization of a functional expressing the tradeoff
between compression and distortion.

F =1(S; g)+p(d) (1)

Here, the compression I(S;g) is the mutual information between the
set of states Sand the set of segment pmfs g. The distortion {d), is the
mean distance among all segment pmfs within each state and aver-
aged over all states, and is constrained by the Lagrange multiplier f3.
The functional is minimized via an iterative calculation, returning
results for a particular f and N,. The procedure requires initialization
at several different values of § and N, thereby returning a set of
possible models. In selecting the appropriate model, we select the
simplest model that best fits the data without overfitting it. This is
achieved by determining the amount of distortion arising from
errors, and thus determining the maximum N the data will allow.
See Methods and the SI for complete procedural details.

The proficiency of the SCISM procedure was assessed using two
simulated systems. The first system, overdamped Langevin diffusion
along a potential of mean force containing 5 minima (i.e., states), was
used to examine the performance of the SCISM procedure vs. signal-
to-noise ratio. Specifically, we tested the method against a broad
range of signal-to-noise ratios and found SCISM to accurately return
state distributions, escape times, and the TRDGs for experimentally
reasonable signal-to-noise ratios. We also found that, as the signal-
to-noise ratio decreases, the SCISM procedure begins to return fewer
states than are present in the model system, finally returning a single
state when the signal-to-noise ratio is large enough to obscure the
underlying system. The results for this system not only establish
guidelines for the use of the SCISM procedure in terms of the experi-
mental signal-to-noise ratio, but also demonstrate that overfitting the
system is prohibited by the model selection procedure. See SI
Sections S1 and S2 for complete details concerning the simulation
and the results.

The second simulated system is one mimicking the statistical con-
ditions of a SM FRET experiment. SM FRET trajectories were con-
structed photon-by-photon such that the simulated system contains
errors arising from photon counting, background contamination,
and donor-to-acceptor crosstalk. The properties of the system,
including the states’” distributions and escape times, were extracted
with precision, as all true properties were within the errors of the
extracted properties. See SI Section 3 for a complete discussion of the
simulation and results.

Single-Molecule FRET measurements of AMPA ABDs. AMPA
receptors are tetrameric, ionotropic glutamate receptors comprised
of extracellular N-terminal and ABDs, transmembrane domains, and
intracellular C-terminal domains. Binding agonists such as
glutamate triggers conformational shifts in the ABDs, leading to
the activation of the ion channel. The allosteric mechanism by
which channel activation occurs has been a subject of much recent
interest considering that these receptors are the most abundant in the
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central nervous system and are implicated in a host of
neurodegenerative disorders. The first step in channel activation is
agonist binding; as such the ABD has been central to many
investigations. As shown by the crystal structure in Fig. 1A, the
ABD is bi-lobed forming a cleft with a central binding site. X-ray
structures® of the apo form of the ABD display an open cleft while
those of agonist-bound forms have a shorter cleft distance, suggesting
that cleft closure controls channel activation. Exceptions however, such
as agonists that only partially activate the ion channel but whose x-ray
structures show a small cleft distance*, indicate that this interpretation
provides an incomplete picture of the activation mechanism.

X-ray structures provide only a static image of the ABD; a dynam-
ical perspective is needed if the activation mechanism is to be well
understood. Molecular dynamics simulations** of the apo form
displayed a generally open cleft as well as energetically inexpensive
access multiple free energy minima along a 2-dimensional intra-cleft
distance coordinate. Simulations of the glutamate-bound form
exhibited a smaller cleft distance and a narrow free energy minimum
corresponding to a closed-cleft conformation, but also displayed
shallower free energy minima at larger cleft distances. This suggests
a more dynamic picture in which channel activation is governed not
simply by the degree of cleft closure, but by the agonist’s ability to
‘hold’ the cleft closed through strong interactions with the lobes of
the ABD. SM FRET experiments* offered empirical evidence for this
theoretical prediction, as multiple conformational states were
observed in isolated apo and glutamate-bound ABDs. Additional
SM FRET experiments™ for a group of partial agonists and antago-
nists provided further evidence to support this dynamical perspective
of channel activation. Although dynamical aspects of the apo and
glutamate-bound forms were discussed in terms of state-to-state
kinetics and autocorrelation decay times*, these interpretations do
not offer information concerning the energy landscapes associated
with the ABD. Furthermore, few of these aspects were explored for
the results of the partial agonists and antagonists presented in Ref. 34.
We demonstrate that our new method provides a new and compre-
hensive interpretation on the basis of energy landscapes for these
experimental results, deepening our understanding of the system.

Fig. 2 displays the SCISM-extracted state distributions with a seg-
ment length of 99 ms. Each segment contains 33 uniform time
bins of length 3 ms. Segment lengths were chosen such that they
contain a large enough number of samples to minimize sampling
error, but are short enough such that they capture the time scale
of the dynamics previously observed in the glutamate system®*.
The steady-state networks shown in Fig. 2 include the symmetrized
number of transitions between each state in the network, and the
cuts (i.e., dividing surfaces) used to construct the TRDGs for the
experimental AMPA receptor systems; the overall transition rates
across each of the dividing surfaces increase as the order (circled
numbers) of the cuts increases. Various properties of the extracted
states, including escape times, mean efficiencies, populations, free
energies, and single-exponential behavior are shown in Table 1.
Survival curves and escape time distributions are provided in SI
Section 4, and full descriptions of escape time calculation, as well
as network and TRDG construction are included in Methods.
Barrier heights, ie., the energy at the dividing surface between
two (sets of) states, among the branches in the TRDGs of the
glutamate-bound, nitrowillardiine-bound, and UBP282-bound
ABDs are summarized in Table 2, where the columns ‘Branch 1’
and ‘Branch 2’ contain the mean efficiencies of the states on either
side of the particular branch in the TRDG. Here, free energies at
barriers linking the two branches were estimated via Eq. 10, and
the barrier heights listed in the table are the differences between
free energy at each barrier linking two branches and that of the
lowest free energy state in each system.

Analysis of the glutamate condition*” via SCISM returned 4 states
as shown in Fig. 2A. The most dominant state has a 74% occupation
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Figure 2 | Results for the AMPA ABDs showing state distributions, state
space networks, and TRDGs for the (A) glutamate-bound ABDs,

(B) nitrowillardiine-bound ABDs, and (C) the UBP282-bound ABDs.
Sizes of the nodes in the networks are proportional to the population of
each state with the exception that all states having population < 10% of the
most populous state have the same size. Each edge in the networks is
labeled with the number of transitions along the edge. The colors of all
nodes correspond to the colors of the state distributions in each panel. The
networks and the TRDGs are labeled with circled numbers indicating the
sequence of dividing surfaces used to construct the TRDGs.

probability and a mean efficiency of 0.85, corresponding to an inter-
dye distance of ~38 A. A higher efficiency state has an occupation
probability of 10%, resulting in nearly 85% occupation of states with
mean efficiencies high enough to be considered a closed-cleft con-
formation®. Escape times indicate slower transitions from the high
efficiency states to the lower efficiency states and faster transitions in
the reverse direction. In addition, the TRDG suggests the lowest
barrier for transition to be between the two lowest energy conforma-
tions at high efficiency. Overall, while there are conformational
dynamics observed within the glutamate-bound ABD, these results
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Table 1 | Various state properties returned for the AMPA ABDs, including mean efficiencies, occupation probabilities, free energies, escape
times with 95% confidence intervals, and y? p-values for single-exponential behavior

(B P(Sy) (%) F; (kcal/mol) escape time (ms) 2 p-value
Glutamate

0.97 10 1.21 308 (220,425) 0
0.85 74 674 (589,753) 1
0.75 8 1.31 185 (145,220) 1
0.64 8 1.29 310 (240,384) 1
Nitrowillardiine

0.93 16 0.68 807 (690,928) 0
0.84 17 0.68 288 (260,300) 0
0.74 52 0 664 (618,698) 0
0.66 12 0.88 290 (260,308) 0
0.47 3 1.75 502 (388,634) 1
UBP282 Antagonist

0.88 41 0 490 (458,519) 0
0.76 27 0.26 223 (207,236) 1
0.62 16 0.56 207 (193,217) 1
0.51 11 0.78 220 (203,23¢) 1
0.32 3 1.47 250(217,283) 1
0.11 2 1.71 512 (420,619) 0

suggest a relatively stable and closed ABD when bound to the full
agonist glutamate.

Results for the nitrowillardiine-bound ABD** are shown in Fig. 2B.
A total of 5 states were returned for this system, with the most
populated state having (E) = 0.74 and an occupation probability of
52%. Transitions within this system were slower in general when
compared to the glutamate results, with escape times ranging from
200-800 ms. Non-single exponential behavior, determined by »*
tests between extracted and fitted survival curves, was observed in
the majority of the survival curves (see SI Figs. S9-S11 and Table 1),
however, indicating that underlying states remain hidden in the
noisy trajectories. Furthermore, the TRDG suggests the barrier
heights of the landscape to be smaller in magnitude than barrier
heights observed in the glutamate system, indicating a more active
environment within the nitrowillardiine-bound ABD when com-
pared to the glutamate-bound ABD.

Lastly, we discuss the results shown in Fig. 2C for the ABD when
bound to the antagonist UBP-282**, SCISM returned 6 states for the
antagonist-bound form, indicating a wider interdye range for the
ABD than is observed for the full or partial agonist-bound ABD.
While there is higher relative occupation at lower efficiencies, the
most populous state (41%) has a high (E) of 0.88, which is well within
the ‘closed cleft’ range provided in Ref. 34. However, when the TRDG

and escape times are examined, the reason for the lack of channel
activation in the antagonist-bound ABD becomes clear. The TRDG
indicates that the antagonist-bound form can transverse the four
states having FRET efficiencies 0.51, 0.62, 0.76, and 0.88 with barrier
heights that are ~1 kcal/mol smaller than those found in the glu-
tamate and nitrowillardiine results. The escape times are in the range
of 200-500 ms, and while not significantly shorter than the full and
partial agonist results, the most populous state ((E) = 0.88) exhibits
non-single exponential behavior, again an indication of the existence
of further underlying states. Note in that the third and fourth divid-
ing surfaces of the nitrowillardiine- and UBP-282-bound ABDs have
almost same free energy barriers, causing uncertainty in the branch-
ing structures, which may reflect a more frustrated nature of the
landscape than the glutamate-bound ABD. Taken together, these
results point to a conformationally active ABD when bound to the
antagonist. Not only are there more conformational states, but tran-
sitions out of conformations that are presumed to activate the ion
channel are faster. This frustrated feature on the energy landscape
coupled with the faster dynamics are the root of its antagonism.

In a broader sense, these results combine to paint a clearer picture
of agonism and channel activation of AMPA receptors. When bound
to the ABD, full agonist glutamate yields a stable and largely static
closed cleft ABD through strong interactions both lobes. The inter-

Table 2 | Free energy barriers for the TRDGs of the AMPA ABD:s. States are denoted by their mean efficiencies. Barrier heights are measured
relative to the lowest energy state for each system
Branch 1 Branch 2 Barrier height (kcal/mol)
Glutamate

0.58 0.69,0.85,0.97 9.05

0.69 0.85,0.97 8.95

0.85 0.97 8.75
Nitrowillardiine

0.47 0.63,0.74,0.84,0.93 9.59

0.93 0.63,0.74,0.84 8.79

0.63 0.74,0.84 8.45

0.74 0.84 8.42
UBP282 antagonist

0.11 0.32,0.51,0.62,0.76,0.88 8.54

0.32 0.51,0.62,0.76,0.88 9.07

0.51 0.62,0.76,0.88 8.22

0.62 0.76,0.88 8.21

0.76 0.88 7.85
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action of the ABD with the partial agonist nitrowillardiine is weaker
and/or sterically distorted, yielding an ABD cleft that is less closed
and more active than that of the glutamate-bound form. Lastly, the
weaker interactions between the ABD and the antagonist UBP-282
result in an even more active ABD that converts among various open
and closed cleft conformations on a fast time scale. Overall, the
interpretations provided by SCISM support the conjecture that chan-
nel activation is governed not simply by the degree of cleft closure, as
the antagonist-bound ABD is closed more often than it is open, but
by the agonist’s ability to hold the cleft closed through strong inter-
actions with the lobes of the ABD.

This inference is further illustrated by the representative traject-
ories for each of the glutamate-bound, nitrowillardiine-bound, and
UBP282-bound ABDs shown in Fig. 3. Each panel in Fig. 3 contains 2
sub-panels, with the upper sub-panel showing the representative tra-
jectory, with each data point in each segment being colored according
to the most probable state at the segment according to p(Sk|g;), and
the lower sub-panel illustrating the conditional probabilities p(S|g;)
of each state at each segment. Note that the colors of all states in Fig. 3
correspond to those used in Fig. 2. The data points within each
segment in the upper panels are colored according to the most prob-
able state, and the bar heights in the lower panels correspond to the
magnitudes of the probabilities p(Sx|g;) for each state at each segment.

Fig. 3A shows a glutamate-bound trajectory, Fig. 3B a nitrowillar-
diine-bound trajectory, and Fig. 3C an antagonist-bound trajectory.
The trajectories in Fig. 3 clearly show the dynamical variability
among the different conditions. In the upper panels, the most prob-
able state sequences show that state-to-state fluctuations increase
markedly from the glutamate-bound to the nitrowillardiine-bound
and antagonist-bound ABDs. The difference in the uncertainty in
state assignments shown in the lower panels also arises from the
topographical features of the underlying energy landscapes. In the
case of glutamate-bound ABDs, because of well-separated states with
relatively large barriers (see Fig. 2 and Table 2), except around the
transition region at 0.7-0.8 s, the identification of states does not
change or fluctuate significantly. In contrast, ABDs bound with the
partial-agonist and antagonist (Figs. 3B and 3C, respectively) show
that the system belongs to multiple states along the time course due
to relatively lower barrier heights (and of course experimental
errors). This consequence is consistent with the topography of the
energy landscape found in the TRDGs. For example, the states
depicted by blue and light blue colors that are separated by the lowest
barrier height in Fig. 2C tend to be those to which the system is
multiply assigned along the time course (e.g., 0-0.7 s, 2.2-3 s in
Fig. 3C), but the system is approximately assigned to a single state
depicted by green color in 1.1-1.3 s in Fig. 3C, which is well sepa-
rated by the larger barriers in Fig. 2C.

Discussion. We have combined the information theoretical rate-
distortion theory®®* with the segmentation procedure of local
equilibrium state analysis', resulting in a new method to construct
steady-state networks and extract effective free energy landscapes from
noisy, experimental SM time-series. Through the incorporation of
error into the procedure, we have developed a method to naturally
extract the appropriate number of states by quantifying the
contributions of experimental and finite sampling errors. Our method
avoids assumption of this quantity as well as any assumptions
regarding the properties of the states, such as the shapes of their
distributions and their connectivity through the network.
Furthermore, overfitting is naturally avoided by defining the level
at which measurement errors and finite sampling errors dominate
the data, thus eliminating the deleterious effects of overfitting and
using the maximum amount of information contained within the
data at the time scale of the segment length.

We demonstrated the new method to be successful in identifying
the states underlying two simulated systems. An overdamped

efficiency
o
00 =

o o
N o

1

p(S,lg)

efficiency

1 2 3 4
time (s)

Figure 3 | Representative trajectories of the AMPA ABDs for the

(A) glutamate-bound, (B) nitrowillardiine-bound, and (C) UBP282-
bound conditions. Segments in the upper sub-panels are colored with the
color of their most probable states. Bar heights in the lower sub-panels
correspond to the magnitude of the p(Silg;). All colors correspond to those
used in Figure 2.

Langevin diffusion simulation on a 1-dimensional potential of mean
force was used to test the method’s proficiency at a broad range of
signal-to-noise ratios. States and their properties were accurately
extracted at reasonable experimental signal-to-noise ratios, estab-
lishing guidelines for the use of the SCISM procedure on empirical
data in terms of the error magnitude. These results also confirm that
the model selection procedure, which uses the magnitude of error
contributions as a guide in determining the maximum number of
states the data will allow to be extracted, ensures that overfitting does
not occur, as the method returns fewer than the true number of states
at low signal-to-noise ratios. A photon-by-photon simulation emu-
lating a SM FRET experiment (Section S3 in the SI) was used to
validate SCISM application to such experiments. Not only does the
SCISM method accurately identify the correct number of states and
their underlying distributions to greater than 95% overlap with the
true distributions, but it also accurately identifies the state-to-state
kinetics as well, as all extracted state lifetimes were in agreement
within error of the true values.
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We also applied the method to the experimental SM FRET data
acquired for isolated agonist binding domains of the AMPA receptor
GluA2 while bound to a full agonist, a partial agonist, and an ant-
agonist. Our method uncovers new information on hierarchical
organization of states buried in the experimental trajectories that
deepens our understanding of the ion channel’s mechanism of
activation. Specifically, the results for the full agonist glutamate sug-
gest a closed, stable, and largely static ABD. Stability decreases and
the cleft distance increases when the ABD is bound to the partial
agonist nitrowillardiine, suggesting that the ABD’s interaction with
the partial agonist is weaker and/or sterically distorted. This trend
continues with the results for the antagonist. Although the results for
this system indicate that the antagonist-bound ABD often populates
a closed cleft conformation, transitions out of this conformation are
fast. Taken together, our results for these experimental systems sup-
port the theoretical conjecture that the activation of the GluA2 recep-
tor is not solely a product of the degree of cleft closure, but is also
affected by the agonist’s ability to hold the cleft closed in a stable
fashion.

Our method bridges single molecule biology, energy landscapes,
and complex networks into a single platform that starts from experi-
mental data that are subject to experimental errors and finite sam-
pling effects. It is thus expected to have an immediate impact in the
SM community, aiding in the interpretations provided by SM experi-
ments that take the multiple pathways through the entire steady-state
network into account. Our method is unique in that, while such
analyses are often hindered by experimental noise and finite sam-
pling effects, SCISM turns these difficulties to its advantage, using
them to select the appropriate number of states and avoid overfitting
the system, and to extract the underlying states directly along the
observed time-series. Although detailed balance among all states in
all networks studied in this paper was verified (see the SI), the escape
kinetics from some states were found to not follow single exponential
behavior. In addition to the existence of multiple states as described
above, this may indicate the possibility of heterogeneous, non-
Markovian nature of the networks'®'**, especially for the partial
agonist-bound AMPA ABD experiment. Future work will focus on
the identification of such behavior and the incorporation of these
enhancements.

Methods

Details of the SCISM procedure. Clustering the set of segments ginto the set of states
S may take two general forms. The segments may either be forced to exist in only one
cluster and no others, i.e., hard clustering, or they may be allowed to span multiple
clusters, i.e., soft clustering. Soft clustering makes use of a conditional probability,
P(Sk|g:), of a state Sy given the observation of a segment g;. Note that in terms of the
conditional probabilities, hard clustering is simply a limit of soft clustering where all
P(Sk|g:) approach 0 or 1. The use of soft clustering is advantageous considering the
noisy nature of SM FRET data, as the p(Sk|g;) reflect uncertainties in state assignments
of the segments.

The objective of rate-distortion theory is to minimize the amount of information
needed to describe the set gin terms of the set of states S while maintaining a desired
level of distortion. This information is I(S; g), which, in information theoretical
terms, is the average number of bits required to specify each segment g; within the set
of states .

p(5g)

Ns N
;Zj p(t/2,)p(g,)log, o5

Minimization of I(S; g) is accomplished via the method of Lagrange multipliers, as
the functional in Eq. 1 above is designed to minimize I(S; g) subject to the condition
(d) = Dwhere D is some desired level of distortion. Here we have introduced p(g;), the
probabilities of each of the segment pmfs g; and the probabilities p(Sk) of each of the
states S. The conditionals p(S|g;) are those discussed above, which are normalized
across S for each g;. The average distortion across all states,

Ng N N
= ZP(Sk)ZZP FANYACANSES (3)
k=1

i=1 j=1

)

is the mean of the Kantorovich distances d;; for each pair of distributions g; and g;
within the set of states S.

Minimization of the functional in Eq. 1 is a well-known variational problem that
involves setting the derivative of the functional, with respect to the variables p(Sk|g;),
to zero. Numerical values for the formal solution to this variational problem™,

(s { d }
p(Selg;) = exp|—f ) p(gilSe)dy|, (4)
(5kls) = 7g: gyewp | ~F 2 PlalS)dl

are obtained via an iterative procedure known as the Blahut-Arimoto algorithm
Note that a normalization function, Z(g;f8), has been introduced in Eq. 4, and is given

by
Ns N
By =" p(S) eXP[ B p(gIS)d } (5)
k=1 j=1
The probability of state Sy is calculated via the conditionals p(Sk|g;).

N

Zp(gi)p(sk|gi) : (6)

i=1

p(Sk) =

As is evident in the above Egs. 4 and 6, the variables p(Sy) and p(Sk|g;) must be self-
consistent, and this condition is met by alternating between calculation of the p(Sy)
and p(Sk|g;) and iterating over both calculations until convergence in the functional
value is reached. Practically, the matrix p(S|g) is randomly initialized, which may
result in convergence to a local minimum, so the algorithm is initialized multiple
times and the result minimizing the value of the functional is returned. This cal-
culation returns the conditional probabilities p(Si|g;) for a particular number of states
Ng and a particular value of the Lagrange multiplier f.

For appropriate application to the noisy, finite time-series acquired in SM mea-
surements, we must consider the contributions of error in the measurement as well as
in the construction of the segment pmfs. Empirical error arises from various sources,
including instrumental sources such as shot-noise and photophysical sources such as
quantum yield fluctuations of the fluorophores. According to the central limit the-
orem, the collective contribution of these sources of error follows a normal distri-
bution®. Empirical error is therefore incorporated by randomly sampling each
original data point from a normal distribution whose mean is the value of the
observable and whose standard deviation is the associated empirical error. Sampling
error arising from finite sampling of the time-series is incorporated by bootstrapping,
e.g., resampling the data points comprising the segments with replacement™®. That is,
for each time segment g;, we generate a possible realization by taking into account
experimental errors and statistical fluctuation from finite sampling. Randomly
sampled and bootstrapped segments are then used to construct a set of segment pmfs
for each segment g;, and these pmfs are used to calculate the statistical uncertainty of
pairwise distances d;; among all segments. The d;; are subsequently used to calculate a
mean distortion (via Eq. 4) for a clustering result with a particular Ng and f.
Convergence of the bootstrapped distortion distribution is ensured by incrementally
increasing the number of bootstraps, appending the new bootstraps to the existing
ones, then using a two-sample, two-tailed Kolmogorov-Smirnov (K-S) hypothesis
test to verify that the distribution does not change with the addition of new boot-
straps. A supporting figure (Fig. S12) and an accompanying description are provided
in the SI.

The remaining issue is to choose the number of states Ng and f, i.e., the model to
best describe the system under the elucidation of experimental errors and those from
finite sampling. Selecting the simplest model that best fits the data without overfitting
requires explicit definition of what is meant by the terms simplest, best fit, and overfit.
The simplest model has the smallest value of I(S;g). For example, in the trivial case
that there is only one state, I(S;g) vanishes. The simplest model, however, may give
rise to large distortion. In this sense, distortion is a measure of the quality of the
model’s fit to the data. The model that best fits the data will have the lowest level of
distortion. This is the oppositely trivial case in which each segment belongs to its own
cluster and to no others, yielding zero distortion. Although intra-segment distortions
(i.e., distance between a pmf of segment g; and that of itself, or self-distortion) vanish
in the absence of error, nonzero self-distortion arises from empirical and sampling
errors. Distortion is therefore present within even the best fitting model, which brings
us to overfitting. The incorporation of error provides a simple and natural way to
avoid overfitting by defining the level of distortion that is present within the best
fitting model; that is, defining the amount of distortion due to error in the data. If the
mean distortion of a particular model falls within the range of distortion due to error,
then the distortion arising within the model can be attributed to error, and thus the
model attains the minimum achievable level of distortion. Further increasing the
model’s complexity constitutes overfitting, as there is no further information avail-
able at the time scale of the segment length.

Distortion due to error is estimated by bootstrapping the intra-segment distortions
in the same manner as described above, and is further detailed in the SI. A confidence
interval, e.g., 95%, on the self-distortion distribution is selected, thus providing a
‘distortion cutoff’ and a means to select the appropriate model. The SCISM algorithm
is initialized at small f§ for each N, and is incrementally increased either until the
distortion cutoff is passed or until the mean distortion distributions are unchanged
(via K-S test) with further increase in . Models that satisfy the distortion cutoff are
compared directly via I(S;g), and the model with the smallest I(S;g) satisfying the
distortion cutoff is selected as the appropriate model. Further details are illustrated in
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Fig. S2 describing the results of the overdamped Langevin simulation. Once the model
has been selected and the states obtained, we construct steady-state networks, cal-
culate escape times, construct TRDGs, and infer all of their accompanying error
estimations.

TRDG Construction. Effective free energy landscapes, illustrated as transition
disconnectivity graphs (TRDGs) as shown in Fig. 2, are constructed from the network
of the states’ residence and transition probabilities according to Krivov and
Karplus®*. In particular, let N;; be the number of transitions from the state i to the
state j, and let the total number of observations be N = X, ;N;;. Then the relative free
energy of the state i is

>Ny

Ni
F,‘= 7kBT ln<T> = kaTln<N> = 7k3T lnPi,

7)
where N; is the number of visits to state i, kp is the Boltzmann constant and T is the
temperature (298 Kin this paper). The free energy at the barrier separating the state i
and the state j denoted by Fj; is calculated as follows: suppose that the rate constant
from the state i to the state j, k;;, is represented by Kramers’ rate theory, i.e., k;; =7,
exp(—(F;;—F;)/kgT) where the pre-exponential factor 7, roughly corresponds to the
decay timescale of the autocorrelation function for motion exerted by friction from
the environment. In this paper, we choose 7, to be 1 ps as for the typical timescale of
the fastest protein folding®** for the sake of simplicity. Then, the following relation

holds.
P N; 1 N; 1 F;j—F; F;
Pi=—=—||=]=—exp| ———— | exp| — —
J Ni Teg ) \N Ty P kgT P kgT

1 F;
=—exp| — .
To P kBT
Here, 7, is the observation time, i.e., the length of a segment in the original time-
series. Then, Fj; is elucidated by

Njj 1
F,j= 7kBT ln(ﬁ]—o>

Tseg

©)

Note that, in order to validate the concept of the free energy at the barrier separating
the state i and the state j, the condition F;; = F;; needs to hold, implying the
requirement of detailed balance k;P; = k;;P;.

The branching structure of the TRDGs arises via the application of the max-flow,
min-cut protocol detailed by Krivov and Karplus**** to the state-to-state network.
Free energies at a series of barriers (i.e., cuts, dividing surfaces) linking two disjoint
sets I and J of the network in TRDG are elucidated via Eq. 9 in which the number of
transitions per unit time 7, between the states i and j, Ny, is replaced by the number
of transitions across the cut. That is,

Nyt
FnszBTln(ﬁ—o>

T (10)
where Ny = Z iel Z jerNjj. It is of note that the transition matrix must be sym-
metrized in order to apply this protocol. To ensure that the symmetrization of the
transition matrix does not invalidate the resulting TRDG and the concept of the free
energy landscape, detailed balance among the states in the steady-state network must
be verified. Specifically, detailed balance requires the numbers of forward and back-
ward transitions to be equivalent, i.e., N;; = Nj; for all pairs of states i and j.
Considering, however, that single-molecule measurements return time-series of finite
length, this condition may not necessarily hold. We thus performed hypothesis tests
under the null hypothesis that detailed balance holds as described in the SI. All tests
suggested that the detailed balance hypothesis cannot be rejected for systems reported
here.
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