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The similarity in mechanical properties of dense active matter
and sheared amorphous solids has been noted in recent years
without a rigorous examination of the underlying mechanism.
We develop a mean-field model that predicts that their critical
behavior—as measured by their avalanche statistics—should be
equivalent in infinite dimensions up to a rescaling factor that
depends on the correlation length of the applied field. We test
these predictions in two dimensions using a numerical proto-
col, termed “athermal quasistatic random displacement,” and find
that these mean-field predictions are surprisingly accurate in low
dimensions. We identify a general class of perturbations that
smoothly interpolates between the uncorrelated localized forces
that occur in the high-persistence limit of dense active matter
and system-spanning correlated displacements that occur under
applied shear. These results suggest a universal framework for
predicting flow, deformation, and failure in active and sheared
disordered materials.
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The statistical physics of active matter—where energy
is injected at the smallest scale, that of the particles

themselves—is highly nontrivial, exhibiting new features such as
giant number fluctuations and motility-induced phase separation
(1, 2). While comprehensive theories have been developed for
many of these phenomena at low and intermediate densities (2,
3), the behavior of highly dense, glassy active matter remains
more mysterious. Recent work by Henkes et al. (4, 5) high-
lights the important role of the potential energy landscape in
constraining and dictating the behavior of dense active matter,
which is in some ways similar to the situation in glasses excited
by thermal fluctuations. Nevertheless, work by Berthier et al.
(6, 7) emphasizes important differences between the dynamics
of thermal and active glasses within the glassy potential energy
landscape. Therefore, the large body of work on thermally
excited glasses cannot be transferred immediately to active
glasses, and so a predictive theory for the dynamics of dense
active matter remains elusive.

Meanwhile, the dynamics of athermal sheared disordered
materials, where energy is injected at the largest scale, globally
from the boundaries, have been the subject of intense study for
decades. A recent breakthrough allows an exact analytic solution
for the behavior of slowly sheared systems in infinite dimen-
sions, where interactions are exactly mean field (8–14). These
results qualitatively explain many features in sheared two- and
three-dimensional glassy solids. Perhaps more interestingly, new
work suggests that the dynamical mean-field equations in infinite
dimensions have the same structure regardless of whether the
driving forces are generated by global shear or active forces on
each particle (6, 15–17), as all such forcing can be represented by
memory kernels with the same functional form.

There is also evidence of similarities between sheared and
active glassy systems in two- and three-dimensional simulations;
recent studies have noted that in granular systems the two forc-

ing mechanisms yield similar critical behavior (18), large density
fluctuations (4, 19), effective temperatures (20), aging behavior
(21), and Eshelby deformations (22).

What is missing in the low-dimensional scenarios is a uni-
fying picture as developed in infinite dimensions; to develop
such a picture, it is necessary to first examine how and where
discrepancies between shear and random forces appear. For
example, Liao and Xu (18) noted that self-propelled particles
driven by constant forces with the same magnitude in random
directions will have the same diverging viscosity as their sheared
counterparts (23–25) when jamming is approached, albeit with
different critical exponents. Moreover, the values of the expo-
nents can be changed by altering features of the forces on the
self-propelled particles. Therefore, one wonders whether there
may be a family of forcing fields, including shear and different
types of self-propulsion, where all of the resulting dynamics could
be understood and predicted as part of a universal description of
failure in jammed solids.

One hint about how such a framework might be constructed
comes from the density of states that describes the spectrum of
vibrational modes about a mechanically stable state in the poten-
tial energy landscape. More specifically, in low dimensions, it
has been shown that the linear response of particles to either
random forces in the limit of low rotational noise or long persis-
tence length (4, 5, 26) or to shear (27) is dominated by the lowest
eigenmode. Very close to an instability, this lowest eigenmode
specifies the direction in the energy landscape with the lowest
energy barrier (28) and highlights the direction in which parti-
cles must move to leave one mechanically stable state and find
another (29, 30).
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the scale of constituent particles. Previous work has shown
that some features of dense active matter are similar to those
in dense disordered materials that are sheared globally from
the boundaries. Using analytic and computational tools, we
show that there is a direct correspondence between active
matter and applied shear strain, which can in turn be used
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Taken together, these previous results suggest that in two-
dimensional (2D) and three-dimensional (3D) materials there
is a direct connection between how a disordered system tra-
verses the energy landscape under shear and under random
forces in the limit of zero rotational noise. Here we develop an
exact infinite-dimensional mean-field theory prediction for the
mechanical response of materials under shear and such active
forces. We explicitly test this prediction by analyzing numerical
simulations of soft spheres in two dimensions and compar-
ing dynamics under athermal quasistatic shear (AQS) (30) and
a constrained dynamics we term athermal quasistatic random
displacements (AQRD).

One goal of this article is to establish AQRD as an interesting
and important limit of active matter dynamics. In AQRD, each
particle is displaced continuously along its own self-propelled
direction. Typical active matter simulations study overdamped
self-propelled particles that move under constant force or equiv-
alently constant velocity when the damping is homogeneous (2,
3). The direction of self-propulsion changes on a timescale called
the persistence time, which is parameterized by the rotational
noise. Therefore, AQRD is similar to self-propelled particles in
the limit where the rotational noise is zero and the self-propelled
velocity is slower than any other relaxation process inside the
material.

An important difference between the two is, however, that
active particles move under constant force, whereas AQRD par-
ticles move at constant displacement. This is in direct analogy
to two different kinds of rheology experiments: 1) those where a
system is subject to a constant shear force at the boundary, called
“creep” experiments, and 2) those where the material is subject
to a constant velocity condition at the boundary, called “con-
stant strain rate” experiments. AQS is the zero-strain rate limit of
the latter. In this work, we focus on AQRD because simulations
and experiments which control strain rate (or displacements) are
known to be very useful for characterizing material properties,
and so there are a large amount of data in the literature for
comparison. We focus on the preyielding regime, corresponding
with the “start-up” phase of a simulation or experiment where
the response depends strongly on the initial preparation of the
material and the infinite-dimensional mean-field equations are
solvable (8–14, 31). In contrast, stress-controlled creep experi-
ments are fundamentally limited because the system can cross
only energy barriers which are surmountable by the fixed applied
stress, and under slow driving they exhibit complicated discontin-
uous stick–slip dynamics (32, 33). Therefore, while our primary
focus in this article is on AQRD dynamics, we also introduce
and study athermal quasistatic random force (AQRF) simula-
tions, which are the random equivalent to creep experiments,
and demonstrate that AQRF and AQRD are equivalent in linear
response.

We next proceed to show that under shear (AQS) and ran-
dom displacements (AQRD), scaling relations describing the
avalanche statistics and the sampling of saddle points are iden-
tical and consistent with mean-field predictions, although the
prefactors differ. We hypothesize that differences in those pref-
actors, including the shear modulus, are governed by the cor-
relation length scale associated with the imposed displacement
field; in shear this length is the size of the box, while for com-
pletely random fields it is the size of individual particles. In
addition, the mean-field calculation predicts that these prefac-
tors are precisely determined by the distribution of the imposed
displacement field, which in turn causes fluctuations in strain
between nearby particles.

Therefore, we systematically vary this correlation length in our
simulations and find that the coefficients exhibit a systematic
power-law scaling that matches mean-field predictions. We also
study the effect of material preparation on these results, demon-
strating that shear and random displacement fields are similar
even in ultrastable glasses.

Taken together, this demonstrates that shear can be consid-
ered as a highly correlated special case of more general random
displacements and establishes AQRD as a useful and interesting
limit of active matter with a direct link to sheared systems.

Methods
Two Ways of Traversing the Energy Landscape. When construct-
ing the energy landscape of allowed configurations, there are
two types of variables that play a priori different roles: State
variables are explicitly specified by the experimental or sim-
ulation protocol, while reaction coordinates are free to vary
under constraints imposed by state variables. For instance,
a standard infinite-temperature quench (34) considers shear
strain to be a state variable during preparation, while shear-
stabilization methods (35) treat strain as a reaction coordinate
during preparation, regardless of how the strain variable is used
afterward. Therefore, the use of strain or the box degrees of
freedom as state variables is merely an artifact of the way
in which experiments or simulations are performed. More-
over, during an athermal quasistatic perturbation, we adjust
a state variable and then reminimize the system by allow-
ing all reaction coordinates to find their nearest local energy
minima.

An applied shear strain, illustrated by the red arrows in Fig.
1A, perturbs the system in its potential energy landscape. One
way to represent this perturbation is to view the landscape
as a function of the Nd reaction coordinates (particle posi-
tions), so that adjusting the state variable (the magnitude of
strain under simple shear) contorts the landscape in that Nd -
dimensional space (29, 30, 35). As a system is sheared toward
a saddle point, a nearby energy barrier is lowered until the sys-
tem reaches the saddle point and moves downhill toward a new
minimum.

It is equivalent to describe this process instead as moving in
an Nd + 1-dimensional landscape where we explicitly push the
system along the box degree of freedom; i.e., we control the
state variable corresponding to the magnitude of simple shear
strain, as shown in Fig. 1B. In this framework, there are two types
of saddle points: those parallel to the strain state variable and
those perpendicular to it. The ones perpendicular to the strain
are the same as the saddles in the Nd -dimensional representa-
tion, whereas the saddles parallel to the strain correspond to the
shear modulus changing sign, which does not correspond to an
instability in a strain-controlled measurement (36).

A second type of possible perturbation is a random displace-
ment field, where we choose a random direction in configuration
space |c〉 and promote it to a controlled state variable. An exam-
ple field |c〉 is illustrated by the red arrows in Fig. 1D. Thus, after
perturbing along |c〉, the system is free to relax along all direc-
tions perpendicular to |c〉, but motion along |c〉 is restricted via
constrained minimization to the other Nd − 1 dimensions. The
saddles encountered in such dynamics are thus always perpen-
dicular to |c〉, and we ask whether the distribution of saddles and
their corresponding stress drops follow the same distribution as
those encountered under shear strain.

Numerical Model Description. We simulate N Hertzian spheres in
d = 2 dimensions where N is the number of particles. Except
where specified when using ultrastable glasses, our systems are
a 50:50 mixture of bidisperse disks with diameter ratio 1:1.4
to avoid crystallization. For the pressure sweep data, we pre-
pare our systems at a target pressure by performing a standard
infinite-temperature quench (34), followed by FIRE (Fast Iner-
tial Relaxation Engine) minimization (37) at a packing fraction
such that we stay above the target pressure, followed by a care-
ful decompression (36, 38). For the correlation length sweep, we
prepare our systems at a pressure of p = 0.0236± 0.0004 via sim-
ple infinite-temperature quench at a packing fraction φ= 0.94
(34). In each case, we use the Hertzian contact potential
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Fig. 1. Two methods of traversing the energy landscape: AQS and AQRD. (A) Forces applied to particles in an AQS ensemble. (B) Potential energy landscape
splitting out the Nd + 1 degrees of freedom into Nd (one of which is the reaction coordinate shown) and strain. (C) Stress–strain curve showing that stress
drop occurs when a saddle point in the reaction coordinate is reached by traversing along the strain coordinate. (D) Forces applied to particles in a sample
AQRD ensemble. (E) Potential energy landscape splitting out the Nd degrees of freedom (for fixed box shape) into Nd− 1 (one of which is the reaction
coordinate shown) and the vector along which random displacements are applied. (F) Random-stress vs. random-strain curve showing that random-stress
drop occurs when a saddle point in the reaction coordinate is reached by traversing along the |c〉 coordinate. Highlighted points in C and F correspond with
the curve of matching color in B and E, respectively.

U =
1

5/2

∑
ij

Θ(εij )ε
5/2
ij , [1]

where Θ is the Heaviside function, εij = 1− rij/(ρi + ρj ) is the
dimensionless overlap, ρi is the radius of particle i , and rij is the
distance between particles i and j . All length scales are reported
in natural units of the minimum particle diameter.

Athermal Quasistatic Shear. Under the now-standard method of
AQS (30), our system of particles is subject to simple shear via
Lees–Edwards boundary conditions where the periodic replicas
in the y direction are shifted by an amount γLy in the x direc-
tion, and γ is the magnitude of simple shear which is the only
nonzero entry in the strain tensor. After each small step in the
applied strain (∆γ= 10−4), a FIRE minimization algorithm (37)
is used to minimize the energy subject to the constraint that the
box shape is held fixed (ensuring, therefore, that the strain tensor
is defined by a single scalar, the shear strain). Therefore, AQS is
equivalent to dynamics in the limit of zero strain rate—where the
material is sheared more slowly than any process or relaxation
rate inside the material.

To facilitate comparison with the AQRD protocol described
in the next section we emphasize that, in linear response and
neglecting the effect of particle–particle interactions, shearing
the boundary a distance γLy along the x direction is equiv-
alent to displacing particles in the x direction with a mag-
nitude determined via the height of the system as given by
uαi = γδαx (yi −Ly/2). Here yi is the y coordinate of parti-
cle i , Ly is the length of the box in the y direction, and δ
is the Kronecker delta function of x and dimensional index
α (30). An example of such a displacement field is shown
in Fig. 1A. The overall magnitude of this displacement vec-
tor field generated by an applied strain γ is then given by
|u(γ)|= γ

[∑
i (yi −Ly/2)2

]
1/2. If we assume a uniform distri-

bution of y-coordinate values, as one expects in an amorphous
sample, the average magnitude is |u(γ)| ≈ γLy

√
N /12. There-

fore, an applied shear strain of γ is equivalent to moving a dis-
tance γLy

√
N /12 along a normalized vector field, independent

of dimension.

Athermal Quasistatic Random Displacements. Similar to AQS, the
system is initialized into a mechanically stable state at the bottom
of a potential energy well with energy U and Nd -dimensional
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position vector |xmin〉. The system is then displaced along an Nd -
dimensional unitless vector |c〉 with elements ci and 〈c|c〉= 1.
We explore different methods for choosing |c〉 described below.
First, we define the random strain γ̃ of a scalar displacement ũ
along the vector |c〉 as

γ̃=
ũ

Ly

√
N
12

. [2]

This definition ensures that strains (γ) in AQS can be directly
compared to random-force strains (γ̃) in AQRD, where both are
unitless.

Starting from positions |xmin〉 and displacing by an amount
ũ , new positions are then |x 〉= |xmin〉+ ũ|c〉, but they are not
in a local energy minimum with respect to the reaction coor-
dinates. Therefore, we must evolve the system using a con-
strained minimization that imposes an external force |F ext〉=
−λ|c〉, where λ is the Lagrange multiplier, which prevents any
motion along |c〉.

We calculate how such displacements induce changes to the
internal stress of the system, in direct analogy to stress–strain
curves for AQS. The stress induced by the field γ̃ is given by

σ̃=
1

A

dU

d γ̃
=

1

A

N∑
i=1

(
∂U

∂x
‖
i

dx
‖
i

d γ̃
+
∂U

∂x⊥i

dx⊥i
d γ̃

)
, [3]

where A=LxLy is the area, and we have split the particle motion
xi into components which are parallel or perpendicular to ci as
x
‖
i and x⊥i , respectively. By definition, ∂U

∂x⊥i
=−F⊥i and since

we minimize force with respect to the particle position, F⊥i = 0.
Thus, the total residual force Fi on each particle i is parallel to

ci . Furthermore, we note that dx
‖
i

dγ̃
= ciLy

√
N
12

, resulting in the
definition of the random stress

σ̃=− 1

LxLy

N∑
i=1

Fi · ciLy

√
N

12
=−〈F |c〉 1

Lx

√
N

12
. [4]

This is a generalization of the derivation for shear stress in AQS
developed Maloney and Lemaitre (30). Throughout this article,
we use variables with a tilde to denote observables that are the
AQRD equivalent to AQS counterparts.

In practice, we evolve the system by taking steps of 10−4 in
the random strain γ̃, and after each step we use FIRE minimiza-
tion (37) to find the constrained local minimum. Thus, instead
of applying forces in the FIRE-calculated gradient direction |F 〉,
we apply them along |F 〉− 〈c|F 〉|c〉. We impose a stopping con-
dition when every component of the total excess force on every
particle is less than a cutoff value of 10−14, set to ensure particle
positions to double precision. By construction, there is no drift
velocity in the system.

We generate the fields |c〉 for AQRD using two different
methods: one based on random Gaussian fields and another
based on plane waves. The Gaussian random fields, which are
spatially correlated over a characteristic length scale ξ, are gen-
erated using a standard Fourier transform method that respects
the periodic boundary conditions. A detailed description is given
in SI Appendix. Fig. 2 A–C illustrates the random vector |c〉
generated from the correlated Gaussian random field for dif-
ferent correlation lengths ξ= 1, 2.5, and 6.25, respectively. To
test whether features we observe are dependent only on the cor-
relation length, or whether other features of the field structure
are important, we also generate plane-wave-like fields where the
x components of the vectors are a sine function of the y coor-
dinate of the particle positions, and the y components of the
vectors vanish. For such fields, we define the correlation length

A B C D

E F G H

Fig. 2. Effect of random-field correlation length ξ on the mechanical response. (A–C) Snapshots of GCFs with correlation lengths (A) ξ= 1, (B) ξ= 2.5, and
(C) ξ= 6.25. (D) Example random-stress vs. random-strain curves for random fields with different correlation lengths. (E–G) Snapshots of WCFs with wave
lengths (E) ξ= 2.5, (F) ξ= 6.25, and (G) ξ= 25. (H) Example random-stress vs. random-strain curves for wave-like fields with different correlation lengths.
In all graphs, we use N = 2,048, φ= 0.94, and thus Lx = Ly = 50.3.
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scale to be half the chosen wavelength. Fig. 2 E–G illustrates the
random vector |c〉 generated in a wave-like pattern for differ-
ent correlation lengths ξ= 2.5, 6.25, and 25, respectively. The
corresponding displacement field associated with shear under
Lees–Edwards boundary conditions is equivalent to a plane wave
with a wavelength 2Ly , which is clear from Fig. 1A.

While this version of AQRD applies displacements in a direct
analogy to a strain-controlled experiment, we also study a stress-
controlled version of random forcing, denoted AQRF, which
is an exact limit of standard active matter simulations. Details
can be found in SI Appendix. Fig. 3 A–C compares the dynam-
ics under AQRD (black) and AQRF (red) for a system with
the same initial conditions. In linear response (i.e., until the
first stress drop in AQRD), the two curves are exactly equiv-
alent. More broadly, until the macroscopic yielding transition
(at about 6% strain), stress drops in AQRD are often asso-
ciated with slip events in AQRF, and the curves still largely
follow each other, similar to results in sheared particle systems.
Fig 3D demonstrates that these similarities persist over a large
ensemble. Together, these data indicate that AQRD and AQRF
sample similar features of the potential landscape in the preyield-
ing regime, which is also consistent with a full derivation of the
mean-field theory (31). This confirms that AQRD is a useful
proxy for active matter simulations in the limit of zero rotational
noise, and so we focus on AQRD in what follows.

Results
Mean-Field Results. The limit of infinite dimension provides an
exact benchmark to investigate properties of structural glasses
(14, 39) and has been successfully used, for instance, to study qua-
sistatic shear or compression (8–14). In this framework, we can
show that AQS and AQRD are strictly equivalent upon a sim-
ple rescaling of the accumulated strain, with a dependence on the
correlation length ξ. The full derivation is provided in ref. 31.

To implement a local strain vector |c〉 ∈RNd as in AQRD, we
assign to each particle a random local strain ci drawn from a
Gaussian distribution with zero mean defined by

ci = 0 , ci · cj = Ξ fξ(|rij (0)|)/d ,

with fξ(x ) = e−x2/(2ξ2)/
√

2πξ2 ,
[5]

where the overline denotes the statistical average over the
quenched random strain field, Ξ is a tunable amplitude which has
the units of a length (so that the strains remain unitless), and rij (t)
is the distance between particles i and j at time t (and we focus
here on the initial configuration). For simplicity here we have
assumed the fluctuations in the field can be described by a nor-
malized Gaussian function with a finite correlation length ξ > 0.
However, we emphasize that this simplifying condition on fξ(x )

does not meaningfully affect the main results and the general case
is treated in ref. 31. Finally, we include an explicit scaling with
dimension d so that the fluctuations in c scale with dimension in
the same way as fluctuations in the local strain field in AQS.

In the infinite-dimensional limit, the complex many-body
dynamics of pairwise interacting particles become exactly mean
field. They can then be reduced to an effective scalar stochas-
tic process for the fluctuating gap between particle pairs,
hij (t) = d (|rij (t)|/`− 1), where ` is the typical distance between
particles and hij ∼O(1) (16, 17, 40, 41). To compare the mean-
field gap directly with the soft spheres in our simulations, we
can use the relationship hij =−dεij ρi+ρj`

. The dynamics are then
governed by the distribution of the relative strains cij ≡‖ci − cj‖,
which are uncorrelated in the limit d→∞ for distinct pairs
of particles (consistent with the mean-field assumption). The
variance of a given pair c2ij , however, still encodes the spatial
correlation of individual local strains, through the quantity

F (Ξ, `, ξ)= d`2 c2ij = 2`2Ξ [fξ(0)− fξ(`)], [6]

which can be straightforwardly computed for a given choice of
fξ or directly measured in numerical simulations. By adapting
the derivation of the mean-field description for shear presented
in ref. 16, we find that AQS and AQRD are strictly equivalent
in infinite dimension, provided that we rescale the accumulated
strain by a factor

√
F/`, so that it is directly controlled by the

variance of relative strains c2ij .
For the quasistatic stress–strain curves and the elastic modu-

lus, we specifically predict that the random strain γ̃ can be written
in terms of the AQS shear strain γ, and therefore the random-
displacement stress σ̃ and the random-displacement modulus µ̃
can also be easily scaled as

γMF≡ γ̃MF

√
F

`
⇒

{
σMF = √̀

F
σ̃MF,

µMF = `2

F
µ̃MF,

[7]

where the MF subscripts emphasize that this is a mean-field
prediction, whose validity should be tested in lower dimensions.

We emphasize that the infinite-dimensional calculation pre-
dicts that F/`2 is thus the key quantity to make the AQRD
random stress–random strain curves (and other such mean-field
observables) collapse onto their AQS counterparts. This quan-
tity is solely prescribed by the statistical features of the input field
that we chose to consider. Simply put, F/`2 is the variance in the
strain of the input field—i.e., a measure of the distribution of
relative strain between particles—and it completely governs the
dynamics of the system.

A B C D

Fig. 3. Comparison of AQRD and AQRF sampling mechanisms. Three generic sample systems with N = 2,048 and φ= 0.94 are generated and then per-
turbed by a GCF |c〉 with (A) ξ= 1, (B) ξ= 3.5, and (C) ξ= 6. The driving mechanism is varied between AQRD—in direct analogy to a strain-controlled
measurement—and AQRF—in direct analogy to a stress-controlled measurement. In linear response, the curves are exactly equivalent, but while AQRD
systems experience stress drops, AQRF measurements are punctuated by slip events, wherein the system rearranges until it can support the applied stress.
As such, in AQRF, the system does not sample local minima in the energy landscape. (D) Nevertheless, the curves can be averaged (in this case, over 30
realizations) to give the bulk response. In the preyielding regime, we see that the average response is the same, indicating that both mechanisms sample
similar features of the energy landscape.
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Under our assumption that fξ(x ) is a normalized Gaussian
function as in [5], we can straightforwardly compute F from [6].
By Taylor expanding F in the limits `/ξ� 1 and `/ξ� 1, and
keeping only the leading terms, we predict a cross-over of the
elastic modulus ξ dependence depending on the ratio `/ξ, with
F∼ 1/ξ at `/ξ� 1 and F∼ 1/ξ3 at `/ξ� 1 (31). The specific
case of global applied shear strain corresponds to the latter case,
as ξ is of the order of the system size for shear. In both cases,
this implies that the elastic modulus decreases with increasing
ξ, as we will demonstrate numerically below. This matches with
physical intuition: It is less efficient to deform a glass with more
correlated local strains, i.e., with a larger correlation length. The
most extreme case is to consider an infinite ξ: If all particles are
driven with the same vector ci , the whole system is simply trans-
lated in space and its effective strain is strictly zero, consistent
with having no variance of relative strains (F= 0). In particular,
[7] states that in mean field, AQS is a special case of AQRD,
with F/`2 = 1. See SI Appendix for a scaling argument in finite
dimension supporting this mean-field picture.

Numerical Results for Random Stress vs. Random Strain. We next
test the mean-field prediction in numerical simulations in 2D.
Our first observation is that AQS and AQRD give rise to qual-
itatively similar stress–strain and random stress–random strain
curves, as highlighted in Fig. 1 C and F. Elastic branches—where
the stress rises linearly with the strain—are punctuated by points
where the system crosses a saddle point instability, causing a
stress drop and particle rearrangements as the system transitions
to a new energy minimum. The magnitude of the stress drop
quantifies the size of the rearrangement event.

In AQS, the stress averaged over many such stress drops grad-
ually rises until about 6 to 7% strain, at which point the system
yields. After the yielding point, the average stress remains con-
stant as a function of strain. Moreover, the local shear modulus
µ, defined as the slope of the stress–strain curve along elastic
branches, is significantly different from the macroscopic coarse-
grained shear modulus µglobal, defined as the ratio of the average
stress at yield to the average strain at yield. This observation is
directly related to marginal stability (42) and can be qualitatively
predicted from infinite-dimensional analytic theory (8–14).

To develop a more quantitative comparison between AQS and
AQRD, as predicted in [7], we focus on three metrics that quan-
tify how AQS and AQRD sample phase space in the preyielding
regime: 1) the distribution of local shear/random-displacement
moduli µ and µ̃ along elastic branches, 2) the distribution of
(random) strain intervals ∆γ and ∆γ̃ between stress drops, and
3) the distribution of (random) stress drop magnitudes ∆σ and
∆σ̃. We use 〈∆γ̃〉 and 〈∆σ̃〉 to denote quantities which are
explicitly averaged over all elastic branches in the preyielding
regime.

Scaling of Observables with System Size and Pressure. Previous
work has analyzed these statistics in AQS as a function of system
size N and pressure p (36, 43, 44), as such data help constrain
continuum so-called “elasto-plastic” models to predict features
of avalanches in granular matter. In addition, the size of a rear-
rangement provides interesting information about the nonlinear
features of the potential energy landscape, as it is one way of
quantifying how far the system has to travel from a saddle point
to find a nearby local minimum. The size of avalanches in AQS,
quantified by the magnitude of the stress drops and other met-
rics, is known to exhibit power-law scaling with a large-scale
cutoff, and the power law has different exponents on either side
of the yielding transition (43). In the preyielding regime the
average stress drop is well defined and changes in a systematic
way with system size and pressure. Previous work by some of us
(36) demonstrated that in AQS the average stress drop exhibits
two regimes: a finite-size regime when N 3p� 1 in which the
size of stress drops remains constant and a second regime when

N 3p� 1 where the stress drops scale as 〈∆σ〉∼ p
N

, which is
illustrated by the open symbols in Fig. 4C.

Therefore, we first study the statistics of stress drops for the
simplest choice for the AQRD vector field |c〉—an uncorrelated
random field (Gaussian correlated field [GCF] with ξ= 1), which
is also most similar to typical self-propelled particle simulations
for active matter. The closed symbols in Fig. 4C correspond to
stress drop statistics in the preyielding regime for an ensemble
of 50 different initial configurations at each value of N and p,
showing that precisely the same scaling is seen in AQRD. This
highlights that the zero-pressure limit of the avalanche statistics
under AQRD is singular, just as in AQS. Although the scaling is
identical, there is clearly a shift in the prefactors, which we return
to in the next section.

In addition to the magnitude of the stress drops, the strain
between saddle points or rearrangements provides another win-
dow into the statistical features of the complex potential energy
landscape. Fig. 4B clearly shows that the mean strain interval

A

B

C

Fig. 4. System size and pressure dependence of landscape statistics. (A)
Local shear modulus µ. (B) Strain distance between rearrangements ∆γ̃. (C)
Stress drops across rearrangements ∆σ̃ as a function of N3p to show collapse
with system size and pressure. AQRD with completely uncorrelated random
fields is shown with solid circles, while AQS data are shown with open circles.
Error bars represent the middle 60% of the distribution and are shown only
for AQRD for visual clarity, but are approximately the same for AQS. Colors
represent system sizes N = 64 (red) and 128, 256, 512, and 1,024 (blue) in an
even gradient. Corresponding pressures are p = 10−2, 10−3, and 10−4.
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between rearrangements scales as 〈∆γ̃〉∼ p1/3

N
in both AQS

(open circles) and AQRD (closed circles). Additionally, we mea-
sure the average shear modulus between rearrangements, which
scales as 〈µ〉∼ p2/3 for both AQS and AQRD as shown in Fig. 4A.

Effects of Spatially Correlated Forcing. Although the scaling expo-
nents of the previous section are precisely the same under both
AQS and AQRD dynamics, it is clear that there is a systematic
offset in the prefactors, despite the fact that care was taken to
ensure the definition of effective strain in each case is equivalent.

To understand the origin of this difference, we vary the cor-
relation length ξ of the normalized AQRD vector field |c〉
measured in units of the smaller particle diameter and use
GCFs and wave-like correlated fields (WCFs), as described
in Methods and illustrated in Fig. 2. For these analyses, sys-
tem size N = 2,048 and packing fraction φ= 0.94 are fixed and
known to be far from the singular limit. These parameters pro-

duce Lx =Ly =
√

Nπ(1+1.42)
8φ

= 50.3, where 1 and 1.4 are the
diameters of the two species of particles.

Examples of |c〉 for both GCFs and WCFs are shown in Fig. 2.
In each case, the random stress vs. random strain curves exhibit
qualitatively similar features, with elastic branches punctuated by
stress drops. The overall magnitude of the stress scale changes
dramatically, where larger stresses are associated with smaller
correlation lengths.

To test the prediction of [7], we first investigate the statistics
of the local shear modulus, µ̃, shown for the GCF data in Fig.
5 A, Inset. The GCF distributions shifted by the mean zµ̃ and
scaled by the standard deviation do not collapse as shown in the
main panel in Fig. 5A. However, the average is well defined for
both GCF and WCF datasets and decreases with increasing ξ
(Fig. 5B). Specifically, both datasets are consistent with µ̃ being
a power-law function of ξ.

We note that the AQS data point shown by the black dia-
mond (Fig. 5B) falls on both of the lines describing GCF and
WCF data, respectively. This must be the case, as the only input
field with correlation length equal to the box size that obeys
the necessary constraints—namely that the field has zero mean
and respects the periodic boundary conditions—is the one corre-
sponding to simple shear (see SI Appendix, section 1B for more
details). Nevertheless, this observation confirms that shear is a
special case of a more generalized response to displacement
fields.

Next, we define a new variable, κ, as the initial random-
displacement modulus µ̃0 normalized by the initial shear mod-
ulus µ0: κ≡ µ̃0/µ0. We then explicitly test the mean-field
prediction for the shear modulus, [7]: κ= µ̃0/µ0 =F/`2. To
compute these quantities in our simulation data, we follow the
prescription of [6], taking

F

`2
=

d

Nc

∑
〈i,j〉

‖ci − cj‖2, [8]

where Nc is the total number of contacts, 〈i , j 〉 denotes con-
tacting neighbors, and we approximate ` as the average distance
between contacting particles. These quantities, calculated for
both the Gaussian correlated fields FGCF and the wave-like cor-
related fields FWCF, are shown by the gray and black data points
in Fig. 5C, respectively. We also plot the modulus ratio κ as a
function of correlation length for both GCF (green) and WCF
(magenta) simulations. Although this is a 2D system far from the
infinite-dimensional mean-field case, the mean-field predictions
are fairly close to the WCF data and also capture the general
trend of the GCF data.

However, the mean-field prediction is not in quantitative
agreement so that F/`2 6=κ, suggesting that in low dimensions

A

B

C

D

E

F

Fig. 5. Collapse of landscape statistics with correlation length. (A) Probability distribution of the local effective moduli µ̃ and µ (Inset) and the recentered
zµ̃ and zµ (rescaled by their standard deviations) in GCF systems with ξ= 1 (red) through ξ= 9.5 (blue) compared with µ of AQS (black). (B) The average
effective modulus decreases as a function of correlation length in both WCF and GCF ensembles. All curves approach the AQS value (black diamond), and
dashed lines are best fits for µ̃WCF with slope −1.9 (magenta) and µ̃GCF with slope −1.1 (green), respectively, consistent with the mean-field prediction of
a slope between −1 and −3. (C) A comparison of F/`2 computed directly via the variance of the field |c〉 (black and gray lines) and the initial modulus
ratio κ= µ̃0/µ0 (magenta and green lines). (D) Collapse of average stress–strain curves for GCF random fields onto average AQS stress–strain curve using
Eq. 9. Here σ̃avg and σavg denote an average over configurations but not all elastic branches. We are additionally able to collapse the distributions of (E) the
effective strain interval

√
N∆γ̃

√
κ and (F) the effective avalanche size

√
N∆σ̃/

√
κ, by appropriate scaling of the raw data (Insets). Data shown are for GCF,

with WCF shown in SI Appendix. Additionally, finite-size scaling showing the empirical collapse with the given factors of
√

N is shown in SI Appendix. The
avalanche distribution agrees with the reported slope of −1 (dashed black line) (43) given as a guide to the eye.
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and in particular at smaller ξ the rescaling of the dynamics can-
not be reduced solely to the variance of relative local strains, i.e.,
from the sole characterization of the input field. Nevertheless, a
more general prediction of the mean-field theory is that once the
mechanical response at one value ξ is known, all others follow.
Thus, one may expect that by using AQS as a reference state we
can still collapse low-dimensional simulation data using κ:

σ∼ σ̃√
κ

, γ∼ γ̃
√
κ. [9]

For individual response curves, the proper value of κ is defined
at γ̃= 0 and computed using the response to small AQS and
AQRD strains. Averages can then be taken of these individ-
ual curves to obtain bulk behavior. Fig. 5 D–F demonstrates
that the mean-field prediction works remarkably well: Individ-
ual stress–strain curves, distributions of strain intervals between
stress drops, and the magnitude of stress drops all collapse when
properly scaled by κ as predicted by mean-field theory. In addi-
tion, the collapsed avalanche data are clearly consistent with the
scaling of P(∆σ)∼ 1/∆σ reported by Shang et al. (43). This is
another indication that bulk responses of AQS and AQRD are
controlled by the same physics in that the statistical features of
the potential energy landscape are dominated by the scaling of
the elastic moduli, i.e., by the curvature of the landscape minima.

This is consistent with observations in Fig. 4; the relative off-
sets between AQRD curves and AQS curves are κ, 1/

√
κ, and√

κ in Fig. 4 A, B, and C, respectively. Furthermore, this gives
additional insight that κ remains roughly constant as a function
of N 3p.

Effect of Material Preparation and Stability. To this point, we
have investigated infinite-temperature–quenched jammed solids,
which have a high degree of disorder. Under AQS, such systems
exhibit a ductile yielding transition where the preyielding regime
transitions smoothly to the postyielding regime with no discon-
tinuity in the stress. It is well known that changing the material
preparation protocol alters the disorder in the initial configura-
tion and changes the yielding transition. Recent work using a new
swap Monte Carlo algorithm generates ultrastable glasses that
are—on the contrary—extremely brittle, with large stress over-
shoots and discontinuous stress drops at the yielding transition,
and data from such simulations strongly suggest that under AQS
the yielding transition is in the Random Field Ising Model uni-
versality class (45, 46). Although a full study of the nature of the
yielding transition in AQRD is beyond the scope of this work, we
analyze the random-stress vs. random-strain curves using GCF
under different preparation protocols.

The solid lines in Fig. 6 show such curves for different parent
preparation temperatures, ranging from Tinit = 0.2 (ductile glass,
low stability) to 0.062 (brittle, ultrastable glass, high stability).
The dashed curves correspond to the stress–strain response in
AQS for the same initial conditions. We observe that in AQRD,
the global modulus increases as the stability increases, which is
similar to what is observed in AQS. In addition, there is clear
stress overshoot (where the average stress increases far above its
later steady-state value) for the ultrastable glass, which is similar
to what is seen for the yielding transition in AQS, although the
yielding transition is much sharper in AQS. Taken together, these
results highlight that the qualitative trends for how the yield-
ing transition depends on glass stability are similar in AQS and
AQRD and set the stage for future work to study the statistics
and spatial structure of the yielding transition in AQRD.

Conclusion
These results demonstrate that shear and random forces per-
turb disordered solids in remarkably similar ways. In particular,
the nonlinear properties of the potential energy landscape tra-
versed by AQS or AQRD display identical scaling exponents.

Fig. 6. Average effective stress–strain curves in ultrastable glasses. Stress–
strain curves are shown with ξ= 1 Gaussian (GCF) driving (solid lines) and
AQS driving (dotted lines) on systems which have been prepared via Monte
Carlo swap at Tinit = 0.062 (red), Tinit = 0.1 (purple), and Tinit = 0.2 (blue).
As in Fig. 5D, σ̃avg and σavg denote an average over configurations but not
all elastic branches. The curves are collapsed via [9]. We see that for lower
preparation temperatures, there is a larger shear modulus and a more pro-
nounced peak, in accordance with AQS simulations (45). Our predictions for
the collapse agree well up to the yielding point (γ≈ 0.12).

We discovered that the prefactors for these scaling laws, which
generally characterize the stiffness of the material or the mag-
nitude of the curvature in the potential energy landscape, are a
power-law function of the correlation length of the input field
of displacements. The exponent ranges from −1 to −3 depend-
ing on the detailed implementation of the field, consistent with
the predictions of the mean-field theory. Since AQS corresponds
to an input field where the correlation length is the size of the
periodic box, it is not special, but instead a terminal point on a
family of random fields that can be characterized by their correla-
tion lengths. In general, materials are stiffer in response to fields
with smaller correlation lengths. Conversely, it is more efficient
to make a material yield by deforming it in a less correlated way.

Since in the preyielding regime AQRD and AQRF generate
nearly identical dynamics—and AQRF is equivalent to self-
propelled particle dynamics in the limit where rotational noise
is taken to zero first, and then the self-propelled velocity field is
taken to zero—these results have important implications for the
emerging field of dense active matter. First, they establish that
there is a direct equivalence between sheared and active matter
systems in this limit, meaning that decades of work on sheared
granular matter can be directly imported to understand active
systems. Second, they strongly suggest that the dynamics of dense
active matter systems could be predicted using tools already
developed for sheared granular systems, such as structural and
vibrational mode analyses (47). Aspects of such a framework for
active matter have already been advanced for instance by Henkes
et al. (4, 5). An interesting avenue for future research will be to
study how small but finite particle velocities introduce fluctua-
tions into the system that perturb this equivalence to shear. Does
this create features analogous to those in finite strain-rate shear
simulations? Additionally, we could introduce small but finite
magnitudes of rotational noise so that the input displacement
fields rotate over time, instead of remaining fixed indefinitely as
presented here. We speculate that such dynamics could also be
very similar to sheared systems at finite strain rates and/or in the
presence of perturbative thermal noise, another active area of
research in the rheology community. In experiments, it should be
possible to quantify the random stress we define here by studying
active photoelastic disks where the internal stress in the system
can be inferred from light patterns.
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A second obvious avenue for future work is to understand the
spatial structure and the nature of the yielding transition under
AQRD. Our work confirms that the basic phenomenology is the
same: There is a yielding transition where the macroscopic rhe-
ology of the material switches from elastic (stress proportional
to strain) to fluid-like (stress independent of strain), the macro-
scopic modulus of the material before it yields is different from
the local modulus along elastic branches, and the nature of the
yielding transition changes as a function of material preparation.
However, this opens more questions than it answers, such as,
What are the correlation lengths of the output particle displace-
ment fields that occur in response to the input displacement fields
we study? An emerging body of work has begun to show that such
correlations tend to long range and depend on the distance to an
instability (5, 26), making any relationship to the input field non-
trivial. Is the yielding transition under AQRD still in the Random
Field Ising Model universality class? Under AQS, brittle glasses
fail via localized shear band where all of the strain is accommo-
dated in a small region of the material—Is something similar true
in AQRD? Do we have to redefine “localized” to account for
the fact that there is no macroscopic symmetry for AQRD with
random Gaussian input fields? Does localization depend on the
correlation length of the input field? Such questions are more
than academic, as they help us to predict how dense materials

composed of active matter flow and fail. Answering them will help
us to harness the activity of active matter to develop actuated
solids that can perform tasks or even predict emergent collective
phenomena in crowded active matter systems.

Materials and Methods
Simulations were performed using pyCudaPack (https://github.com/
SimonsGlass/pyCudaPacking/) and monteCarloPack (https://github.com/
SimonsGlass/monteCarloPCP/), which are available upon request.

Data Availability. Datasets and generating code for this work have been
archived and can be accessed at the Duke Digital Repository (https://doi.
org/10.7924/r4cv4kb23).
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33. N. W. Hayman, L. Ducloué, K. L. Foco, K. E. Daniels, Granular controls on periodicity
of stick-slip events: Kinematics and force-chains in an experimental fault. Pure Appl.
Geophys. 168, 2239–2257 (2011).

34. C. S. O’Hern, L. E. Silbert, A. J. Liu, S. R. Nagel, Jamming at zero temperature and zero
applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003).

35. S. Dagois-Bohy, B. P. Tighe, J. Simon, S. Henkes, M. Van Hecke, Soft-sphere packings
at finite pressure but unstable to shear. Phys. Rev. Lett. 109, 095703 (2012).

36. P. Morse, S. Wijtmans, M. Van Deen, M. Van Hecke, M. L. Manning, Differ-
ences in plasticity between hard and soft spheres. Phys. Rev. Res. 2, 023179
(2020).

37. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation made
simple. Phys. Rev. Lett. 97, 170201 (2006).

38. P. K. Morse, E. I. Corwin, Geometric order parameters derived from the Voronoi
tessellation show signatures of the jamming transition. Soft Matter 12, 1248–1255
(2016).

39. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Fractal free energy
landscapes in structural glasses. Nat. Commun. 5, 3725 (2014).

40. T. Maimbourg, J. Kurchan, F. Zamponi, Solution of the dynamics of liquids in the
large-dimensional limit. Phys. Rev. Lett. 116, 015902 (2016).

41. G. Szamel, Simple theory for the dynamics of mean-field-like models of glass-forming
fluids. Phys. Rev. Lett. 119, 155502 (2017).

42. J. Lin, M. Wyart, Mean-field description of plastic flow in amorphous solids. Phys. Rev.
X 6, 011005 (2016).

43. B. Shang, P. Guan, J.-L. Barrat, Elastic avalanches reveal marginal behavior in
amorphous solids. Proc. Natl. Acad. Sci. U.S.A. 117, 86–92 (2020).

44. S. Franz, S. Spigler, Mean-field avalanches in jammed spheres. Phys. Rev. E 95, 022139
(2017).

45. M. Ozawa, L. Berthier, G. Biroli, A. Rosso, G. Tarjus, Random critical point separates
brittle and ductile yielding transitions in amorphous materials. Proc. Natl. Acad. Sci.
U.S.A. 115, 6656–6661 (2018).
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