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Molecular ecology approaches are rapidly advancing our insights into the microorganisms
involved in the degradation of marine oil spills and their metabolic potentials. Yet,
many questions remain open: how do oil-degrading microbial communities assemble
in terms of functional diversity, species abundances and organization and what are
the drivers? How do the functional properties of microorganisms scale to processes
at the ecosystem level? How does mass flow among species, and which factors and
species control and regulate fluxes, stability and other ecosystem functions? Can generic
rules on oil-degradation be derived, and what drivers underlie these rules? How can
we engineer oil-degrading microbial communities such that toxic polycyclic aromatic
hydrocarbons are degraded faster? These types of questions apply to the field of
microbial ecology in general. We outline how recent advances in single-species systems
biology might be extended to help answer these questions. We argue that bottom-up
mechanistic modeling allows deciphering the respective roles and interactions among
microorganisms. In particular constraint-based, metagenome-derived community-scale
flux balance analysis appears suited for this goal as it allows calculating degradation-related
fluxes based on physiological constraints and growth strategies, without needing
detailed kinetic information. We subsequently discuss what is required to make these
approaches successful, and identify a need to better understand microbial physiology
in order to advance microbial ecology. We advocate the development of databases
containing microbial physiological data. Answering the posed questions is far from trivial.
Oil-degrading communities are, however, an attractive setting to start testing systems
biology-derived models and hypotheses as they are relatively simple in diversity and key
activities, with several key players being isolated and a high availability of experimental
data and approaches.
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INTRODUCTION: KEY QUESTIONS IN MICROBIAL ECOLOGY
AND OIL SPILL BIOREMEDIATION
Microbes are prime catalysts of environmentally and societally
important ecosystem processes, such as the biodegradation of
spilled oil. Yet, the large complexity of microbial communi-
ties and technical limitations have long prevented the accu-
rate description of microbial communities, let alone establishing
the contribution of microorganisms to ecosystem functioning
(Fuhrman, 2009). Metagenomics and related microbial ecologi-
cal approaches are nowadays employed, aiming to answer major
questions in microbial ecology:

1. How do microbial communities assemble in terms of func-
tional diversity, species abundances and organization, and
what are the drivers of community assembly?

2. How do the functional properties of microorganisms scale to
processes at the ecosystem level?

3. How does mass flow between species, and which factors and
species control and regulate fluxes, stability and other ecosys-
tem functions?

4. Can generic rules be derived in microbial ecology, what drivers
underlie these rules, and do these rules resemble rules in plant
and animal ecology?

5. What information is needed for predicting and engineering
microbial communities and their functioning?

However, while metagenomic approaches lead to large data sets,
the cataloguing of genes itself provides limited insight, and
may lead over time to disappointment in microbial ecology
and its practitioners (Prosser, 2013). The application of the-
ory from other research areas is needed to provide structure,
mechanistic insight and, ultimately, predictive power (Prosser
et al., 2007; Raes and Bork, 2008). In this paper, and in con-
trast to many reviews on individual approaches, we argue for a
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novel, bottom-up mathematical framework that combines sev-
eral existing approaches to better understand microbial com-
munities and their activities. We subsequently indicate what
is required to make such framework successful, and iden-
tify a need to link microbial physiology to quantitative con-
cepts in order to advance microbial ecology via modeling-based
approaches.

We are aware that the job ahead is tremendous and far from
trivial. The biodegradation of marine oil spills provides a suitable
and realistic starting point to achieve our goals, and also to pose
and test specific hypotheses. Many molecular microbial ecology-
centered studies have appeared, especially motivated by the 2010
Deepwater Horizon oil spill in the Gulf of Mexico and a desire
to know what happened to its microbial communities and their
degrading activities (e.g., Camilli et al., 2010; Hazen et al., 2010;
Lu et al., 2012; Mason et al., 2012). These studies have provided
insights on the major contributing species and their interactions
(Head et al., 2006). Upon a spill, microbial biodiversity is strongly
reduced, after which oil components are sequentially degraded
(Head et al., 2006). First, growth of alkane-degrading specialists
occurs, with Alcanivorax species contributing up to 90% of cell
counts. Next, polycyclic aromatic hydrocarbon (PAH) degrad-
ing microorganisms, like Cycloclasticus, take over. Conceptual
models exist on the importance of nitrogen and phosphorus in
oil-biodegradation and on the interactions between functional
groups of microorganisms (e.g., Head et al., 2006; Figure 1).
Several important aspects of the biodegradation of spilled oil are
still not well understood: why do certain specialists become domi-
nant during oil-degradation, why are oil compounds sequentially
degraded with first the relatively harmless alkanes being removed
before the more toxic PAHs are attacked? We hypothesize that
multispecies metabolic network-based modeling approaches, as
outlined in the next sections, will be able to provide the answers.
The obtained insights may subsequently contribute to the design
of more effective oil spill bioremediation approaches, and enable
the faster removal of toxic PAHs.

WHY MODEL, AND HOW TO MODEL?
Biology is predominantly non-linear in character, for instance
consider the biology text-book examples of Michaelis-Menten
enzyme kinetics and Lotka-Volterra prey-predator interactions.
The non-linearity in combination with the immense complexity
of microbial communities makes it empirically extremely difficult
to decipher the respective roles of each player in the provision of
community-derived fluxes and community functioning in gen-
eral, in dynamic environments with varying chemical and physi-
cal conditions. These aspects make it obvious that mathematical
approaches are needed to ever come close to understanding
microbial communities and functioning, and tackle key questions
in microbial ecology. Introducing ecological theory has been sug-
gested as one avenue to advance microbial ecology (Prosser et al.,
2007), and for instance resource-ratio theory has been applied to
oil spill bioremediation (Röling et al., 2002). While extending eco-
logical theory into microbial ecology is undoubtedly very impor-
tant, a key difference between plants and animals on the one hand
and micro-organisms on the other hand is the enormous physi-
ological and biochemical diversity in microorganisms. Thus, we

FIGURE 1 | Several potential interactions during oil-mineralization that

may affect the rate and extent of biodegradation of marine oil spills.

Alkane- and PAH-degrading specialists compete for limiting nutrients in
seawater. We extrapolate findings on a benzo[a]pyrene degrading,
soil-derived consortium (Kanaly et al., 2002) to marine oil spills (Head et al.,
2006) to indicate potential positive mutualistic interactions. The consortium
was found to contain a key member (indicated by Sp3) that was unable to
degrade the PAH benzo[a]pyrene but excreted factors that aided its
degradation and presumably grew on metabolites excreted by other,
benzo[a]pyrene-degrading community members (indicated by Sp2).

propose to model within a microbial eco-systems biology context
by extending and integrating current systems biology (explained
in more detail from Section “What is Needed to Mechanistically
Model Complex Communities: The Big Lines” onwards). Systems
biology has considerably enhanced insight into the functioning
of individual microbial species, and the employed approaches
may be adapted and applied to microbial ecology to contribute
to improved understanding of microbial community composition
and functioning (Röling et al., 2010; Zengler and Palsson, 2012).

Systems biology comprises an iterative cycle of experimen-
tation, data analysis and modeling, hypothesis formulation and
testing. Bottom-up systems biology approaches have led to large
insights in the functioning of single species by examining the
mechanisms through which functional system properties arise in
the interactions of components in the system. These approaches
require measures on physicochemical and kinetic properties of
the components to model system properties (Bruggeman and
Westerhoff, 2007). Bottom-up systems biology approaches can
direct medicine development (Bakker et al., 2002) and metabolic
engineering of microbial strains applied in biotechnological pro-
cesses (Hoefnagel et al., 2002; Izallalen et al., 2008). We envision
that in a similar fashion we will be able to design environmen-
tal “medicines”, e.g., the application of process-specific inhibitors,
biostimulation with limiting nutrients or bioaugmentation to
resolve missing or suboptimal microbial functions.

This contrasts to top–down systems biology approaches, iden-
tifying molecular interaction networks on the basis of correlated
molecular behavior derived from (meta)genome-wide “omics”
studies (Bruggeman and Westerhoff, 2007). The popularity of
these approaches coincides with a generally increasing popu-
larity of multivariate statistical approaches in microbial ecology
(Figure 2; Raes and Bork, 2008). Indeed, they bring the field
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FIGURE 2 | Bottom-up (BU) vs. top–down (TD) approaches to model

microbial community structure and its functioning. In this paper we
advocate an approach that is strongly BU (as indicated by the thick, solid

arrow) with some TD modeling, also to aid the BU modeling (as indicated by
the gray arrow). The relation of BU and TD approaches to experimental
microbial ecology and physiology is indicated by open arrows.

forward and will do so for the coming time as many microbial
systems are still poorly characterized. Yet, such models are phe-
nomenological, and have limited predictive value, while fre-
quently employing relations between properties that are assumed
to be linear, even though biology is generally non-linear.

Bottom-up approaches may provide the mechanistic insights
required to truly advance microbial ecology in the future.
Bottom–up approaches, however, can be parameter-rich and
are sensitive to undetermined factors, which are already impor-
tant drawbacks for modeling single species (Bruggeman and
Westerhoff, 2007). These problems are further amplified for com-
plex microbial communities. Thus, there is a need to integrate
bottom-up models with top–down approaches for better com-
pleteness, and reduce the complexity of the models (Figure 2).

WHAT IS NEEDED TO MECHANISTICALLY MODEL COMPLEX
COMMUNITIES: THE BIG LINES
The abovementioned complexity of microbial communities pro-
vides considerable challenges for bottom-up modeling. Clearly,
an “abstraction” of reality is needed to understand community
structure and functioning. However, a balance (that is, model-
ing approaches not being too detailed, but also not too simple)
is needed to prevent arriving at a dead end, far from the goal of
answering major questions in microbial ecology.

A good modeling practice is to start with a relatively sim-
ple model, describing a relatively simple community, and then
stepwise increase complexity. Modeling and experiments (see
Box 1 “Experimental approaches in microbial ecosystems biol-
ogy”) would need to go hand in hand. Unstructured (that is,
well-mixed) simple “communities” consisting of a few interacting
species, in a system that is closed (in the sense that no

other species can invade), provide an initial starting point.
Later, structure and higher diversity can be introduced, and
subsequently dynamics in community structure, by allowing
species immigration both in modeling and in experimentation.
Biodegradation of marine oil spill provides an excellent start-
ing point for such practice, since often a limited number of
microorganisms with specific functions appear to play key roles
(e.g., Head et al., 2006; Figure 1). Important representatives of
these functional groups have been cultured (Dyksterhouse et al.,
1995; Yakimov et al., 1998), allowing for controlled experiments.
Furthermore, laboratory experimental designs mimicking beach
oil spills have already shown their utility to test hypotheses on oil
spill bioremediation (Röling et al., 2002).

The relatively simple modeling approaches should, however,
allow for mechanistic insights. For instance, Taffs et al. (2009)
constructed a metabolic network to describe community activity
by considering the community as a single meta-organism. They
connected genes via their inferred metabolites without specifi-
cally taking into account that connected genes may have belonged
to different species (Taffs et al., 2009). Such boundary-free
approaches appear attractive in the current metagenomics era, as
generally the exact relationship between a gene and the cell that
contained it, is lost in metagenomics. However, when comparing
such cell boundary-free models with models that described indi-
vidual species in a consortium, clear differences were revealed.
Boundary-free models suffered from the likelihood of including
infeasible reactions and the inability to obtain biomass estimates
for individual species (Taffs et al., 2009). Also by simple reasoning
one must conclude that some degree of compartmentalization is
needed in modeling microbial communities: microbial activities
depend on enzyme activities, thus on Michealis-Menten kinetics
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Box 1 | Experimental approaches in microbial ecosystems biology.

Experiments will be needed to parameterize community models but also to test model-derived hypotheses (Figure 2). What one in
particular would like to measure is: what activity does a certain species perform in a community, and how fast? With whom does it
interact? The current experimental tool box is already quite complete to answer these questions and to reveal how interactions with other
species affect a species’ metabolism.

Species-specific activities can be quantified by combing Fluorescent In Situ Hybridization with the uptake of stable (Musat et al., 2008;
Finzi-Hart et al., 2009) or radioactive isotope labeled (Nielsen et al., 2003) or fluorescent substrates (Muller and Nebe-Von-Caron, 2010), or
by probe-based capturing of labeled DNA or RNA (Van Mooy et al., 2004; Van Mooy and Devol, 2008). Combinatorial fluorescent labeling
and spectral imaging (Valm et al., 2011) can resolve up to 15 phylogenetic target groups at one time by FISH. This approach combined with
high throughput flow cytometry with post-sorting analysis hold great promise for the future (Pel et al., 2004; Muller and Nebe-Von-Caron,
2010). Also antibodies can be used to separate species from microbial consortia and to determine species-specific characteristics (Pelz
et al., 1999).

Isotopically labeled substrates also enable tracking substrate flow within and between cells. Metabolic flux analysis is the experimental
counterpart of FBA to measure realized internal fluxes on basis of measuring external fluxes, mass balancing and reaction stoichiometry.
Due to the occurrence of, e.g., cycles or multiple pathways, 13C Metabolic flux analysis is needed to resolve internal fluxes (Sauer, 2006).
Generally, the positional isotope distribution of 13C in specific amino acids incorporated in cellular protein is determined and the distribution
of these so-called isotopomers are fitted to a mathematical model of central metabolism that tracks the flow from 13C labeled substrate
to amino acids to obtain the flux distribution of the species under study. Low internal concentrations currently hamper metabolite-based
13C flux analysis (Sauer, 2006). In contrast, extracellular products can occur in high concentrations, their isotopomeric analysis enable
determining the fluxes through major pathways in human intestinal fermentation of glucose (De Graaf et al., 2010).

Combined with stable isotope probing (SIP), isotopomeric analysis provides information on cross-feeding of metabolites between species
(Kovatcheva-Datchary et al., 2009). SIP can also provide information on interactions by predation (Lueders et al., 2006). In SIP an stable
isotope-labeled compound is added to an environmental sample and the isotope-labeled biomarkers that are produced in the target
organisms are analysed at the community scale (e.g., Pilloni et al., 2011). SIP addressing DNA, rRNA and mRNA provide complementary
information on the growth and activity of microorganisms. DNA-based SIP will measure primarily newly formed cells, while RNA-based
SIP will address also non-growing microorganisms and is highly dynamic, especially mRNA (Dumont et al., 2011). Jehmlich et al. (Jehmlich
et al., 2009) developed a concept for analyzing carbon and nitrogen fluxes in microbial communities by employing protein-based SIP in
metabolic labeling experiments with stable isotope labeled substrates.

that relate metabolite concentrations to activities. The intracel-
lular and extracellular concentration of a particular exchange-
able metabolite is usually different, suggesting that top–down
approaches have limited utility and cell boundaries must be
included instead.

“Rules” on microbial cell and community functioning may
indicate how one could compartmentalize a complex commu-
nity and in which detail these compartments should be described.
Compartmentalization can be at the level of the individual cell,
strain, species, or at a higher level (e.g., functional group). A
higher level is preferable, as it minimizes the number of compart-
ments in the model. The observation that a number of Shewanella
species and Escherichia coli were highly similar in growth char-
acteristics (growth rate, fermentation products) and in intracel-
lular fluxes through their major metabolic pathways, led Tang
et al. (2009) to introduce the concept of the metabotype. Species
with similar metabolic phenotypes are grouped into a metabo-
type, irrespective of possible differences in their phylogeny. This
concept may pave the way to model microbial community func-
tioning on basis of a limited number of compartments describing
the different functional types. Spilled oil is degraded by marine
microorganisms that are generally specialized in the degradation
of either alkanes or PAHs independent of phylogeny (Head et al.,
2006), and which may possibly be divided along these lines in
metabotypes (Figure 1).

The detail in which each compartment is described, must
be considered too. Microorganisms respond to their biotic
and abiotic environment, and changes therein, by adapting

their biochemistry and physiology. Thus, models should enable
simulation of this kinetic flexibility of microorganisms. An
empirical Monod equation describing the dependence of growth
rate on a single limiting substrate, combined with a fixed-value
growth yield and maintenance energy, is frequently used to model
microbial growth, but is inadequate for our purpose of under-
standing growth and activity in environmental settings that are
complex and dynamic, such as oil-polluted marine environ-
ments. Oil consists of thousands of compounds belonging to
a few major classes, such as alkanes and PAHs (Head et al.,
2006). While oil is degraded by specialists (Figure 1), these spe-
cialists can often degrade a range of molecules belonging to a
specific class (Dyksterhouse et al., 1995; Yakimov et al., 1998;
Schneiker et al., 2006). In addition, oil-degradation is strongly
affected by nitrogen and phosphorus limitation (Head et al.,
2006; Figure 1). Monod equations have limited ability to describe
multiple substrate use or changes in type of growth limitation
(Kovarova-Kovar and Egli, 1998). Growth yields and maintenance
energy requirement are not constant within a single species, but
depend on growth conditions (e.g., Van Verseveld et al., 1984; Van
Bodegom, 2007).

The other extreme is to consider the complete genetic and
metabolic make-up of a species, which seems infeasible since a
microbial genome contains thousands of genes, encoding thou-
sands of proteins that can act on thousands of metabolites. For
most enzymes, quantitative information, like affinity constants
and maximum activities, is limited, and measuring all these
parameters is cumbersome, if even feasible. Many genes and
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pathways appear to be only expressed and active under a few
conditions, or are largely invariant to changes in environmental
conditions (e.g., Daran-Lapujade et al., 2007; Tang et al., 2007;
Kelk et al., 2012). This suggests that it is possible to reduce
compartment complexity in order to determine genome-based
metabolic fluxes with a minimal use of kinetic parameters.

Flux-analysis approaches as initially developed in cellular sys-
tems biology, like Metabolic Control Analysis (MCA; Kacser et al.,
1995) and Hierarchical Regulation Analysis (HRA; Ter Kuile and
Westerhoff, 2001; Daran-Lapujade et al., 2007), can contribute to
establishing the detail in which a particular compartment needs
to be described. MCA and HRA quantify and identify the impor-
tance of individual cellular components (e.g., enzymes) and pro-
cesses (e.g., transcription) for systems-level metabolic fluxes and
have aided in establishing how biochemical systems change upon
perturbation. These approaches have been extended to analyse
metabolic and trophic interactions among species and between
species and their abiotic environment (Allison et al., 1993; Getz
et al., 2003; Röling, 2007; Röling et al., 2007). For instance,
MCA is an advanced sensitivity analysis framework that reveals,
computationally or experimentally, how modulation of enzyme
activities affects metabolic fluxes and metabolite concentrations
in a cell (Kacser et al., 1995). It generates so-called control coef-
ficients that quantitatively indicate the importance of an enzyme
for a given process. Control analysis showed that at the cellular
level, flux control is often mostly with the transporter (Bakker
et al., 1999), and that in anaerobic, organic matter degrading
communities, flux control is dominantly with the primary fer-
menting microorganisms (Röling et al., 2007). These observations
suggest that in describing the compartments one should espe-
cially focus on uptake kinetics, while in anaerobic organic matter
degrading networks the compartment(s) representing primary
fermenting microorganisms needs most detail. Also in oil spill
degradation several physiological groups of species interact, and
the rate of oil-degradation might, for instance, be controlled
considerably by biosurfactant-producing community members
that live on metabolites excreted by oil component-degrading
microorganisms (Figure 1).

FLUX BALANCE ANALYSIS AND MICROBIAL ECOLOGY
Flux balance analysis (FBA) is currently the systems biology
approach that appears most suited for the tasks outlined above.
FBA is the stoichiometric analysis of a genome-derived metabolic
network and allows calculating the possible metabolic flux distri-
butions and other system properties (e.g., biomass yield, growth
rate, ability to consume or produce certain chemicals), with-
out requiring detailed kinetic information (Feist et al., 2009;
Figure 3). To describe which fluxes are possible in a particular
condition, physiological constraints (e.g., substrate uptake rates,
biomass composition; Section “Deriving Microbial Physiological
Parameters for Application in FBA”) and optimization prin-
ciples (Section “Optimization Principles for Multispecies FBA:
Microbial Growth Strategies”; Figure 3) are applied. Even when
the metabolic network is solely based on gene presence, FBA
can provide accurate predictions of system properties of a single
species (Feist et al., 2009).

In recent years, FBA approaches have been developed that
further aid in more accurately describing the physiology of

individual species. These approaches utilize experimental data on
gene expression (Covert et al., 2004; Becker and Palsson, 2008;
Shlomi et al., 2008) or implemented theoretical considerations
informed by principles from biochemistry and genomics (e.g.,
Beg et al., 2007; Henry et al., 2007; Chandrasekaran and Price,
2010). Generating metabolic network models, and in particular
fine-tuning these models, used to be time consuming but is now
considerably aided by high-throughput, internet-based resources
(Henry et al., 2010; Boele et al., 2012).

While FBA was initially developed for the analysis of fluxes
under steady state conditions, Mahadevan et al. (2002) extended
it to dynamic environments, by inserting an FBA model into
an ODE (operational differential equation) model. By consid-
ering the cell to be in pseudo-steady state at each time point,
growth rate and growth yield were calculated at each time point
(Mahadevan et al., 2002). Nutrient uptake was described with
Michaelis-Menten kinetics to generate dynamics. This dynamic
FBA (dFBA) is especially of interest to ecology, since ecosystems
are generally dynamic over time and space. dFBA is particularly
relevant for marine oil spill biodegradation, since for instance
fast growth of Alcanivorax occurs within a few days after a spill
(Head et al., 2006). dFBA models of microorganisms have been
successfully introduced into reactive transport models (Scheibe
et al., 2009; Zhuang et al., 2011), which are used in hydrology
to describe biogeochemical processes and physical transport pro-
cesses in detail. Also to describe and understand the growth of
key microorganisms on oil spilled on beaches, reactive transport
models integrating the supply and removal of nutrients and cells
by tidal cycles would be beneficial.

Increasingly, FBA is also applied to describe ecological inter-
actions in simple consortia consisting of two to three species,
providing a basis for studying more complex communities
(Section “Constructing Metabolite-Based Microbial Interaction
Networks”). The first multispecies flux balance analysis was con-
ducted by Stolyar et al. (2007). Reduced metabolic network
descriptions of fermenting, hydrogen-producing Desulfovibrio
vulgaris and hydrogenotrophic Methanococcus maripaludies were
combined to describe their mutualistic interactions, with the
medium as a third compartment through which the species
interacted. Several ecologically relevant characteristics, such as
flux of metabolites and ratio of the two species, were predicted
accurately. It revealed that interspecies transfer of hydrogen was
essential in the interaction, while format was not. Competition,
and the resulting species ratios, were accurately modeled for
iron-reducing Rhodoferax and Geobacter along the groundwa-
ter flow path through an uranium-polluted aquifer, by including
simple Michaelis-Menten kinetics to describe nutrient uptake
rates that acted as constrains in a dynamic FBA model (Zhuang
et al., 2011). The type of limiting nutrient (carbon or nitrogen)
determined which species won the competition. Nutrient limi-
tation plays a key role in the degradation of marine oil spills,
as do competitive and mutualistic interactions between alkane-
and PAH-degraders (Head et al., 2006; Figure 1). We hypoth-
esize that by comparing the growth of oil-degrading marine
microorganisms, using multispecies, metabolic network-based
based models that are integrated into reactive transport models
in order to take into account nutrient availability and other rel-
evant environmental characteristics, we will be able to decipher
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FIGURE 3 | Demonstration of flux balance analysis and objective

functions. (A) Simplified representation of the metabolism of a
microorganism, e.g, an alkane-degrader. The organism is assumed to
consume substrate (formulated as C1-unit) at a rate of 5 mmol per gram
biomass per hour. It grows, at flux c (in mmol per gram biomass per
hour) by producing offspring from the substrate, which costs 0.5 ATP per
C1-unit biomass produced. The ATP needed for anabolism can be derived
from two catabolic pathways, pathway a produces 1 ATP per mole
C1-substrate consumed, pathway b 2 ATP. Two flux balances containing
three unknowns (a, b, and c) apply in steady state: 1. the carbon going
into the cell, must come out: a + b + c = 5; 2. there can be no net

production or consumption of ATP: a + 2b − 0.5c = 0. As a result, no
unique solution is obtained for fluxes a, b, and c, an infinite number of
solutions lay along the line 3a + 5b = 5. (B) Relationship between the
fluxes through the two catabolic pathways, and associated biomass
production. If the objective function of the microorganism is to maximize
biomass production, than it should use only pathway b for ATP
production (indicated by arrow); (C) Relationship between the fluxes
through the two catabolic pathways, and associated CO2 production. If
the objective function of the microorganism would be to maximize CO2

production, than it should use only pathway a (indicated by arrow). Thus,
the objective functions allow to obtain an unique solution.

why Alcanivorax generally dominates and outcompetes other
oil-degraders.

While the genomes of several Alcanivorax species and other
marine microorganisms capable of alkane- or PAH-degradation
have been sequenced (Brooijmans et al., 2009), for none of them
has an FBA model on their oil-degradation yet been reported.
The metabolic network of the PAH-degrading Mycobacterium
vanbaalenii PYR-1 has a funnel-like topology, in which many
peripheral pathways, acting on a wide range of PAHs differing
in complexity, converge to a widely conserved central pathway
(Kweon et al., 2011). This organization may enhance input diver-
sity with the controlled production of limited outputs, allow for
more coordinated regulation, and ensure more efficient metabolic
flow with reduced metabolite dissipation (Kweon et al., 2011).
The metabolic networks of other marine microorganisms that
degrade alkanes or PAHs likely have a similar funnel-like topol-
ogy (e.g., Schneiker et al., 2006). We expect that FBA models
that also consider the costs of protein synthesis, will reveal that
diauxic growth by first depleting the smallest and least complex
oil compounds enables the fastest growth of an oil-degrader. A
consequence might be that after an oil spill the growth of microor-
ganisms that are capable of using a small range of relatively simple
alkanes or PAHs is favored over the growth of microorganisms
that degrade a wider range that also include the more com-
plex oil compounds, as the latter have to bear the costs for the

genes and proteins required for these activities. The subsequent
growth of microorganisms capable of the removal of the more
complex and more toxic oil components could then be hampered
by the low availability of phosphorous and nitrogen, as most of
these nutrients will be contained in the biomass of the pioneer-
ing species. Community-level, multispecies FBA will be useful
to understand such microbial interactions during oil-degradation
and to design new bioremediation strategies.

Community-level FBA reveals fluxes through species (analo-
gous to the fluxes through enzymes within a cell in single species
FBA). Conventional multispecies FBA does not provide cell num-
bers of individual species (again analogous to single species FBA
where also the enzyme concentrations mediating the fluxes are
not considered), while this is of major interest to microbial ecolo-
gists to understand and predict community structure. Recently, a
few multispecies FBA approaches have been published that allow
for predicting the cell numbers of individual species, for a wide
range of microbial interactions (Zomorrodi and Maranas, 2012;
Khandelwal et al., 2013).

CONSTRUCTING METABOLITE-BASED MICROBIAL
INTERACTION NETWORKS
So far, multispecies FBA modeling has been applied for up to
three species (Taffs et al., 2009) and, unfortunately, no examples
are available for oil-degradation yet. This number of interacting
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species is still limited, certainly in light of the thousands of
species that can occur in just one gram of soil, thus providing
a formidable challenge to FBA. High throughput sequencing
of phylogenetic marker genes, in particular 16S rRNA genes,
nowadays allows to establish relations between species and to con-
struct microbial networks based on correlations between marker-
derived species abundances. However, species interrelationships
do not inform directly on the nature of these interactions (Faust
and Raes, 2012), let alone the type of metabolites involved.

Recently, Langille et al. (2013) described a computational
approach to predict the functional composition of a metagenome
using 16S rRNA marker gene sequences, under the assumption
that phylogeny and function are sufficiently linked. This approach
to predict genome content on basis of a 16S rRNA sequence could
be integrated into 16S rRNA-gene based microbial interaction
networks to predict how the species may metabolically interact.
The construction of metabolic networks from experimentally or
computationally derived (meta)genome data for FBA itself pro-
vides information on the potential interactions between species:
the metabolites taken up and produced by a species’ network
can be predicted (Borenstein et al., 2008; Handorf et al., 2008),
allowing for the construction of metabolite-based microbial inter-
action networks (Borenstein and Feldman, 2009; Röling et al.,
2010). Likewise, metagenomics can contribute information on
prey-predator interactions, which is challenging in multispecies
FBA as predation relates to prey size and prey aggregation behav-
ior (Matz and Kjelleberg, 2005), properties that do not appear
from a metabolic network. However, single cell genomics on
marine protists revealed which preys they had ingested, and also
indicated phage-cell interactions (Yoon et al., 2011). Both protists
and phages may affect oil spill biodegradation (Röling et al., 2002;
Head et al., 2006).

Also systematic literature mining approaches can enhance our
understanding on the organization of microbial interaction net-
works (Chaffron et al., 2010; Freilich et al., 2010). For instance, a
network constructed based on published bacteria co-occurrences
showed that this network clustered into species-groups that
showed relations between resource competition, metabolic yield
and growth rate that correspond to the r/K selection theory
(Freilich et al., 2010).

Similar approaches as described above might be applied to
marine oil spill degrading microbial communities, by utilizing
the many descriptive and empirical studies that have appeared in
recent years, especially after the 2010 Deepwater Horizon oil spill
(e.g., Camilli et al., 2010; Hazen et al., 2010; Lu et al., 2012; Mason
et al., 2012). By combining their data, species-species interactions
during different phases of oil spill biodegradation may be inferred
to subsequently construct metabolite-based microbial interaction
networks which can subsequently be analyzed by multispecies
FBA approaches as described in the previous section. By focusing
first on key oil-degraders such as Alcanivorax and Cycloclasticus
and their interaction partners (Figure 1), we hypothesize that we
can identify species that are either synergetic or antagonistic to
degradation of specific classes of oil components and also pin-
point the mechanisms (e.g., metabolic network characteristics)
behind these interactions. These species may subsequently be
stimulated or inhibited to favor the degradation of relatively more
toxic PAHs over alkanes.

OPTIMIZATION PRINCIPLES FOR MULTISPECIES FBA:
MICROBIAL GROWTH STRATEGIES
FBA models are in general underdetermined: the number of vari-
ables in the equations to solve is larger than the number of
equations themselves, even when constraints such as maximum
uptake rates of nutrients and biomass composition are included
(Figure 3A). Therefore, FBA uses optimization criteria, or objec-
tive functions, to describe a species’ physiology. Optimization
principle(s) are based on the assumed or determined growth
strategies of the organism under study, such as maximization
of biomass production. Figures 3B,C demonstrate two different
objective functions and their impact on flux distribution over
anabolic and catabolic pathways. Often, it is assumed that cells
aim to maximize their growth yield (Figure 3B), however this
strategy is by no means an universal principle (Schuetz et al.,
2007; Schuster et al., 2008). Even a single species can employ
different strategies depending on the prevalent growth condi-
tions, such as nutrient scarcity or excess (Schuetz et al., 2007).
On basis of 13C flux analysis of nine bacteria, metabolism was
shown to operate close to the so-called Pareto optimal surface
of a three-dimensional space defined by competing objectives
(biomass yield, ATP yield, minimum sum of absolute fluxes)
(Schuetz et al., 2012). Flux states were proposed to evolve under
the trade-off of two principles: optimality under one given condi-
tion and minimal adjustment between conditions (Schuetz et al.,
2012).

The growth strategies of oil-degrading microorganisms, and
their dependence on environmental conditions and species iden-
tity, are not known. However, we envision that knowledge on
growth strategies will be key to understanding and directing the
degradation of spilled oil and associated community dynamics. If
for instance alkane-degrading microorganisms aim to maximize
their biomass production (Figure 3B), a consequence might be
that most of the often growth-limiting nitrogen and phospho-
rus will end up in their biomass (Figure 1). Hence, after alkanes
are depleted, little nutrient will be available to enable substan-
tial biomass production of PAH-degrading microorganisms and
fast degradation of PAH. If on the other hand alkane-degrading
microorganisms aim to maximize CO2 production from alka-
nes, for instance as a strategy to avoid that competitors can
use these alkanes, less biomass will be formed per molecule
alkane degraded (Figure 3C) and more nutrients will be avail-
able for growth of PAH-degraders (Figure 1). We expect that
by comparing experimental growth in mono- and mixed cul-
tures to FBA models employing different optimization criteria
the growth strategies of oil degrading microorganisms will be
revealed.

For what cells are optimized in complex, multispecies envi-
ronments is in fact also not well known. Probabilistic cellular
decisions on costs and benefits may be taken at three levels in
such environments (Perkins and Swain, 2009): cells firstly have to
derive from noisy signals the current and potential future states
of their extracellular environment. Second, given those antici-
pated future states, microbes must weigh the costs and benefits (in
terms of fitness and its optimization) of each potential response,
at the level of the individual. Finally, the cells must decide in the
presence of other (potentially competing or cooperating) deci-
sion makers, at the level of the population and the community.
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Competition between cells and species in communities may force
strategies that appear suboptimal: a strategy with lower fitness in
environments without competition, might be successful in envi-
ronments with competition, an outcome well known from plant
ecology too (e.g., Anten and During, 2011; Falster et al., 2012).

Game theory, which studies strategic decision making, can
provide a better approach than conventional optimization to
study the dynamics and outcome of the development of micro-
bial communities, by capturing evolutionary considerations as
affected by interactions between microorganisms (Pfeiffer and
Schuster, 2005). The trade-off of growth yield vs. growth rate
is an example of such dilemma (Pfeiffer et al., 2001; Kreft and
Bonhoeffer, 2005). This trade-off is based on irreversible thermo-
dynamics. Chemotrophic organisms obtain their energy by the
degradation of substrates into products with lower free energy.
The free energy difference between substrate and product is
used for two purposes: ATP production for biomass growth and
the thermodynamic driving force of the degradation reaction.
Maximal ATP yield would be achieved if the entire free energy
difference could be conserved as ATP. However, in that case the
reaction would be in thermodynamic equilibrium, and thus rates
of substrate degradation and ATP production would be zero. Part
of the free energy difference must to be used to drive the reac-
tion. The larger this part is, the faster the rate of ATP production
but also the lower the yield. High yield is a group-beneficial trait
because the economic utilization of a resource benefits all those
sharing this (limiting) resource. On the other hand, high growth
rate is beneficial for the individual because it allows better compe-
tition. Cooperative behavior, resulting in higher yield, was found
to outweigh the interest of the individual to grow faster in spatially
structured environments, such as biofilms (Pfeiffer et al., 2001).

Evolutionary trade-offs have also impacted metabolic network
design, and its regulation. Species inhabiting complex, dynamic
environments have metabolic networks in which enzymes have
relatively more connections to other enzymes than species liv-
ing in more constant environments. This makes their networks
more robust, but also more costly to maintain and thus less effi-
cient (Morine et al., 2009). Under nutrient scarcity, cheap but
less efficient pathways are expressed (Carlson, 2007), in which the
length and elemental content of proteins may be adapted to the
nutrient limitation (Elser et al., 2011). These metabolic network
characteristics appear identifiable from the genome sequence
and as such may be incorporated in future multispecies FBA
approaches.

The above optimization criteria put emphasis on the fitness
of the individual cell and species, as goal in ecosystem develop-
ment. A framework of ecological network analysis, employing
community-level, thermodynamics-motivated flux optimization
criteria (Kleidon et al., 2010) has been postulated as alternative
theory to describe the goal of ecosystems (Fath, 2004; Ulanowicz
et al., 2006; Jørgensen et al., 2007), and has so far mainly been
applied to plant and animal ecology, e.g., to predict species
distributions (Phillips et al., 2006). Maximum entropy princi-
ples have also allowed for predicting species abundances within
plant communities (Shipley et al., 2006), although some of its
assumptions have been criticized too (e.g., Laughlin et al., 2012).
Recently, the utility of multi-level optimization was revealed for
purely metabolic models of microbial consortia (Zomorrodi and

Maranas, 2012). An optimization approach was formulated with
maximization of the overall biomass as primary, community
level-objective function and species-specific biomass maximiza-
tion as secondary, cellular objective function. This approach
allowed for capturing any type of positive or negative interaction,
like mutualism, competition and parasitism, and demonstrated
the trade-offs between forces driving species and community
fitness. It would be interesting to further combine community-
level and cell-based optimization approaches in microbial ecol-
ogy, and oil spill biodegradation in particular, to establish what
level of integration is required to describe microbial community
functioning.

DERIVING MICROBIAL PHYSIOLOGICAL PARAMETERS FOR
APPLICATION IN FBA
It is essential to be aware that besides information on metabolic
pathways and optimization criteria, FBA models also require basic
physiological data: a growth-associated maintenance (energy
expenditure necessary for non-metabolic activities accompany-
ing biomass synthesis, usually expressed in mmol ATP per gram
biomass per hour), growth-rate independent maintenance (or
non-growth associated maintenance, the energy needed to main-
tain the cell in a functional and viable state, without growing),
efficiency of respiration [P/e; amount of ATP (P) produced from
the movement of an electron (e) through an electron transport
chain to an electron acceptor] and biomass composition. Some
of these variables might be of less importance in a FBA context
than generally conceived. For instance, determining the compo-
sition of biomass is tedious, in particular for species within a
community, and is highly responsive to changing environmental
conditions (e.g., Pramanik and Keasling, 1997, 1998). However,
when biomass composition was varied in an E. coli FBA model, it
had only a minor influence of its modeled growth rate and oxy-
gen uptake rate (Feist et al., 2007). This suggests that biomass
composition can be neglected, although it will affect intracel-
lular fluxes (Pramanik and Keasling, 1997, 1998) and trophic
interactions (Matz and Kjelleberg, 2005). Similarly, growth-rate
independent maintenance energy requirements are tedious to
determine and interpret (Van Verseveld et al., 1984). However,
in situ maintenance energy is much lower than the maintenance
energies determined in the laboratory (Morita, 1988), suggest-
ing that growth-rate independent maintenance energy is also
not required for modeling, while it may also be estimated from
thermodynamic approaches (Tijhuis et al., 1993). The inclu-
sion of growth-associated maintenance, on the other hand, is
essential, as microbial metabolism is inefficient: the amount of
biomass produced per mole ATP is much less than theoretically
possible (Stouthamer, 1973). Westerhoff et al. (1983) described
that low thermodynamic efficiencies are optimal for maximum
growth, and established a relation between the reduction grade of
substrate and efficiency.

FBA models predict growth yields. Given that thermody-
namic models more directly predict yield estimates (Vanbriesen,
2002; Roden and Jin, 2011), these estimates may utilized as
additional constraints in FBA. A literature compilation demon-
strated a linear relationship between measured microbial growth
yield and the free energy of aerobic and anaerobic respiratory
and fermentative metabolism of glucose, organic acids, ethanol,
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and hydrogen (Roden and Jin, 2011). An initial prediction of
growth yield on basis of thermodynamics may in particular aid
fitting P/e ratios from FBA models for respiring microorgan-
isms. Oxidative phosphorylation is generally the major source for
ATP in respiring microorganisms, including those active in oil
spill degradation, but it is experimentally challenging to quantify
its P/e.

Most of the above mentioned physiological parameters would
also be needed for other modeling approaches, e.g., kinetic mod-
els. Determining these parameters is time-consuming and poses
a serious constraint on modeling complex microbial communi-
ties in detail, also calling for a more optimal use of the large
amount of physiological data collected in the past (see Section
“Concluding Remarks”). Paradoxically, top–down approaches
(Figures 2, 4) may also aid in achieving bottom up-modeling
of complex communities: empirical relations may be used to
infer physiological parameters or first model activities, and can
later on be replaced by more mechanistic descriptions when
more insight is obtained. For instance, genome composition
and genome-derived metabolic network structure of a microor-
ganism inform on physiological characteristics such as growth
rates (Freilich et al., 2009, 2010; Sharp et al., 2010; Vieira-Silva
and Rocha, 2010), since they are shaped by the environment in
which the microorganism evolved. rRNA operon copy number,
tRNA copy number and a composite index of codon usage bias
derived from (meta)genome sequence data correlate with max-
imum growth rate (Sharp et al., 2010; Vieira-Silva and Rocha,
2010). Metabolic variability and co-habitation (or competition)
encountered can be derived from genome sequence data, and
also correlate with growth rates (Freilich et al., 2009). Such rates,
together with principles of biochemistry and genomics (e.g., Beg
et al., 2007; Henry et al., 2007; Chandrasekaran and Price, 2010),
may be used to constrain FBA models. A quantitative descrip-
tion of substrate uptake rates in multispecies FBA is in particular
important for modeling competition and also requires informa-
tion on substrate affinities. Recently, evidence was obtained that
kinetic parameters, such as affinity constants, correlated with the

amino acid composition of enzymes (Zikmanis and Kampenusa,
2012).

CONCLUDING REMARKS
The road toward understanding and predicting microbial
community functioning is clearly still long and will be challeng-
ing. Achieving this goal will require a more optimal, integrative
use of the enormous amount of data that is already available.
Current microbial ecology is strongly dominated by molecular
analyses, however the “old” microbial physiology data are still
of high value to give further meaning to molecular-based com-
munity analysis. Yet, the data are spread over a large number of
publications. In biochemistry, kinetic parameters for enzymes,
such as turn-over rates, affinity constants, maximum rates have
been compiled in the BRENDA database (Schomburg et al.,
2013). We advocate establishing a similar database with kinetic
parameters of microorganisms, and also containing information
on their physiology and ecological characteristics.

Such a database will help to advance microbial ecology in
two ways. Firstly, phylogenetic information, as derived from 16S
rRNA sequencing or metagenomics, might be linked to the clos-
est relative in such a database to automatically extract its kinetic
properties and ease modeling of the ecosystem from which the
community data were derived. Secondly, a database with micro-
bial physiology data will facilitate the large-scale correlation of
physiological data with genome information (Figure 4). This
enables deriving “rules” on microbial physiology and ecology
(Borenstein et al., 2008; Freilich et al., 2009, 2010), which may
aid bottom-up approaches, e.g., to derive the mechanistic reasons
behind observed patterns (Figure 2).

In addition, more microbial physiological data will be needed,
particularly on the impacts of co-cultivation on the physiology
of individual species and their interactions. In addition, while
microorganisms of industrial and clinical relevance were well-
characterized in monocultures in the 1970s to 1990s, advanced
culturing methods have now allowed for isolation of species from
phyla which were not even described at that time. Comparative

FIGURE 4 | From genome to physiology and ecology of a species. The
interaction with their environment over evolutionary times has shaped the
physiologyofmicroorganisms,which iscontained in their genomes. Weassume
that, in reverse, the genome informs on a species’ physiology and ecology. This

figure indicates how one may derive relationships between genomic
information on the one hand and physiological and ecological characteristics on
the other hand. These relationships or “rules” will further aid the modeling of
microbial communities and functioning by bottom-up approaches.
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microbial physiology studies, on novel single species or mixed
species cultures, will benefit modeling.

We have provided a synthesis on how approaches currently
available can be integrated and extended to computationally
derive multispecies, metabolic flux networks from metagenomic
data. This integration will contribute to answering key ques-
tions in microbial ecology, such as understanding the assembly of
microbial communities and their functioning via metabolic inter-
actions. Oil-degrading communities are often simple and dom-
inated by culturable species, providing a suitable, tractable test
system. In recent years, an enormous amount of largely descrip-
tive studies on the degradation of marine oil spills has appeared
(e.g., Camilli et al., 2010; Hazen et al., 2010; Lu et al., 2012;
Mason et al., 2012). This wealth of data can be further analyzed
to establish the co-occurrence and dynamic interactions between
key microorganisms contributing to oil-degradation. The avail-
able genomic information on key isolates (Schneiker et al., 2006)
and on non-culturable key players through single cell sequenc-
ing (Mason et al., 2012) can be included in the multi-species
metabolic models. This modeling, in iteration with well-designed
experiments, should substantially enhance our knowledge on the
biodegradation of marine oil spills.
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