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Intrinsically disordered proteins (IDPs) are ubiquitously involved in cellular processes and

often implicated in human pathological conditions. The critical biological roles of these

proteins, despite not adopting a well-defined fold, encouraged structural biologists to

revisit their views on the protein structure-function paradigm. Unfortunately, investigating

the characteristics and describing the structural behavior of IDPs is far from trivial,

and inferring the function(s) of a disordered protein region remains a major challenge.

Computational methods have proven particularly relevant for studying IDPs: on the

sequence level their dependence on distinct characteristics determined by the local

amino acid context makes sequence-based prediction algorithms viable and reliable

tools for large scale analyses, while on the structure level the in silico integration of

fundamentally different experimental data types is essential to describe the behavior

of a flexible protein chain. Here, we offer an overview of the latest developments and

computational techniques that aim to uncover how protein function is connected to

intrinsic disorder.

Keywords: intrinsically disordered proteins, IDP ensembles, IDP function, disorder prediction, protein ensemble

database

Introduction

The traditional goal of protein structural biology is to relate the well-defined three-dimensional
structure(s) of a protein to its biological function. This structure-function paradigm continues to
facilitate many important discoveries, but has largely ignored the possible roles of conformational
flexibility on function (Forman-Kay and Mittag, 2013). Yet, in the recent years it became
apparent that structural disorder is ubiquitously present in diverse cellular processes, and has a
particularly prominent role in regulation and signaling events occurring in the complex cellular
environment (Tompa et al., 2006; Dunker et al., 2015). Proteins or protein regions that are
enriched in conformational flexibility are referred to as intrinsically disordered proteins (IDPs)
or protein regions (IDRs) (Dyson and Wright, 2005; Fink, 2005; Tompa, 2005). IDPs and IDRs
lack a well-defined, stable three-dimensional fold, and therefore they populate ensembles of
dynamically exchanging conformations, separated by low energy barriers. This dynamic behavior
challenges the traditional structure-function paradigm (Wright and Dyson, 1999; Chouard, 2011),
since it is far from trivial to describe the structural behavior of proteins that adopt such an
extensive range of conformations, let alone infer their biological role (Tompa, 2011). Even
though intrinsic disorder is occurring ubiquitously—more than 30% of the proteins in the known
eukaryotic proteomes have disordered segments of 30 or more consecutive disordered residues
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(Dunker et al., 2000)—we are only beginning to understand how
protein function arises from the disordered state (Tompa, 2011).
Here, we provide an overview of the recent developments in
terms of computational methods and data resources that facilitate
the understanding of intrinsic disorder and its connection to
protein function.

Functional Consequences of Intrinsic
Disorder

IDPs and IDRs can be viewed as having complementary functions
to those of their folded counterparts. While the latter are
often involved in enzymatic activities, molecular transportation
or binding short peptides and small molecules, IDPs are
mainly involved in signaling, regulation and enzymatic activity
inhibition (Xie et al., 2007; Dunker et al., 2015), for example
in cell cycle regulation (Yoon et al., 2012), cell division and
differentiation (Ward et al., 2004; Xie et al., 2007).

There are a number of possible ways in which an IDP/IDR
can realize its function. In perhaps the simplest scenarios, they
serve as entropic chains, effectively influencing the orientation
and distance between folded domains (Chong et al., 2010), and
organizing the super-tertiary structure of the protein (Tompa,
2012). In some cases they are entropic springs or even timers,
where the length and flexibility of the linker can determine
stochastically how often two folded domains may encounter each
other (Bentrop et al., 2001; Smagghe et al., 2010).

Another important role of conformational flexibility is
in binding protein or nucleic acid partners. IDPs excel in
establishing specific, but transient interactions (Dunker et al.,
1998). From an energetic point of view, the reason behind
their weaker binding affinities is that the entropic cost of
stabilizing a single conformation from the dynamic ensemble
that the IDP/IDR is sampling is relatively high (Dyson and
Wright, 2005). However, in some cases the fine-tuning of
favorable interactions is known to yield surprisingly strong
affinities (Ferreon et al., 2013; Follis et al., 2013). An additional
advantage of the high degree of conformational freedom is that
an IDR can bind very diverse partners because it can easily
adopt different conformations (Wang et al., 2011; Hsu et al.,
2013) and is often enriched in short binding- and recognition
motifs. It is therefore no surprise that IDPs are often hub-
(Kim et al., 2008) or scaffold proteins (Dyson and Wright,
2005; Kim et al., 2008; Mittag et al., 2010a) that play essential
roles in the cell by integrating signals (Lobley et al., 2007),
so increasing the complexity of cellular networks (Dunker
et al., 2005; Oldfield et al., 2008). Consequently, IDPs are often
implicated in pathological conditions where loss of regulation
is the major issue, such as different types of cancer (Andresen
et al., 2012). Their involvement in diseases has recently turned
IDPs into potential drug targets by either targeting the IDP, or its
protein-protein interactions (Funk and Galloway, 1998; Metallo,
2010; Rezaei-Ghaleh et al., 2012).

Conformational flexibility implies high accessibility for
potential binding partners and/or enzymes. Consequently, post-
translational modification (PTM) sites are often found to be

enriched in intrinsically disordered regions (Iakoucheva et al.,
2004), with especially phosphorylation sites being prevalent (Gao
et al., 2010). While IDPs often go through disorder-to-order
transitions upon binding to their partners (Mohan et al., 2006;
Wright and Dyson, 2009), in many cases they remain partially
or fully flexible in their bound state, forming fuzzy complexes
(Tompa and Fuxreiter, 2008; Fuxreiter and Tompa, 2012). One
of the advantages of this fuzziness is that PTM sites within the
chain can remain relatively accessible, allowing easier regulation
of the IDP by modification enzymes (Mittag et al., 2010a). Such
regulation by PTM sites is not limited to activation/deactivation
of the protein; the modification of the surface of the IDR may
also be the prerequisite of binding to a different partner (Oldfield
et al., 2008), or even to the same partner, but with increased
affinity (Mittag et al., 2010b).

However, intrinsic disorder also has a dark side. In particular,
the amino acid compositional bias of IDPs coupled with
relatively high propensities to form β-sheets and turns leads to
elevated aggregation potentials, and the formation of amyloid-
type beta-structures (Levine et al., 2015). Indeed, IDPs have been
implicated in aggregation-based diseases, such as Alzheimer’s and
Parkinson’s (Huang and Stultz, 2009; Uversky, 2010).

Sequence-based Investigation of IDPs

There are a number of experimental techniques currently
available for identifying and characterizing intrinsic disorder,
such as circular dichroism (CD) (Weinreb et al., 1996), protease
digestion (Johnson et al., 2012), Förster resonance energy transfer
(FRET) (Haas, 2012), Electron Paramagnetic Resonance (EPR)
spectroscopy (Drescher, 2012), small-angle X-ray and neutron
scattering (SAXS and SANS) (Bernado and Svergun, 2012; Gabel,
2012) and nuclear magnetic resonance spectroscopy (NMR)
(Kosol et al., 2013; Konrat, 2014). For initial and for high-
throughput investigations, computational methods are however
a very popular choice (Ward et al., 2004; Ishida and Kinoshita,
2007). Intrinsic disorder is associated with distinct sequence
characteristics; IDPs/IDRs are enriched in “disorder promoting”
amino acids, such as charged or polar residues, glycines and
prolines, while hydrophobic residues are underrepresented
(Uversky et al., 2000).Their conformational flexibility also implies
that the local sequence context predominantly dictates the
amino acid interactions that can take place, making IDPs more
amendable to prediction of their characteristics from sequence.
Throughout the last decade many disorder prediction algorithms
were designed to exploit the information contained within
the amino acid sequence of an IDP; there are more than 50
disorder predictors worldwide (He et al., 2009). The first disorder
predictors, such as DisEMBL (Linding et al., 2003) were primarily
based on the distinct compositional bias of IDPs. They were
followed by faster and more reliable algorithms, such as IUPred
(Dosztanyi et al., 2005), RONN (Yang et al., 2005), and Espritz
(Walsh et al., 2012). Some of these more advanced methods
rely on machine learning techniques (Bellay et al., 2012), or
combine the results of several algorithms, such as the meta-
predictor metaPrDOS (Ishida and Kinoshita, 2008). Overall, the
accuracy of most predictors is consistently above 80%, with
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the best methods currently peaking around 85% (Monastyrskyy
et al., 2014). Alternatively, the novel Dynamine approach predicts
backbone dynamics, which correlates (negatively) with intrinsic
disorder (Cilia et al., 2014); interestingly, this approach is trained
on estimations directly from NMR data and avoids structure-
based information, complex machine-learning and evolutionary
information (Cilia et al., 2013). The distribution of charged
amino acids in the sequence of an IDP can also offer information
on whether the protein chain is extended or collapsed (Das and
Pappu, 2013).

Often it is unnecessary even to predict disorder, since there
are a number of openly accessible online resources that store
information of the disorder content of specific proteins. The
Disordered Protein Database (DisProt) is the primary one of
these sequence-based resources (Sickmeier et al., 2007). DisProt
is manually curated, and stores information on proteins for
which intrinsic disorder was experimentally determined. Where
available, the proteins are also annotated with their known
functions. However, DisProt houses data for 694 disordered
proteins, which is only a minor fraction of the expected number
of IDPs. MobiDB (Potenza et al., 2015) and D2P2 (Oates et al.,
2013) on the other hand are online resources that store IDPs
identified using prediction algorithms from the whole UniProt
in addition to experimentally determined ones.

Sequence information on intrinsic disorder can be exploited
for more than merely the prediction of disordered residues. In
fact, there are many recent algorithms that aim at predicting
functional sites and/or the functional role of IDRs. For example,
larger hydrophobic residues such as tryptophan and leucine
are often found within peptide motifs that act as recognition
units located within IDR segments, called molecular recognition
features (MoRFs) (Mohan et al., 2006; Fuxreiter et al., 2007;
Brown et al., 2010). Disordered motifs are generally short, 3-
15 residue long segments; therefore identifying them poses a
computational challenge (Gould et al., 2010). Consequently,
predicting functional sites in IDRs is not straightforward, and
prone to high false positive rates (Tompa, 2011). Additional
layers of information can enhance the performance, for example
MoRFpred, which uses order/disorder patterns (Cheng et al.,
2007), ANCHOR, which estimates the interaction of a segment
with a general partner (Meszaros et al., 2009) or DisCons, which
takes into consideration the evolutionary conservation of both
the amino acid sequence and of the disorder as a feature (Varadi
et al., 2015).

Structural Representation of IDPs

Ideally it would be possible to describe the structure of an
IDP/IDR in full atomic detail. Indeed, the set of conformations
IDPs sample is often not completely random, for example
both p21 and p27 are known to sample distinct secondary
structural elements that are biologically relevant and involved in
conformation selection (Kriwacki et al., 1996; Sivakolundu et al.,
2005). Due to their inherent conformational flexibility, however,
the structure of an IDP cannot be described with a single, static
conformation (Tompa and Varadi, 2014). This conformational
diversity of IDPs precludes crystallization and examination by

X-ray crystallography is therefore not a viable option. NMR
spectroscopy, while more attuned to conformational diversity,
remains hindered by distinct difficulties such as peak overlap
(Bellay et al., 2012), while traditional structure calculation
protocols do not properly account for multiple conformations
(Vranken, 2014).

In response to this challenge, a number of approaches were
developed that combine experimental data with computational
methodology with the aim to accurately describe the full
conformational ensemble adopted by IDPs. Experimental data
from techniques that rely on measurements performed in
solution are particularly well suited for studying the dynamic
structure of an IDP, even though they often represent an average
over the different conformations that are adopted by the IDP.
These experimental measurements predominantly include NMR-
derived parameters, such as chemical shifts (CSs) (Jensen et al.,
2011), residual dipolar couplings (RDCs) (Mittag et al., 2010b),
paramagnetic relaxation enhancements (PREs) (Mittag et al.,
2010b), and J-couplings (Mittag et al., 2010b), as well as scattering
intensities from small-angle X-ray scattering (SAXS) (Allison
et al., 2009) and probe distances from Forster resonance energy
transfer (FRET) (Haas, 2012). These experimental data are
then combined with computational methods to determine an
ensemble of conformations for an IDP, with twomain approaches
being used; the first approach is referred to as pool-based
modeling, while the second one is based on molecular dynamics
(MD) simulations (Tompa and Varadi, 2014) (Figure 1).

When using a pool-based approach, such as the ensemble
optimization method (EOM) (Bernado et al., 2007) which was
designed to model ensembles based on SAXS data, the initial
step is to generate a very large random or semi-random pool
of conformations based on the amino acid sequence of the
IDP/IDR with algorithms such as Flexible-Meccano (Ozenne
et al., 2012). The sampling of conformations can be biased
using experimental data, such as secondary structure propensities
derived from chemical shifts. Next, theoretical parameters are
estimated for each conformer in the pool, for example the
theoretical scattering intensities calculated by software such as
CRYSOL (Bernado and Svergun, 2012). Selection algorithms
are then deployed in order to select subsets of the pool in a
way that when the theoretical parameters are averaged over a
subset, they are in excellent agreement with the experimental data
(Sibille and Bernado, 2012). Another example is the ENSEMBLE
methodology, which uses as input a large set of conformations
together with relevant experimental data, and then prunes the
ensemble of conformations to a smaller subset. During the
filtering step, conformations are assigned weights so that the
resulting ensemble average values fit the experimental input
values. Structures that do not contribute to this fitting are
discarded (Krzeminski et al., 2013).

In contrast, ensemble modeling procedures are based on
molecular dynamics (MD) simulations and begin with random
conformations in parallel. Multiple “replica” simulations are
initiated using these initial conformations, and constraints are
applied over multiple models based on the experimental
data, i.e., sets of conformations are required to satisfy
experimentally determined constraints, such as pair-wise
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FIGURE 1 | Schematic view of the two main ensemble modeling

approaches. Pool-based ensemble modeling (left) starts by generating a

pool of random or semi-random conformations based on the protein

sequence. Subsets of conformations are selected iteratively from the pool

and theoretical parameters are calculated for each conformer in the subset.

The final ensemble consists of conformations for which the theoretical

parameters are in agreement with the experimental data. MD-based

approaches start by initiating short replica MD simulations in parallel using an

initial conformation. The MD replicas are constrained with the experimental

data. The final ensemble is a combination of the resulting replica runs.

distances or secondary structure propensities (Cavalli et al.,
2013). Given the conformational heterogeneity of IDPs, which
sample an extensive range of conformations during their
biological lifetime, extensive simulations are required to ensure
adequate sampling of relevant regions of the conformational
space. This significantly increases the computational costs
associated with IDP simulations and makes it difficult to achieve
even for systems of modest size. Recent developments to address
these issues include techniques such as multi-scale enhanced
sampling (MSES) (Lee and Chen, 2015) and replica exchange
with guided annealing (RE-GA) (Zhang and Chen, 2014). The
MSES protocol combines coarse-grained, topology-based models
with atomistic force fields to enhance sampling and was recently
optimized for simulating IDP conformational ensembles, where
it could capture reversible helix-coil transitions (Lee and Chen,
2015). RE-GA has been suggested to be suitable for systems
with small conformational transition barriers (as is the case for
IDPs), and helped the disordered kinase inducible domain (KID)
protein to efficiently escape non-specific compact states while
requiring less computation (Zhang and Chen, 2014).

Therefore, the main differences between these two classes of
modeling techniques are that the pool-based approach is much
faster; conformations can be easily generated, but the final results
strongly depend on the quality and diversity of this initial pool of
conformations. The ensemble modeling MD approaches are in
contrast very slow; conformational sampling depends on the MD
simulation, but they have the advantage that the experimental

data are continuously applied, a timeline of conformational
changes is available, and due to their more rigorous simulation
of physical reality, they should give a better representation of the
thermally accessible structural ensemble.

These two modeling approaches (i.e., pool and MD-based)
are currently the state-of-the-art and have been applied to
generate the structural ensemble of many IDPs (Table 1). These
ensemble models are, however, not straightforward to interpret
(Tompa and Varadi, 2014). The key issue is that the experimental
information that is available to either filter or constrain during
the calculation is very sparse compared to the immense degree
of conformational freedom the IDP experiences in solution,
resulting in a hugely underdetermined problem. As a direct
consequence, many ensembles of models can describe the
experimental data equally well, allowing multiple, ambiguous
solutions that strongly depend on the calculation approach and
the amount and type of experimental data available. In fact,
one can model the ensemble of an IDP with an excellent fit
to the data, then discard the ensemble and remodel another,
unique and different ensemble with an equally good fit. In
this sense, ensembles should be considered as a whole and
their structural characteristics analyzed as the average over
the ensemble, and over-interpretation of single conformations
should be avoided. However, if certain characteristics or pre-
formed secondary structural elements are consistently modeled
in multiple ensembles, then such structural features might be
functionally relevant.
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TABLE 1 | Recently published ensemble models from the Protein

Ensemble Database.

Protein Data type Protocol PED ID References

Sic1/Cdc4 NMR and SAXS Pool-based PED9AAA Mittag et al.,

2010b

p15 PAF NMR and SAXS Pool-based PED6AAA De Biasio et al.,

2014

MKK7 NMR Pool-based PED5AAB Kragelj et al.,

2015

Beta-synuclein NMR MD-based PED1AAD Allison et al.,

2014

P27 KID NMR MD-based PED2AAA Sivakolundu

et al., 2005

The field of ensemble modeling therefore still presents
exciting opportunities for further development, and several
important issues will have to be addressed before the techniques
become more reliable. In our view, the first is increasing the
number of experimentally derived constraints, which will lead
to higher quality models, or cross-validation with new types
of experimental data, which will also increase the power of
ensembles. The second is the further incorporation of knowledge
based information into the calculations, such as the results
from reliable predictions or improved force fields. The third is
that specific validation and evaluation approaches are required
for these ensembles, likely starting from the currently well-
developed NMR validation field (Rosato et al., 2013; Vuister et al.,
2014) but with better accounting for multiple conformations
(Vranken, 2014). Especially NMR CS values, whenever available,
are very useful for the estimation of residue-level backbone
and side-chain dynamics (Berjanskii and Wishart, 2005, 2013)
as well as secondary structure populations (Shen and Sali,
2006; Camilloni et al., 2012), with new methods providing
reference chemical shift values for IDPs (Tamiola et al., 2010).
They are already effectively used to generate pools with
predetermined conformations and as restraints in molecular
dynamics simulations (Krieger et al., 2014), but have immense
potential for the validation and evaluation of ensembles. Finally,
the overwhelming majority of the already generated ensemble
models were previously unavailable to the scientific community,
impeding the establishment of standardized validation and
evaluation protocol. The Protein Ensemble Database (PED) is an
international initiative launched to address this issue, effectively
making the experimental data and the ensemble models available
to the scientific community (Varadi et al., 2014). This is expected
to facilitate the development of the next generation of ensemble
modeling techniques, and should provide a basis for defining
standards of validation and evaluation.

Toward the Functional Interpretation of IDP
Ensembles

While ensemble models do not yet possess a predictive power
comparable to that of the structure of folded proteins/domains,
these models can already offer insights regarding the function

of an IDP. Through the integration of experimental data into
an ensemble model, functionally important segments might be
inferred. For example, transient secondary structural elements in
the ensemble of an IDP are often important in terms of function.
Such pre-formed elements are often molecular recognition units,
playing major roles in binding to various partners. For example,
thep27 protein samples transient helices are consistent with
the secondary structure of the bound state p27-Cdk2-cyclin
(Sivakolundu et al., 2005). Therefore, in accord with the notion
of conformational selection, if a certain secondary structural
element is sampled in the ensemble, it might be functionally
relevant in the bound form as well (Yoon et al., 2012). Again,
such interpretations have to be treated with caution given that the
ensembles are based on lower resolution, averaged experimental
observations, and the ensemble models should therefore be
accurate on average, not by single conformations.

Conclusions

IDPs are involved ubiquitously in biological processes, and play
essential roles in the regulation of complex cellular systems
(Tompa et al., 2006; Dunker et al., 2015). These multi-purpose
proteins combine conformational flexibility with an enrichment
of binding motifs and post-translational modification sites
(Iakoucheva et al., 2004; Wang et al., 2011; Hsu et al., 2013). Due
to their biological importance, it is imperative to characterize
them and attempt to relate their sequence and structure with
their physiological roles (Tompa, 2011). Such an endeavor has the
potential to offer valuable insights that can be translated into new
drugs and therapies (Funk and Galloway, 1998; Metallo, 2010;
Rezaei-Ghaleh et al., 2012). Sequence-based in silico techniques
such as disorder prediction algorithms are already comparable in
terms of accuracy to that of the secondary structure prediction
algorithms of folded proteins (Monastyrskyy et al., 2014), and
functional prediction algorithms are also widely available (Cheng
et al., 2007; Meszaros et al., 2009; Varadi et al., 2015). Yet, a
major breakthrough is expected when ensemble models based
on diverse experimental data prove to be biologically relevant,
so that we can confidently infer specific protein function from
the structural representation of an IDP (Tompa and Varadi,
2014). However, in order to realize this goal a number of
challenges need to be tackled first (Tompa, 2011). Chief among
these issues are improving the amount and available types of
experimental data and establishing standardized protocols for the
validation and evaluation of the ensemble modeling procedures.
Only then can the field advance in terms of increasing the
predictive power of ensemble models (Tompa and Varadi,
2014).
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