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Abstract

Preeclampsia (PE) is a pregnancy disorder defined by hypertension and proteinuria. This

disease remains a major cause of maternal and fetal morbidity and mortality. Defective pla-

centation is generally described as being at the root of the disease. The characterization of

the transcriptome signature of the preeclamptic placenta has allowed to identify differen-

tially expressed genes (DEGs). However, we still lack a detailed knowledge on how these

DEGs impact the function of the placenta. The tools of network biology offer a methodology

to explore complex diseases at a systems level. In this study we performed a cross-platform

meta-analysis of seven publically available gene expression datasets comparing non-path-

ological and preeclamptic placentas. Using the rank product algorithm we identified a total

of 369 DEGs consistently modified in PE. The DEGs were used as seeds to build both an

extended physical protein-protein interactions network and a transcription factors regula-

tory network. Topological and clustering analysis was conducted to analyze the connectiv-

ity properties of the networks. Finally both networks were merged into a composite network

which presents an integrated view of the regulatory pathways involved in preeclampsia and

the crosstalk between them. This network is a useful tool to explore the relationship

between the DEGs and enable hypothesis generation for functional experimentation.

Introduction

Preeclampsia (PE) is a pregnancy condition characterized by hypertension and proteinuria. PE
affects 5 to 7% of all pregnancies and remains a major cause of maternal morbidity and mortal-
ity. The disease constitutes also a major threat for the lives of child, being both a cause of pre-
maturity and growth retardation; reviewed by [1, 2]. PE can develop at any time after 20 weeks

PLOS ONE | DOI:10.1371/journal.pone.0165849 November 1, 2016 1 / 16

a11111

OPENACCESS

Citation: Vaiman D, Miralles F (2016) An

Integrative Analysis of Preeclampsia Based on the

Construction of an Extended Composite Network

Featuring Protein-Protein Physical Interactions and

Transcriptional Relationships. PLoS ONE 11(11):

e0165849. doi:10.1371/journal.pone.0165849

Editor: Ana Claudia Zenclussen, Otto von Guericke

Universitat Magdeburg, GERMANY

Received: September 2, 2016

Accepted: October 18, 2016

Published: November 1, 2016

Copyright: © 2016 Vaiman, Miralles. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was conducted in a laboratory

supported by the CNRS (Centre National de la

Recherche Scientifique) and INSERM (Institut

National de la Sante et la Recherche Medicale).

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0165849&domain=pdf
http://creativecommons.org/licenses/by/4.0/


of gestation, however early onset disease is more severe than later onset disease and associated
with poorer outcomes for both mother and child. The pathogenesis of PE is thought to origi-
nate from the placenta since its delivery generally resolves the syndrome and remains the only
cure. A consensus exists that in PE abnormal vascularization of the placenta leads to poor per-
fusion. Then, placental ischemia would cause intermittent hypoxia, oxidative stress, cell death,
and the release to the maternal circulation of anti-angiogenic factors and debris that promote a
systemic endothelial dysfunction [1–3]. To investigate the molecularmechanisms involved in
this disease several studies have used genome-widemicroarray expression analysis to identify
differentially expressed Genes (DEGs) between the preeclamptic and the non-pathologic pla-
centa; reviewed in [4]. Several DEGs have been found systematically modified in the pre-
eclamptic placenta, including: LEP, FLT1, ENG, INHA [5–8]. Yet the characterization of the
transcriptome signature of the preeclamptic placenta has not been followed by a detailed
understanding on how the modifications in the expression of these genes impacts the function
of the placenta. Biological processes in normal or pathological conditions results of complex
interactions between genes, proteins, metabolites and other molecules. Systems biology
approaches attempt to gain a deeper understanding of biological processes by integrating the
ensemble of its components through the mathematical modelling of networks. In these net-
works, the components (genes/proteins/metabolites) of the system are represented as nodes
and their interactions as edges [9]. Network analysis detects the relationships between its com-
ponents and enables the physical or functional relationships between them to be interrogated.
This methodology is useful to dissect the complexity of a biological process, providing informa-
tion relevant to understand the process, including the pathways and the prioritization of genes
involved in it [10]. Herein, we performed a cross-platformmeta-analysis of several public gene
expression datasets to identify DEGs that are consistently modified in PE. Then we used these
DEGs to build a composite extended network integrating physical protein interactions (PPIs)
as well as regulatory interactions with transcriptional factors (TFs). This composite extended
network can be useful to investigate and gain insight into the molecularmechanisms involved
in PE, to identify new biomarkers or potential drug targets.

Materials and Methods

Meta-analysis of microarray datasets

We performed a meta-analysis of several published gene expression data in preeclampsia. We
searched the Gene Expression Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/geo),
to identify microarray datasets that compared gene expression in preeclamptic versus normal
placentas. The keywords: preeclampsia, placenta, microarrays and gene-expression, were used
for this search. This way, we identified a total of 12 microarray studies in the GEO repository.
However, to be included in our study the microarray experiments had to carried out with
RNAs obtained from placental biopsies collected at delivery and at relatively comparable gesta-
tional ages (30–39 weeks), include a minimal number of samples (� 5) and be comparable in
terms of the microarray technology used. Thus finally, seven datasets were found meeting our
criteria and considered eligible for our study, Table 1 [11–17].

Since these studies used different microarray platforms, we performed our meta-analysis
using the rank product algorithm implemented in the online INMEX software (http://inmex.
ca), [18]. Before the datasets were analyzed, we used the processing modules (utilities) imple-
mented in the INMEX software to annotate all probe identities from each dataset as Entrez
gene IDs (for data consistency), transform the intensity values for gene expression to log2 and
perform quantile normalization. A list of 369 differentially expressed genes (DEGs) were iden-
tified based on adjusted p-value (threshold was set at adjP< 0.05) and average fold change
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(FC� 1.3 and FC� -1.3). FC were calculated as preeclampsia (PE) versus control (CO) sam-
ples. In addition, genes found to be significantly deregulated but showing discordant fold
change in at least two of the seven datasets analyzed were discarded. Correction for multiple
testing was done using BenjaminHochberg False Discovery Rate (FDR).

Enrichment analysis

The enrichment analysis of the DEGs was performedwith theWebGestalt (http://bioinfo.
vanderbilt.edu/webgestalt) bioinformatics resource [19]. WebGestalt (WEB-basedGEne SeT
AnaLysis Toolkit) incorporates updated information from different public resources and pro-
vides an easy way to make sense out of gene lists. Databases interrogated include: Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways [20–22].
The significance of the detected enrichments was calculated using the Benjamini & Hochberg
multiple test adjustment. In addition,WebGestalt was also used to perform enrichment analy-
sis of the network modules identified by community clustering.

Extended Protein-Protein Interaction networks: Construction and

Analysis

The DEGs identified in our meta-analysis were used as seeds to build a network of protein-pro-
tein interactions (PPIs). We constructed a network that not only consists of the seed proteins
but also of their direct PPI neighbors and the interactions between these proteins (first order
network).We obtained high confidence PPIs from the Biological General Repository for Inter-
action Datasets (BioGRID), (http://thebiogrid.org), [23]. The PPI network was constructed,
visualized and analyzed using the Cytoscape 3.2.1 software and its complementary applications
[24]. The network was analyzed for both centrality and modularity parameters. The centrality
parameters of the networks were analyzed using the Cytoscape application NetworkAnalyzer
[25]. Two topological parameters BetweennessCentrality (BC) and node degree were used to
identify hub genes [26]. In PPI networks genes or proteins are represented by nodes and the
interactions between the nodes are represented as edges. BC is defined as the number of short-
est paths from all vertices to all others that pass through that node. BC reflects the amount of
control that the node exerts over the interaction of other nodes in the network. Degree indi-
cates the number of edges linked to a given node. Nodes with higher degree and high BC are
hub genes which correspond to the most functionally relevant elements in the network. Modu-
lar analysis was performed using the fast-greedyHE (G) algorithm of the Community Clusters
Glay implemented in the Cytoscape Apps [27]. The idea behind identifying functionalmodules
is that proteins interacting with each other have higher probability of sharing the same function

Table 1. Datasets used for the meta-analysis.

Geo accesion CO* PE* Unique gene IDs Platform Reference

GSE10588 26 17 16752 ABI Human Genome Survey Microarray V2 [11]

GSE14722 11 12 13292 Affymetrix Human Genome U133A [12]

GSE24129 8 8 17100 Affymetrix Human Gene 1.0 ST [13]

GSE25906 37 23 24870 Illumina human-6 V2.0 [14]

GSE44711 8 8 31329 Illumina human HT-12 V4.0 [15]

GSE43942 7 5 19767 NimbleGen Homo sapiens HG18 090828 HX12 [16]

GSE54618 12 12 31332 Illumina human HT-12 V4.0 [17]

* number of control (CO) or preeclampsia (PE) samples.

doi:10.1371/journal.pone.0165849.t001
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than none interacting proteins. Thus, finding functionalmodules in a biological network is
similar to identify clusters of densely interacting nodes.

Regulatory Network Construction

We built a regulatory network by extracting gene regulatory relationships from RegNetwork
(http://www.regnetworkweb.org) an integrated database of transcriptional and post-transcrip-
tional regulatory networks in human and mouse [28]. This database integrates the documented
regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and target
genes from 25 selected databases including: JASPAR, TRANSFAC, TRED and USCS [29–31]
[32]. It also incorporates potential regulatory relationships based on TFs binding sites. The
DEGs were used as seeds to extract high confidence transcriptional regulatory relationships
from the human RegNetwork.

Results

Identification of DEGs by meta-analysis

Sevenmicroarray datasets were extracted from the GEO database, which meet our criteria for
meta-analysis (Table 1). Cross-platformmeta-analysis of the selected studies using the rank
product algorithm resulted in the identification of a total 1940 DEGs at adjP<0.05. Significant
genes having the same direction of fold change in at least 5 out of 7 datasets and with an aver-
age log2FC� 0.3 were considered for further analysis (The average log2FC being the average
log2FC for every single gene for the 7 datasets). This resulted in a list of 369 DEGs, of which
212 were up-regulated in PE and 157 down-regulated genes in PE (S1 Table). Among the con-
sistently up-regulated genes in PE with the higher mean log2FC and lowest p-value we detected
in descending order LEP, FSTL3, PAPPA2, INHA, FLT1, SPAG4 and BHLHE40. The down-
regulated genes with the largest mean log2FC and lowest p-value included CLDN1, SPP1,
ACTG2, NR2F1, GCLM and MMP1. By analyzing the literature we found that several of the
top DEGs identified in our meta-analysis have been validated experimentally as differentially
expressed in preeclamptic placentas (S2 Table).

Functional and pathway enrichment analysis

Enrichment analysis was performed to gain insight on the biological role of the DEGs. The
most over-represented Gene Ontology (GO) terms in the biological process category included:
“response to steroid hormone stimulus”, “response to wounding”, “cell migration”, “and
response to lipid” and “cell proliferation”. In the category of GO cellular component most
enriched terms were “extracellular region”, “extracellular matrix” and “plasma membrane”. A
complete list of GO terms is provided in S3 Table. KEGG andWIKI pathways analysis revealed
that the DEGs are associated with a number of significant pathways (Table 2).

These included: “focal adhesion”, “pathways in cancer”, “metabolic pathways”, and “cyto-
kine-cytokine receptor interaction”. “Focal adhesion” and “regulation of actin cytoskeleton”
were detected in both the KEGG andWiki pathway databases. The most significantly deregu-
lated signaling pathways included:MAPK, P53, TGF-Beta, and Chemokine signaling. To com-
plement the functional analysis we calculated the histogram of gene frequency in the different
pathways identified by the enrichment analysis (S1 Fig). Thus, TGFB1 and PDGFRA are the
genes with the higher frequencies. They are present in 8 and 7 pathways respectively.
CYP11A1 and SERPINE1 belong to 6 pathways, FOS, IGF1 and PIK3CB are present in 5 path-
ways. COL1A1 and CYP11A1 are present in 4 pathways. The other genes present lower
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frequencies. 26 genes were present in 3 pathways, 32 genes in 2 pathways and 64 genes belong
only to 1 pathway.

Construction of a physical PPI network

To interpret the functionalmeaning of the identifiedDEGs at the protein level, we constructed
a physical PPI network for the proteins encoded by these genes. Physical PPI interactions were
retrieved from the BioGRID database [23]. We constructed a network that not only consists of
the seed proteins but also their direct PPI neighbors (first order interaction network) and the
interactions between these proteins. The proteins (nodes) and resulting interactions (edges)
were imported into Cytoscape for visualization and further analysis [24]. This resulted in a net-
work composed 1231 proteins and 5486 interactions. The network contained 214 out of the
369 DEGs identified in the meta-analysis. For the remaining DEGs no high confidence PPIs
were reported in the BioGRID database. Biological networks have topological characteristics
distinguishing them from random networks [26]. Among these the node degree distribution
usually follows a power law. As shown (S2A Fig), this is the case for our network: R2 = 0.913.
This also means that a few nodes are highly connected (hubs) while a majority of nodes interact

Table 2. Significant KEGG and Wiki pathways associated with the DEGs.

Pathways (KEGG) Genes in DataSet Genes in Pathway adj P-Value

Focal adhesion 19 200 1.62E-12

Pathways in cancer 20 326 5.81E-10

Metabolic pathways 33 1130 4.67E-08

Protein digestion and absorption 9 81 9.63E-07

ECM-receptor interaction 9 85 1.18E-06

Cytokine-cytokine receptor interaction 14 265 1.65E-06

Complement and coagulation cascades 7 69 3.41E-05

Arginine and proline metabolism 6 54 7.84E-05

Steroid hormone biosynthesis 6 56 8.10E-05

Cysteine and methionine metabolism 5 36 0.0001

Gap junction 6 90 0.0006

Purine metabolism 7 162 0.0023

MAPK signaling pathway 10 268 0.0006

P53 signaling pathway 5 68 0.0016

Tight junction 6 132 0.0042

Insulin signaling pathway 6 138 0.0048

Chemokine signaling pathway 7 189 0.0048

Endocytosis 7 201 0.0060

Regulation of actin cytoskeleton 7 213 0.0079

Pathways (Wiki) Genes in DataSet Genes in Pathway adj P-Value

Adipogenesis 14 130 6.93E-10

Corticotropin-releasing hormone 10 123 3.49E-06

Selenium Pathway 8 108 6.53E-05

Oxidative Stress 5 30 6.70E-05

TGF-Beta Signaling Pathway 6 61 0.0001

Prostaglandin Synthesis and Regulation 4 31 0.0006

Senescence and Autophagy 7 120 0.0006

Metapathway biotransformation 8 177 0.0010

Cytochrome P450 5 65 0.0010

doi:10.1371/journal.pone.0165849.t002
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only with one or a few neighbors. The hub nodes play a major role in the architecture of the
network and usually correspond to proteins of special biological relevance in the system under
study. Here we used two topological parameters to identify hub proteins: betweenness central-
ity (BC) and degree (both defined in the methods section). These parameters were calculated
using the Cytoscape NetworkAnalyzer app. The topological scores (for the top 50 genes) are
supplied in S4 Table. When considering the BC parameter, the principal hub genes include
EGFR, ZBTB16, GRB2, EP300, TP53 and GOLGA2. Several of the DEGs are present among
the top 50 hub genes including ZBTB16, CASK, FOS, BHLHE40, TGFB1 and NOS3.

Module detection using connectivity patterns

The PPI network was further subdivided into connectivitymodules using the fast-greedyHE
(G) algorithm of the Community Clusters Glay [27]. This resulted in the identification of nine
connectivitymodules closely connected. The Modules were analyzed for functionality enrich-
ment using the gene ontology (GO) database (Table 3).

Thus, the bigger module, module1 was composed of 292 nodes and significantly enriched in
the biological processes terms: positive regulation of transcription from RNA polymerase II
promoter (adjP = 9.52e-58), positive and regulationmetabolic process activity (adjP = 5.58e-
51). The smaller module, module 9, contained 22 nodes and was associated with healing
(adjP = 0.0059) and coagulation processes (adjP = 0.0059).

Construction of a transcription factor regulatory network

We used RegNetwork [28] a database of transcriptional and post-transcriptional regulatory
networks, to extract regulatory interactions among the 369 DEGs of the preeclampsia meta-sig-
nature and transcription factors (TF). Regulatory relationships experimentally validated and
predicted were considered. This generated a network composed of 571 nodes and 2214 regula-
tory interactions. Among the nodes, 365 corresponded to DEGs identified in the meta-analysis
and the remaining 206 were inferred TFs. Among the DEGs we identified 30 genes encoding
TFs and regulating other DEGs. Topological analysis of the network using Cytoscape Networ-
kAnalyzer shows that the node degree distribution follows a power law (R2 = 0.841); (S2B Fig).
The TFs with the higher out degree (number of regulatory interactions), included the SP1,
POU2F1, JUN, CREB1,MYC, CEBPA, TFAP2A, ARNT, NFKB1, GATA1, STAT1, TP53,
ATF2 and HIF1A. Among the DEGs encoding TFs those with the highest out degree were:
CEBPA, TFAP2A, FOS, SREBF1, JUNB, FOSB and NR2F1. Several of the TFs with a higher
out degree can bind to the top DEGs identified in our meta-analysis. For example SP1 binds to
transcription factor binding sites (TFBS) in the promoter of SPAG4, SPP1 or BCL6; CEBPA
binds to the promoter of LEP, PAPPA2, FLT1 and BHLHE40; POU2F1 has TFBS in the pro-
moters of down-regulated genes such as CLDN1, SPP1 or ACTG2. Interestingly and in accor-
dance with the role of hypoxia in preeclampsia, HIF1A can regulate the expression of several
top DEGs identified in the meta-analysis including: LEP, FLT1, INHA, BHLHE40, SPAG4,
HK2, HILPDA and ERO1L.

Composite interactions PE network

The physical interactions PPI Network and the TFs-DEGs regulatory network were merged
using Cytoscape to generate a composite network which integrates both kinds of interactions.
Thus we obtained a network composed of 1542 nodes and 7718 edges. To illustrate it, Fig 1
shows a portion of the composite network displaying the transcription factors AP2A, its target
among the DEGs, its physical protein interactions and its transcriptional regulators. For visual-
ization purposes TFs were differentiated from their targets or other proteins in the network
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using a different symbol. Regulatory interactions were colored in green and physical interac-
tions in mauve. The mean log2FC of the DEGs was incorporated in the network to visualize up
or down-regulation. The complete composite network is provided as supplementary data in
form of an XML file which can be visualized and explored using Cytoscape.

Discussion

Herein we have performed a cross-platformmeta-analysis of seven gene-expression datasets
comparing non-pathological and preeclamptic placentas. Using a rank product algorithmwe
identified 369 DEGs consistently modified across the considered datasets. In a previous study
we used a vote counting strategy which led to the identification of only 98 DEGs in preeclamptic
placentas [8]. Sixty one DEGs identified in our previous study were also identified in the present
study. Vote counting is a simple method for summarizing evidence frommultiple datasets; how-
ever it does not take into account the quality of the studies, the size of the samples, or the size of
the effect. In the present study we used a rank product algorithm, a simple non-parametric

Table 3. Enriched GO terms in the modules detected by the GLAY community clustering algorithm.

Module GO ID GO Term Observed Genes N˚ genes Adj P-value

Module 1 GO:0006357 Transcription From Rna Polymerase II Promoter 133 292 9.52E-58

GO:0009893 Positive Regulation Of Metabolic Process 145 5.58E-51

GO:0000989 Transcription Factor Binding Transcription Factor Activity 60 5.06E-31

GO:0044428 Nuclear Part 171 1.41E-56

Module 2 GO:0051171 Regulation Of Nitrogen Compound Metabolic Process 70 255 0.0603

GO:0019219 Regulation Of Nucleobase-Containing Compound Metabolic Process 68 0.0603

GO:0045111 Intermediate Filament Cytoskeleton 23 4.46E-12

Module 3 GO:0007167 Enzyme Linked Receptor Protein Signaling Pathway 77 219 6.32E-38

GO:0007169 Transmembrane Receptor Protein Tyrosine Kinase Signaling Pathway 67 6.32E-38

GO:0005829 Cytosol 74 2.07E-12

GO:0005615 Extracellular Space 42 2.07E-12

Module 4 GO:0051270 Regulation Of Cellular Component Movement 18 180 0.0006

GO:0005615 Extracellular Space 25 7.31E-05

Module 5 GO:0006915 Apoptotic Process 16 67 0.0051

GO:0065008 Regulation Of Biological Quality 22 0.0051

GO:0044449 Contractile Fiber Part 10 5.09E-09

GO:0005737 Cytoplasm 50 7.32E-06

Module 6 GO:0050817 Coagulation 11 64 0.0004

GO:0009611 Response To Wounding 15 0.0009

GO:0001071 Nucleic Acid Binding Transcription Factor Activity 11 0.0162

Module 7 GO:0001819 Positive Regulation Of Cytokine Production 7 55 0.0007

GO:0031349 Positive Regulation Of Defense Response 7 0.0012

GO:0044459 Plasma Membrane Part 14 0.0194

GO:0005615 Extracellular Space 8 0.0350

Module 8 GO:0007264 Small Gtpase Mediated Signal Transduction 11 35 2.50E-05

GO:0045184 Establishment Of Protein Localization 14 5.72E-05

GO:001503 Protein Transport 13 0.0002

GO:0007154 Cell Communication 23 0.0010

Module 9 GO:0042060 Wound Healing 6 22 0.0059

GO:0007596 Blood Coagulation 5 0.0059

GO:0040011 Locomotion 8 0.0059

doi:10.1371/journal.pone.0165849.t003
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statistical method based on ranks of fold changes [33]. Methods combining P-values or effect
sizes have the disadvantage that the results can be often dominated by outliers, a significant
problem when thousands of genes are compared in the noisy environment of microarray experi-
ments. The methods combining rank statistics can be used to alleviate this problem. Compara-
tive studies suggest that the rank product method outperforms the other methods in terms of
sensitivity and specificity, especially in a setting of small sample size and large between-study
variation [34]. In addition to our studies, two other meta-analysis on transcriptomic datasets of
preeclamptic placentas have been conducted recently [5, 6]. The study by Moslehi and cowork-
ers was conducted on 4 datasets using a combining P-values method and identified a total of
419 DEGs. The overlap with the present study shows 139 common DEGs. The second one pub-
lished by van Uitert and coworkers, was conducted on 11 placenta gene expression datasets
which were preprocessed to conduct quality analysis. A combining size effect algorithm using
inverse variance random effects was applied, resulting in the identification of 388 DEGs. In this
case the overlap with the current study is of 148 common DEGs. Discrepancies between the
studies can be attributed to the different number of datasets and different statistics meta-analysis
methodologies.

Functional enrichment analysis of the DEGs identified in the present study, revealed that
they are mainly related to biological functions such as Focal adhesion, metabolic pathways,
ECM-interactions, cytokine-cytokine interactions, complement and coagulation cascades, etc.
All these processes have been previously associated with preeclampsia [3]. To further charac-
terize the relationship among the DEGs we attempted to identify physical interactions among
the proteins encoded by the DEGs. However, the scarcity of direct interactions between the
DEGs imposed the need to create a first order network. Thus we build an extended network

Fig 1. The interactions of AP2A in the composite extended network. The proteins encoded by the DEGs

identified by the meta-analysis are shown as ellipses colored in red when up-regulated or blue if down-

regulated. First neighbors of the proteins encoded by the DEGs are show as circles colored in yellow.

Transcription factors are shown as octagons colored in green (or red/blue if they belong to the DEGs).

Physical interactions are depicted in mauve and regulatory interactions in green. The regulatory interactions

are shown as a continuous line when validated experimentally or as a discontinuous line when predicted on

the basis of the presence of a transcription binding site (TFBS) in the target gene.

doi:10.1371/journal.pone.0165849.g001
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which includes not only the interactions between the DEGs but also the interactions between
the DEGs and their first neighbors. This resulted in a network composed of 1231 proteins and
5486 physical interactions. To evaluate the biological significance of proteins in a complex dis-
ease such as PE, network biology considers the topological position of a protein as crucial as
can be any eventual modification in its expression level. Within a network not all nodes are
equally important. Many studies have shown that “hub” nodes are more likely related to dis-
eases [35, 36]. Proteins occupying a “hub” position are potentially key molecules in signaling,
as they are interacting with many other proteins, being thus able to receive and transmit multi-
ple signals [37]. Herein proteins with high node degree and betweenness centrality were con-
sidered “hubs”. Among the top 50 hubs we found EGFR, ZBTB16, GRB2, EP300, TP53 and
GOLGA2. Several of the DEGs are present among the top 50 hubs including ZBTB16, CASK,
FOS, BHLHE40, TGFB1 and NOS3. Below we discuss the role of some of these hubs in PE.

EGFR encoding the epidermal growth factor receptor is the principal hub of our network.
This protein is a receptor for members of the epidermal growth factor (EGF) family. In addi-
tion to EGF this family includes the transforming growth factor–alpha (TGFA), heparin-bind-
ing EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG) and
epiregulin (EREG). Accumulating evidence suggests that human trophoblasts survival and
invasive capacities are linked to these growth factors. EGF protects cultured human cytotro-
phoblats against induced apoptosis [38, 39]. Also in vitro studies have shown that cytotropho-
blast motility and invasiveness are stimulated by TGFA and heparin-binding EGF-like growth
factor HBEGF [40, 41]. HBEGF is involved in extravillous trophoblast differentiation and it
also protects cytotrophoblast cells from apoptosis when exposed to hypoxia or oxidative stress
consecutive to hypoxia/reoxygenation [42]. A recent study has shown that in vitro, EGF,
TGFA, BTC and EREG can also prevent apoptosis in cytotrophoblast exposed to hypoxia/reox-
ygenation stress [43]. Decreased expression of EGF, TGFA and HBEGF has been reported in
the preeclamptic placenta, while expression of BTC, EREG and AREG show no significant dif-
ferences [43, 44]. BTC and EREG could at least in part compensate the lack for the other EGF
family members since they are effective in preventing cytotrophoblast apoptosis. However, the
analysis of EGFRmRNA expression in the placenta has revealed two different full-length tran-
scripts and one truncated transcript, p110/EGFR. In the preeclamptic placenta two indepen-
dent studies have found significantly higher mRNA expression of the truncated transcript,
while there were no significant differences in the mRNA expression of the two full-length tran-
scripts [43, 45]. Since the p110/EGFR isoform contains an extracellular domain and lacks the
intracellular domain it should not be able to signal upon EGF-binding and thus could act as a
dominant negative. The high expression of the p110/EGFR in the preeclamptic placenta would
contribute to impair the EGF signaling system [43]. Thus, concordantly with our bioinformat-
ics analysis experimental evidence support an important role for EGFR in the development of
PE. Our study is also in good consonance with two previous studies. A first study by Tejera and
coworkers identified EGFR and GRB2 genes as central components of the PE network [46].
Also, an integrative analysis by Moleshi and coworkers identified EGFR signaling deficiency
combined to hypoxia/oxidative stress as central mechanisms of PE [5].

Among the DEGs the transcriptional repressor ZBTB16 (PLZF) appears as one of the prin-
cipal hubs in the network. ZBTB16 is a member of the kruppel-like zinc finger protein family
involved in a multitude of biological processes including spermatogenesis, hematopoiesis, mye-
loid differentiation lymphoid development, cytokine production, programming and matura-
tion of NKT and INKT cells, cellular proliferation and apoptosis [47, 48]. Due to its role in
limiting cell-cycle progression and cellular proliferation PLZF is known as a tumor suppressor
[49]. Recruitment of co-repressors and subsequent chromatin remodeling has been shown to
underlie the repressor function of ZBTB16 [48, 50]. Although considered as a repressor an
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increasing number of studies describe ZBTB16 as an activator of transcription [48]. A role of
ZBTB16 in the control of inflammation is emerging. ZBTB16 would form a co-repressor com-
plex with HDAC3 and NF-κB in order to moderate the inflammatory program [51, 52]. A pos-
sible function of ZBTB16 in placenta physiopathology remains to be explored, however a
recent study linked it to hydatidiform molar pregnancies through its physical interaction with
NLRP7 [53]. According to this study NLRP7 (a protein involved in innate immunity and apo-
ptosis) could trap ZBTB16 in the cytoplasm and disrupt its nuclear inhibitory function, and
this would lead to excessive trophoblastic proliferation. Interestingly ZBTB16 is known to
interact physically with the EGFR ligand HBEGF [54]. The EGFR ligands, are synthesized as
type I transmembrane protein precursors and are expressed on the plasma membrane [55].
Membrane-anchored HBEGF, is cleaved from the plasma membrane in a process termed ecto-
domain shedding, which yields soluble HBEGF (sHBEGF) and a carboxy-terminal fragment of
HBEGF (HBEGF-CTF). The sHBEGF binds to the EGFR and induces EGFR phosphorylation
and subsequent activation of downstream signaling events. In parallel, the HBEGF-CTF trans-
locates to the nucleus, where it induces nuclear export of the transcriptional repressors
ZBTB16 and BCL6, thereby facilitating cell cycle progression [54, 56, 57]. The ectodomain
shedding is done by disintegrin and metalloproteinase (ADAM) members. A recent study has
shown that TGFβ induces HBEGF shedding and EGFR transactivation through ADAM17 acti-
vation in gastric cancer cells [58]. It would be interesting to investigate if a similar mechanism
is also at work in trophoblasts since aberrant TGFβ signaling is involved in PE [3].

We identified BHLHE40 (also known as STRA13, DEC1) as another of the DEGs occupying
a hub position. This gene has been found systematically up-regulated in the preeclamptic pla-
centa [5, 6, 8]. BHLHE40 is a transcriptional repressor binding as an homodimer to class B E-
box sites with high affinity; reviewed by [59, 60]. Its transcriptional repression activity includes
recruitment of co-repressors (such HDAC1) that mediated repressive chromatin marks or
methylate non-histone proteins; dimerization with bHLH factors to form non-functional com-
plexes; competition for binding to E-box sites; interaction with non-bHLH transcription fac-
tors to inhibit their activity; and promotion of proteasome-mediated degradation. BHLHE40 is
involved in different biological processes and its expression is up-regulated by numerous sti-
muli including retinoic acid, serum deprivation, TGFβ, cAMP, light, cytokines, insulin and
hypoxia. BHLHE40 regulates the differentiation of several cell types, thus gain and loss of func-
tion experiments suggest that it can repress mesodermdifferentiation and enhance muscle
regeneration after injury [61, 62]. BHLHE40 is deregulated in a wide variety of cancers and
impairs the DNA mismatch repair mechanism by repressing the expression of MLH-1 [63].
Many studies have shown that BHLHE40 mediates cell cycle arrest and promotes cellular
senescence [60]. It has been proposed that its effects on cell cycle could result of down-regula-
tion of c-Myc, and cyclin D1 as well as its interaction with p53 [64, 65]. Its capacity to induce
senescence seems to be partially p53 dependent [66]. Also, depending on the cell type
BHLHE40 has been shown to either induce or block apoptosis [59]. Hypoxia has been identi-
fied as a hallmark of the preeclamptic placenta. Interestingly, BHLHE40 is a target of the hyp-
oxia inducible factor (HIF1) and is induced by hypoxia [67–69]. Under normoxic conditions,
BHLHE40 expression is down-regulated by von Hippel-Lindau (VHL) a component of the
VHL/E3 ligase complex which ubiquitinates and targets HIF1 for degradation [70]. Recent
studies indicate that BHLHE40 could act also as a regulator of HIF1 and hypoxia responses.
Thus, induction of HIF-1α and VEGF through an EGFR/PI3K/BHLHE40pathway has been
reported [71]. As an effector of HIF1 it has been shown that BHLHE40 regulates adipogenesis
through a mechanism involving recruitment of HDAC1 to repress CEBPB transcriptional
activity [72]. Also, under hypoxic conditions BHLHE40 represses sterol regulatory element
binding protein 1c (SREBP1c), involved in the induction of several enzymes of the lipogenesis
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pathway [73]. The control exerted by BHLHE40 on wide range of biological functions, its role
in mediating hypoxia responses, and is systematic up-regulation in the preeclamptic placenta
suggests that it could play an important role in this disease. It is likely that exploring the func-
tion of BHLHE40 in cytotrophoblasts under normoxia and hypoxia could reveal new cues on
the molecularmechanisms at work in the preeclamptic placenta.

Conclusions

In this study we have used publically available microarray datasets comparing gene expression
in preeclamptic versus non-pathologic placentas. Other studies analyzing global gene expres-
sion in the preeclamptic placenta have been published but the datasets are not publically acces-
sible. Thus, the number of datasets constitutes a first limitation of our study which could have
reached stronger value if more datasets were included. Another limitation of the present study
comes from the coverage and quality of the human interactome data. Despite the best curation
efforts, the interactome remains incomplete, current coverage is estimated at 20% and biased
toward much-studied proteins [74–76]. In principle the incompleteness of the human PPI net-
work poses limitation to any study of network properties in the context of normal physiology
or disease. However, a recent study showed that notwithstanding its incompleteness, the avail-
able interactome has sufficient coverage to pursue a systematic network-based approach to
human diseases [77].

Our composite network summarizes current knowledge on the relationships between gene/
proteins involved in PE. It constitutes a model which can be easily upgraded with new PPI or
regulatory interactions.
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