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A simple design for microwave 
assisted digestion vessel with low 
reagent consumption suitable for 
food and environmental samples
Mehrdad Gholami1,2, Shima Behkami2, Sharifuddin Md. Zain2 & Sezgin Bakirdere3

The objective of this work is to prepare a cost-effective, low reagent consumption and high performance 
polytetrafluoroethylene (PTFE) vessel that is capable to work in domestic microwave for digesting 
food and environmental samples. The designed vessel has a relatively thicker wall compared to that 
of commercial vessels. In this design, eight vessels are placed in an acrylonitrile butadiene styrene 
(ABS) holder to keep them safe and stable. This vessel needs only 2.0 mL of HNO3 and 1.0 mL H2O2 to 
digest 100 mg of biological sample. The performance of this design is then evaluated with an ICP-MS 
instrument in the analysis of the several NIST standard reference material of milk 1849a, rice flour 
1568b, spinach leave 1570a and Peach Leaves 1547 in a domestic microwave oven with inverter 
technology. Outstanding agreement to (SRM) values are observed by using the suggested power to 
time microwave program, which simulates the reflux action occurring in this closed vessel. Taking 
into account the high cost of commercial microwave vessels and the volume of chemicals needed for 
various experiments (8–10 mL), this simple vessel is cost effective and suitable for digesting food and 
environmental samples.

Most trace analytical techniques need a homogeneous liquid sample to operate. Therefore, solid samples should 
be completely dissolved and digested prior to analysis. On the other hand, the digestion step is the Achilles’ heel 
of trace element analysis. If the digestion technique is too gentle, it will not break the sample matrix, therefore, the 
target analytes will not be released into the solution1. However, a method that is too harsh will not only destroy 
the sample matrix, but might also cause the loss of the analyte of interest. This is particularly the case with metals 
such as antimony, arsenic or tin1.

One of the techniques that is often used for digestion is ashing, which requires burning of the sample matrix 
until it becomes ash. The ash is usually soluble in an acid solution. This technique may also cause loss of analytes 
at high temperatures and yield poor results. Another difficulty is that some matrices do not easily turn into ash 
and may not even completely burn. Therefore, some of the target elements may not be taken into the solution1–3.

Fusion is another technique used for difficult matrices. This technique is very labor intensive and could be 
very expensive; furthermore, the high salt load and contamination problems due to the fluxing agent are the main 
disadvantages of this technique1–3.

Microwave digestion technique is an efficient, fast, and reproducible sample preparation method. In this 
method, the reaction timescale is dramatically reduced. Moreover, the potential for contamination decreases 
compared to open digestion techniques3–12. The first application of microwave in sample preparation was reported 
in 1975. In this study, a domestic microwave oven was employed to digest biological samples in an Erlenmeyer 
flask13. Soon after, scientists applied closed vessels to digest samples in higher temperatures and pressures14–24. 
All the closed vessels are armed with a safety system, which is either a safety membrane or a safety valve that 
opens instantly to control any increase in pressure by releasing some of the gases1. Therefore, volatile elements 
may be lost when gases are released from the closed vessels and this could be a reason for the lower recoveries in 
digestion1.
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The amount of chemical reagent typically used for digestion of biological samples with commercial vessel/
microwave in other studies is about 8–10 mL25,26; nevertheless, in this study, a maximum of 3.0 mL of chemical 
reagents are needed (2.0 mL of nitric acid and 1.0 mL of hydrogen peroxide).

Furthermore, the aim of this research was to design a simple PTFE vessel, which is safe to be used in a domes-
tic microwave, as commercial ones might not be available for all due to its high cost. Finally, the performance of 
this design is evaluated with an ICP-MS instrument by analyzing the milk powder NIST 1849a, rice flour NIST 
1568b, Peach Leaves NIST 1547 and Spinach Leaves NIST 1570a.

Results
To evaluate the accuracy and applicability of the designed vessel in the proposed power to time program, the 
SRMs of milk powder, rice flour, peach and spinach leaves were digested and analyzed. The results found for these 
SRMs are compared with their corresponding certified values and reported in Tables (1–4).

Discussion
The results observed in Tables 1 and 2 shows excellent recoveries for most of the elements that exist in the milk 
powder and rice flour SRM samples. Nevertheless, the results shown in Tables 3 and 4 for the analysis of peach 
and spinach leaves SRMs, respectively revealed that the recoveries for Al, Cu, Zn, V, Mo, and Ni are not as good 
as the other elements. The lower recovery in this case might be contributed to the silicon content of peach and 
spinach leaves6; these elements are not completely released in microwave digestion as jelly silicon contents can 
keep part of the analytes while digestion is in progress6,27. This reduction in the recovery of elements, which was 
mentioned above, is directly related to the amount of silicon content of the leaves. The mean silicon content of 
peach NIST 1547 and spinach NIST 1570a leaves has been reported to be 979 and 1137 mg kg−1, respectively6. It 
is clear that lower recoveries for Al, Cu, Zn, V, Mo, and Ni observed in case of the peach and spinach leaves are 
caused by their higher content of silicon.

As explained, in order to prevent over pressure condition in the designed vessel, a domestic microwave oven 
was used, facilitated with inverter technology. In conventional microwave ovens, the power of microwave is 

Elements

Concentration (mg.kg−1)

Certified value Found value (n = 3) RSD%
Agreement to 

(SRM) values (%)

Ca 5253 ±​ 51 5290 ±​ 177 1.35 100.7

Cr 1.072 ±​ 0.032 1.06 ±​ 0.02 0.94 98.9

Cu 19.78 ±​ 0.26 20.170 ±​ 0.005 0.01 101.1

Fe 175.6 ±​ 2.9 181.4 ±​ 10 2.28 103

K 9220 ±​ 110 9510 ±​ 224 0.95 103.1

Mg 1648 ±​ 36 1646 ±​ 32 0.78 99.9

Mn 49.59 ±​ 0.97 51.40 ±​ 0.71 0.56 103

Mo 1.707 ±​ 0.040 1.740 ±​ 0.020 0.57 102

Na 4265 ±​ 83 4379 ±​ 45 0.41 102

Se 0.812 ±​ 0.029 0.800 ±​ 0.020 1.25 98

Zn 151.0 ±​ 5.6 143.5 ±​ 4.8 1.35 95.1

Table 1.   Comparison of the obtained values (mean ± uncertainty at the 95% level, ts
n

) for milk powder 
SRM (1849a) with the reported certified values.

Elements

Concentration (mg.kg−1)

RSD%
Agreement to 

(SRM) values (%)Certified value Found value (n = 3)

Ca 118.4 ±​ 3.1 119.1 ±​ 4.4 1.5 100.6

Cd 0.0224 ±​ 0.0013 0.0219 ±​ 0.0012 2.3 98.1

Cu 2.35 ±​ 0.16 2.34 ±​ 0.09 1.6 99.6

Fe 7.42 ±​ 0.44 7.50 ±​ 0.43 2.3 101.1

K 1282 ±​ 11 1299 ±​ 32 0.98 101.3

Mg 559 ±​ 10 553 ±​ 12 0.85 98.9

Mn 19.2 ±​ 1.8 19.8 ±​ 0.3 0.6 103.2

Mo 1.451 ±​ 0.048 1.441 ±​ 0.021 0.6 99.3

Na 6.74 ±​ 0.19 6.73 ±​ 0.16 0.98 99.8

Se 0.365 ±​ 0.029 0.368 ±​ 0.012 1.3 100.9

Zn 19.42 ±​ 0.26 18.72 ±​ 0.51 1.1 96.4

Table 2.   Comparison of the obtained values (mean ± uncertainty at the 95% level, s
n

t ) for Rice flour SRM 
(1568b) with the reported certified values.
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always the maximum nominal power of the oven. Hence, for generating lower powers of radiation during the 
time of operation, the device was turned on and off successively so that the approximate required power of radi-
ation can be transferred into the object. Nevertheless, in the microwave oven with inverter technology the exact 
required power of radiation can be applied continuously on the target.

The amount of chemical reagent typically used for digestion of biological samples is about 8–10 mL25,26; how-
ever, in this study, a maximum of 3.0 mL of chemical reagents (2.0 mL of nitric acid and 1.0 mL of hydrogen per-
oxide) were used to digest 0.10 g of milk powder, rice flour, spinach and peach leaves SRMs. The recommended 
procedure for the digestion of SRM 1849 – Infant/Adult Nutritional Formula is digestion of 1.00 g of this sample 
with 10.0 mL of HNO3 for the 75 mL MARSXpress vessel28. The results reported by the CEM corporation for this 
SRM are given in Table 5.

As it is clear the Agreement to (SRM) values (%) reported by recommended procedure of CEM corporation 
are relatively poorer than the results obtained in this study. This can be attributed to the amount of (SRM) sample, 
which is 1.0 g, and the amount of recommended HNO3, which is 10.0 mL. This amount of HNO3 and (SRM) sam-
ple can cause overpressure in the digestion vessel and activation of safety valve. Therefore, because of releasing 
over-pressurized gases, some of the target samples will be lost and this is the reason for poorer results reported 
by CEM corporation.

Conclusions
A simple microwave digestion vessel design was introduced for digesting some food and environmental samples; 
the accuracy and applicability of this design was evaluated by the analysis of milk powder, rice flour, peach leaves, 
and spinach leaves SRMs. In this study a power to time microwave program, which simulates the reflux action 
occurring in this closed vessel were applied. Acceptable agreement to certified values have been observed for 
the analysis of milk powder and rice flour SRMs for most elements. However, it was observed that agreement to 
(SRM) values for some elements in peach and spinach leaves SRMs were not as good as milk powder and rice 
flour SRMs. It is concluded that this reduction in the recoveries as observed in some of the elements could be 
attributed to the silicon contents of these leaves. Moreover, the amount of chemicals used for the digestion in this 

Elements 

Concentration (mg.kg−1)

RSD%
Agreement to (SRM) 

values (%)Certified value Found value (n = 3)

Al 249 ±​ 8 236 ±​ 4 1.56 94.8

As 0.060 ±​ 0.018 0.060 ±​ 0.008 11.6 100

Cd 0.026 ±​ 0.003 0.027 ±​ 0.001 3.7 103.8

Cu 3.7 ±​ 0.4 3.60 ±​ 0.06 1.47 97.3

Fe 218 ±​ 14 214 ±​ 5 2.1 98.2

Mn 98 ±​ 3 96 ±​ 1 1.25 98.1

Mo 0.060 ±​ 0.008 0.058 ±​ 0.002 3.44 96.7

Ni 0.69 ±​ 0.09 0.720 ±​ 0.009 11.1 104.3

Pb 0.87 ±​ 0.03 0.86 ±​ 0.03 3.48 98.8

Se 0.120 ±​ 0.009 0.120 ±​ 0.009 6.66 100

Sr 53 ±​ 4 54 ±​ 2 3.7 101.8

V 0.37 ±​ 0.03 0.35 ±​ 0.02 5.71 94.6

Zn 17.9 ±​ 0.4 16.80 ±​ 0.34 1.78 93.8

Table 3.   Comparison of the obtained values (mean ± uncertainty at the 95% level, ts
n

) for peach leave 
SRM (1547) with the reported certified values.

Elements 

Concentration (mg kg−1)

RSD%
Agreement to 

(SRM) values (%)Certified value Found value (n = 3)

Al 310 ±​ 15 280 ±​ 4 1.42 90.3

As 0.068 ±​ 0.012 0.065 ±​ 0.007 9.23 95.6

Cd 2.876 ±​ 0.058 2.690 ±​ 0.094 3.08 93.5

Cu 12.22 ±​ 0.86 11.88 ±​ 0.16 1.18 97.2

Mn 76.0 ±​ 1.2 74.8 ±​ 0.8 0.93 98.4

Ni 2.142 ±​ 0.058 1.970 ±​ 0.040 2.03 91.9

Se 0.1152 ±​ 0.0043 0.1158 ±​ 0.0080 6.04 100.5

Sr 55.54 ±​ 0.50 54.87 ±​ 1.80 3.28 98.7

V 0.568 ±​ 0.017 0.559 ±​ 0.040 7.15 98.4

Zn 82.3 ±​ 3.9 71.0 ±​ 1.2 1.54 86.3

Table 4.   Comparison of the obtained values (mean ± uncertainty at the 95% level, ts
n

) for spinach leave 
SRM (1570a) with the reported certified values.
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vessel was reduced to 3.0 mL instead of 5 to 10 mL recommended by commercial vessels. By taking into account 
the price of commercial vessels and ultra-pure chemicals, these vessels can be considered as more cost effective 
and more environmentally friendly.

Methods
The ICP-MS 7500ce (Agilent, USA) with an octopole reaction system (ORS) was used in this research. The 
Octopole Reaction System (ORS) is a Collision-reaction cell CRC containing an octopole ion guide in a stainless 
steel vessel which pressurized with a gas. Collision-reaction cell CRC is a technology to reduce or eliminate the 
effect of interferences coming from polyatomic species. This can be done by passing the ion beam ( just before 
the quadrupole mass filter) through a cell that can be pressurized with a collision gas of either a reactive gas (e.g., 
H2, NH3, O2) or an inert collision gas (e.g. He). Argon gas that was used throughout the experiment is of spectral 
purity of (99.999%). Each day prior to the beginning of the experiment, the instrument was tuned with 1.0 μ​g L−1 
(Agilent, USA) tuning solution containing Li, Co, Y, Ce and Tl in 2.0% (v/v) HNO3 and 0.50% (v/v) HCl to cover 
the entire mass range to assure proper sensitivity. The settings of the instrument are reported in Table 6.

A 1000 W (Panasonic, Japan) microwave oven NN-ST651M, 32 L with inverter and ∅​340 mm turntable was 
used throughout the experiments. An (Elga Purelab Uhq II UK) system was used to produce ultra-pure water 
with resistivity more than 18 MΩ.cm.

A laboratory made polytetrafluoroethylene (PTFE) vessel was designed with a relatively thicker wall compared 
to commercial vessels while a silicone based polymer O-ring was used as a safety valve. The suggested vessel has 
been patented in Iran with patent no. 71522-1390/06/26, 2011 (Rima Instrument, Iran). In this design, eight 
vessels were placed onto an acrylonitrile butadiene styrene (ABS) holder to keep them safe and stable. The top 
view of the PTFE vessel is shown in Fig. 1(a); Fig. 1(b) represents the PTFE vessels with their ABS casing. The 
geometrical details of the vessel and their casing are shown in Fig. 1(c,d) respectively.

The reagents used for the analysis and digestion of samples are 60% ultrapure nitric acid and 31% ultrapure 
hydrogen peroxide (Merck, Germany). The standard reference materials were milk powder (Infant/Adult 
Nutritional formula obtained from NIST U.S department) 1849a, NIST rice flour 1568b, NIST peach leave SRM 
1547 and NIST spinach leave SRM 1570a.

For the calibration plot, a multi element standard Agilent with concentration of 10 mg L−1 for Ag, Al, As, Ba, 
Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn, Th and U, 1000 mg L−1 for Ca, Fe, K, Mg, Na and Sr were 
used. Concentrations of 50, 100, 300, and 1000 μ​g L−1 were used for five elements of Ca, Fe, K, Mg, Na and Sr, and 
concentrations of 0.5, 1, 3 and 10 μ​g L−1 for the rest of the elements. In Table 7 the limit of detection LOD, limit of 
quantitation LOQ, correlation coefficient, R2, and selected modes of gas are given. The LOD and LOQ values were 
obtained from S

m
3 bl  and S

m
10 bl  respectively, in these equations Sbl is the standard deviation of blank signal and m is 

the slope of calibration curve.
0.10 g of each SRM sample was weighed and transferred into a PTFE vessel, then the vessels were put under 

the hood and 2.0 mL of ultra-pure 60% nitric acid plus 1.0 mL of ultra-pure 31% hydrogen peroxide were added 
into each vessel and the vessels were closed. A power to time microwave program was used for the digestion of 
standard reference materials. The details of power to time program used in this experiment are as shown in Fig. 2. 
This program was obtained by several trial and error varying the time to power program with constant amount of 

Elements

Concentration (mg kg−1)

RSD%
Agreement to 

(SRM) values (%)Certified value Found value (n = 3)

Ca 4900 ±​ 130 4512 ±​ 207 1.85 90.08

Cu 20.29 ±​ 0.43 19.4 ±​ 0.42 2.04 95.43

Fe 177.1 ±​ 3.3 173.2 ±​ 9.1 2.15 97.82

Mg 1578 ±​ 69 1461 ±​ 71.8 1.97 92.59

Mn 51.00 ±​ 0.53 48.6 ±​ 2.5 2.02 95.22

Zn 152.3 ±​ 5.1 148.7 ±​ 7.2 1.96 97.65

Table 5.   Comparison of the obtained values (mean ± uncertainty at the 95% level, ts
n

) for SRM 1849 – 
Infant/Adult Nutritional Formula with the reported certified values reported by CEM corporation28.

Plasma (Ar) gas flow 15 L min−1

Carrier (Ar) gas flow 0.8–1.0 L min−1

Collision (He or H2) gas flow 4.5–5.0 L min−1

S/C temp 2 °C

Sampler and skimmer cons Ni

Plasma Power 1500 W

Sample depth 6–8 min

Reflected power <​5.0 W

Table 6.  ICP-MS operating conditions.
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(SRM) samples (0.1 g) and digestion solution volume (3.0 mL) to gain maximum agreement with (SRM) values. 
In this program, the power of the microwave oven was increased stepwise, first to 167 W for 2 minutes and then 
it was increased to the maximum 333 W for 2 more minutes; afterwards the power was decreased to zero for one 
minute. This trend was repeated five times for milk powder and rice flour (SRMs) and seven times for peach and 

Figure 1.  (a) Top view of a PTFE vessel, (b) PTFE vessels with their ABS casing, (c) vessel geometry, (d) (ABS) 
holder geometry.

Elements LOD (μg. L−1) LOQ (μg. L−1) Gas Mode R2

27Al 0.19 0.63 He 0.9996
75As 0.0091 0.0303 He 1.0000
43Ca 20.62 68.73 He 0.9992
111Cd 0.0035 0.0116 No Gas 0.9999
52Cr 0.012 0.040 He 1.0000
65Cu 0.013 0.043 He 1.0000
56Fe 0.23 0.77 He 1.0000
39K 3.41 11.37 He 1.0000
24Mg 0.16 0.53 He 1.0000
55Mn 0.064 0.213 He 1.0000
95Mo 0.016 0.053 He 1.0000
23Na 0.35 1.16 He 1.0000
60Ni 0.046 0.153 He 1.0000
209Pb 0.0092 0.0306 No Gas 0.9994
78Se 0.0029 0.0097 H2 1.0000
88Sr 0.041 0.1367 He 0.9998
51V 0.178 0.593 He 1.0000
64Zn 0.038 0.127 He 0.9975

Table 7.   ICP-MS analytical figures of merit.
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spinach leaves (SRMs). After digestion, the vessels were put under the hood to cool down. The contents were 
filtered through a 0.45 μ​m PTFE, if necessary (only peach and spinach leaves SRMs), and then transferred into a 
50 ml polypropylene volumetric flask and diluted with ultrapure water to the marked level. The diluted samples 
were stored in polyethylene vials until the time of analysis by ICP-MS.

For cleaning, 3.0 mL of analytical grade nitric acid was poured into each vessel. After closing the vessels, a 
similar program with that used for digestion was applied to wash the vessels for 15 minutes.

This vessel armed with silicone O-ring to release any over pressure that may occur because of applying higher 
power of microwave radiation or longer time of applying radiation. However, in this power to time microwave 
program, it was tried to apply power and time of radiation to digest different standard reference materials in a way 
to prevent the overpressure condition. This was archived by several experimental cycles.

It has been reported that, when water is heated in a closed vessel microwave, the internal pressure is lower 
than that in closed vessels heated by conventional methods4,26. This is due to the vessel materials and the heating 
mechanism. Since the closed vessel microwave and their outer casing are microwave transparent, they remain 
relatively cool during the heating process. Therefore, the vessel’s wall becomes cooler and causes water molecules 
to remove from vapor phase4,26. Moreover, it was reported that simultaneous application of air flow outside the 
digestion vessel can improve the efficiency of digestion in the microwave oven4. Consequently, this enhancement 
in condensation rate causes a decrease in internal pressures at higher temperatures4,26. This is similar to a reflux 
action, which explains the better digestion. With the same conclusion, the cooling and heating period, shown in 
Fig. 2, simulates the reflux action and causes very good agreement to (SRM) values. These vessels armed with sili-
cone O-ring to release any over pressure that may occur because of applying higher power of microwave radiation 
or longer time of applying radiation.

Figure 2.  Power to time microwave program used for digestion of different SRMs. 

Figure 3.  (a) Silicone rubber O-ring, (b and c) silicone rubber O-ring after deformation.
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The PTFE vessels used in this research were equipped with a silicon-based polymer with high tensile and 
temperature resistance properties. In the case of enhancement of pressure at high temperature, this silicone rub-
ber deforms to release the excess pressure. Figure 3(a) shows the silicone rubber O-ring before deformation and 
Fig. 3(b,c) show the silicone rubber after deformation, caused by high pressure and temperature.

It is necessary to mention here that although this vessel is armed with the safety system, the amount of sample 
(0.1 g) and the amount of reagents used for the digestion (3.0 mL) with the recommended time power program 
will not cause the activation of safety system of this vessel, therefore, better recoveries can be observed in this 
investigation.
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