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Abstract
During a large variety of common pathogens, E. coli, P. aeruginosa, MRSA, MRCNS, V. parahaemolyticus, L. monocy-
togenes and Salmonella are the leading pathogens responsible for large number of human infections and diseases. In this 
study, a high flux screening based on nucleic acid isothermal amplification technique has been developed. For the 8 common 
pathogens, species-specific targets had been selected and analyzed for their unique specificity. After optimization, separate 
LAMP reaction assays had been bioprocessed and integrated into one systematic detection platform, including 8 strips (PCR 
tubes) and 96-well plates. Eight standard strains verified for the accuracy. Application of the established high flux screening 
platform was used for detection for 48 samples in 4 different 96-well plates, with 2 groups of 2 operators using double-blind 
procedure. The accuracy of 100% was obtained, with the total time consumption as 66–75 min (for 12 samples detection 
on 8 different pathogens). As concluded, through the bioprocess of the systematic platform based on LAMP technique, it’s 
been demonstrated to be capable of simultaneous detection of 8 pathogens, with high sensitivity, specificity, rapidity and 
convenience.
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Introduction

Pathogens mediated infectious diseases in human beings and 
animals remain a major concern in public health [1]. During 
a large variety of common pathogens, E. coli, P. aerugi-
nosa, S. aureus (especially methicillin-resistant Staphylo-
coccus aureus, MRSA), coagulase-negative staphylococci 
(MRCNS), V. parahaemolyticus, L. monocytogenes and 
Salmonella are the leading pathogens responsible for large 
number of human infections and diseases [2–15]. However, 

bacterial identification of such pathogens requires up to 
several days [16]. For example, using “golden standard” 
culturing takes up 3–7 days depending on the results [17]. 
The required time length has posed a major concern for cli-
nicians. Early diagnosis of such pathogens is significantly 
important for further therapeutic treatment and thus substan-
tially influences the prognosis of the infections and diseases 
[18–20].

In recent years, PCR and Q-PCR have been well stud-
ied and documented to be a promising technique for rapid 
detection and bacterial identification [21–25]. However, 
regular PCR requires laborious results determination pro-
cess, such as electrophoresis or hybridization. (The former 
takes several hours and the latter takes up to 36 h.) For 
Q-PCR, expensive equipment and reagents are required, 
which poses an obstacle during its broad application [26, 
27]. Since 2000, a novel nucleic acid amplification method 
has been developed and established, named loop-mediated 
isothermal amplification (LAMP) [28, 29]. For the past 2 
decades, LAMP has been developed for the detection of 
various microorganisms and other genes [30, 31]. How-
ever, the clinical application of LAMP assays, especially 
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platform for high flux screening based on LAMP, has been 
rarely reported [32–34]. Advantages of LAMP include high 
sensitivity, specificity, rapidity, simpliness in operation and 
labor, convenience and expense [35]. However, lack of the 
bioprocessing and systematic integration of this technique 
into applicable platforms has been the biggest obstacle dur-
ing the application of this technique [36–38]. As a conse-
quence, development and application of rapid detection on 
such pathogens as well as their virulent factors for high flux 
screening application are of utmost importance and neces-
sity [39–41].

In this study, a high flux screening of pathogens, includ-
ing E. coli, P. aeruginosa, MRSA, MRCNS, V. parahaemo-
lyticus, L. monocytogenes and Salmonella, has been devel-
oped based on the loop-mediated isothermal amplification 
methodology.

Materials and methods

Bacterial strains

Nine standard strains were used to establish the high flux 
screening assays in this study, including E. coli C600 
ATCC25922, Pseudomonas aeruginosa: ATCC27853, 
MRSA 85/2082,  MSSA ATCC14458,  MRCNS 
ATCC29887, MSCNS ATCC27844, Listeria monocy-
togenes: ATCC19118, Salmonella enterica subsp. enterica: 
ATCC29629, Vibrio parahaemolyticus: ATCC27969. The 
storage, inoculation, culturing and incubation have been 
conducted as described previously.

Design on the systematic integration of detection

Specific targets were selected for different pathogens, 
with the detailed information as follows. For E. coli, rfbE 
(the specific O-antigen) was selected. For P. aeruginosa, 
oprI was selected. For MRSA, MSSA, MRCNS, MSCNS, 
mecA, femA and 16SrRNA (specific for the genus of 
Staphylococci) were selected. For Salmonella, invA was 
selected. For V. parahaemolyticus, tlh (thermolable haemo-
lysin, considered to be a species-specific marker for V. par-
ahaemolyticus) gene was selected. For L. monocytogenes, 
hlyA was selected. In our previous studies, the primer sets 
for each of the targets had been separately designed, and 
optimized for LAMP reaction. Such primer sets were also 
selected in this study, and additionally, new primer sets 
for each targets had been designed using Primer Explorer 
V4 [42–44]. Optimal parameters were selected by each 
set of primers. Principles for the systematic integration of 
the high flux screening platform included: firstly, unique 
temperature is required for the reaction occurred for each 
primers set. Secondly, unique reaction time is also required 

for each target. The DNA samples of E. coli, Pseudomonas 
aeruginosa, MRSA, MSSA, MRCNS, MSCNS, L. mono-
cytogenes, Salmonella, V. parahaemolyticus were isolated 
using the DNA extraction kit. DNA quality and concen-
tration had been confirmed with NanoDrop before further 
detection. LAMP reaction was performed under different 
temperatures (59 °C to 66 °C), reaction time (0, 15 min, 
30 min, 45 min, 60 min, 75 min, 90 min), concentrations 
of betaine (0.3 M, 0.4 M, 0.5 M, 0.6 M and 0.7 M) and 
ratios of calcein and Mn2 + (1:20, 1:16, 1:12, 1:8, 1:4, 1:2) 
[45]. The results determination was performed by observa-
tion by naked eye and SYBR Green I, electrophoresis [46, 
47]. At last, 8 primer sets were selected for the high flux 
screening platform (Table 1).

Bioprocessing the separate LAMP assays into high 
flux screening platform

As mentioned above, 8 primers sets specifically targeted 
for rfbE, oprI, mecA, femA, 16S rRNA for staphylococci, 
invA, tlh and hlyA have been included [48]. As LAMP 
reactions were concerned, 65 °C was selected due to the 
efficiency, stability and reproducibility of this methodol-
ogy. Also, reaction time as 45 min was selected as at this 
time point sufficient reaction products for results deter-
mination as well as minimal amounts of amplicons were 
both achieved [49–51]. For the concentration of betaine, 
insignificant difference was found, and thus 0.3 M was 
used for the consideration of minimal expense. For the 
ratio between calcein and Mn2+, 1:4 was found to be opti-
mal and thus selected. In addition, calcein was selected 
to replace SYBR Green I for the color change for results 
determination as calcein is capable of preload in the reac-
tion volume but SYBR Green I [52]. For application, 8 
strips (PCR tubes) were employed for the detection of 
standard strains, and 96-well plates were employed for the 
detection of different samples. Different sets of primers as 
well as reaction volume (25 micro liters were used, with 
0.3 M betaine and 1:4 of calcein and Mn2+) were prepared 
at each tube of 8 strips or 96-well plates (Fig. 1). Both 8 
strips and 96-well plates could be stored under −20 °C. For 
standard strains detection including E. coli, Pseudomonas 
aeruginosa, MRSA, MSSA, MRCNS, MSCNS, L. mono-
cytogenes, Salmonella, V. parahaemolyticus, 8 strips were 
used for 8 targets, and template DNA was loaded, followed 
by reaction on waterbath at 65 °C for 45 min [53–55]. 
Color change was determined for test results.

Application of the high flux screening platform

In this study, a common type of food sample, cake was 
employed to verify the applicability of this high flux 
screening platform. Sample artificially contamination was 



979Bioprocess and Biosystems Engineering (2021) 44:977–984	

1 3

Table 1   The primers used for each separate LAMP reaction

Gene Sequence (5′-3′) Size References

femA 6
F3 ATG​CTG​GTG​GTA​CAT​CAA​ 18
B3 TGG​TTT​AAT​AAA​GTC​ACC​AACAT​ 23
FIP GGT​CAA​TGC​CAT​GAT​TTA​ATG​CAT​AGC​ATT​CCG​TCA​TTT​TGC​C 43
BIP CAG​AAG​ATG​CTG​AAG​ATG​CTG​GTC​AAT​AAT​TTC​AGC​ATT​GTA​ACC​ 45
LF AAT​CAT​TTC​CCA​TTG​CAC​T 22
LB TGT​AGT​TAA​ATT​CAA​ 15
mecA 6
F3 AAG​ATG​GCA​AAG​ATA​TTC​AACT​ 22
B3 AGG​TTC​TTT​TTT​ATC​TTC​GGTTA​ 23
FIP GTG​GAT​AGC​AGT​ACC​TGA​GCC​TTG​ATG​CTA​AAG​TTC​AAA​AGA​GT 44
BIP CCT​CAA​ACA​GGT​GAA​TTA​TTA​GCA​CCT​TCG​TTA​CTC​ATG​CCA​TAC​ 45
LF TAA​TCA​TTT​TTC​ATG​TTG​ 18
LB TGT​AAG​CAC​ACC​TTC​ATA​TGA​CGT​ 24
rfbE 2
F3 AAC​AGT​CTT​GTA​CAA​GTC​CA 20
B3 GGT​GCT​TTT​GAT​ATT​TTT​CCG​ 21
FIP CTC​TCT​TTC​CTC​TGC​GGT​CC-GAT​GTT​TTT​CAC​ACT​TAT​TGGAT​ 43
BIP TAA​GGA​ATC​ACC​TTG​CAG​ATA​AAC​T-AGT​ACA​TTG​GCA​TCG​TGT​ 43
LF CCA​GAG​TTA​AGA​TTGAT​ 17
LB CGA​AAC​AAG​GCC​AGT​TTT​TTACC​ 23
16S rRNA 6
F3 CGT​GGG​GAT​CAA​ACA​GGA​TT 20
B3 CAT​GCT​CCA​CCG​CTT​GTG​ 18
FIP TAG​CTG​CAG​CAC​TAA​GGG​GC-CCA​CGC​CGT​AAA​CGA​TGA​G 39
BIP ACG​CAT​TAA​GCA​CTC​CGC​CT-GGG​TCC​CCG​TCA​ATT​CCT​ 38
LF GGA​AAC​CCC​CTA​ACACT​ 17
LB GGG​GAG​TAC​GAC​CGC​AAG​GT 20
invA 1
F3 TCA​ACA​ATG​CGG​GGA​TCT​G 19
B3 GAA​GCG​TA CTG​GAA​AGG​GAA​ 21
FIP ACR​CGC​CAT​GGT​ATG​GAT​TTG​TGA​CCA​TCA​CCA​ATG​GTC​AGC​ 41
BIP ATG​ATG​CCG​GCA​ATA​GCG​TCA​AGC​CAG​CTT​TAC​GGT​TCCT​ 40
LF TCC​GCT​CTG​TCT​ACT​TAT​ACCAT​ 23
LB TGA​TAA​ACT​TCA​TCG​CAC​CGT​CAA​ 25
oprI 7
F3 CTG​GCT​GCT​GTT​CTGG​ 16
B3 CGC​TCG​TTA​GCC​TCGT​ 16
FIP CTG​CGT​CTT​CGG​TAG​CGG​GGT​TGC​AGC​AGC​CACT​ 34
BIP TCA​GGC​TCG​CGC​TGA​CGA​-AGT​CTG​CTG​AGC​TTT​CTG​AG 38
LF TCT​TTG​GCT​TCG​AGC​AGA​CT 20
LB GCC​TAT​CGC​AAG​GCT​GAC​GAA​ 21
hlyA 8
F3 GGAGGMTAC​GTT​GCT​CAA​ 18
B3 AAG​CTA​AAC​CAG​TGC​ATT​C 19
FIP TCG​CTC​CAG​TTT​TTA​TGT​TGA​ACA​C-CTT​GGG​ATG​AAR​TAA​ATT​ATG​ATC​C 50
BIP AGC​AAG​CTA​GCT​CAT​TTC​ACAT-AGC​GTA​AAC​ATT​AAT​ATT​TCT​CGC​ 46
LF ACT​TCC​ATTKCTTTA​ 15
LB CGT​CCA​TCT​ATT​TGC​CAG​GTAAC​ 24
tlh 9



980	 Bioprocess and Biosystems Engineering (2021) 44:977–984

1 3

performed as described previously. A total of 16 strains other 
than standard strains were used in the application study, 
including 2 E. coli, 2 P. aeruginosa, 2 MRSA, 2 MSSA, 
2 MRCNS, 2 L. monocytogenes, 2 Salmonella, 2 V. para-
haemolyticus strains. A total of four 96-well plates were 
used. For each 96-well plate, there are 12 panels, and for 
each panel, 8 detected targets were included. Experiments 
were performed using a double-blind method, and the dem-
onstration is as follows [56–58]. Firstly, 2 separate operators 
(Group A) randomly selected different number of strains 
(from 1 to 8) for each of the 12 panels and conducted DNA 
extraction without informing the strain selection. Two other 
operators (Group B) further performed the detection using 
the 96-well plate. After the detection, 2 groups of operators 
compared the strains selection and detection results. Then, 
the same procedure was conducted vice versa, with Group 
B conducted strains selection and Group A conducted detec-
tion [59]. For a single 96-well plate, a total of 12 samples 
were detected for 8 pathogens at one reaction. Simple and 

rapid DNA extraction was performed as described previ-
ously, followed by loading of 5 micro liters of template DNA 
(with the 96-well plates placed on ice). LAMP was pro-
ceeded on waterbath at 65 °C for 45 min [60]. Color change 
was determined for test results. Besides, regular PCR detec-
tion was also performed as control.

Results

Development of separate LAMP platform and their 
integration

According to the development of LAMP assays, posi-
tive results had been obtained from DNA amplification of 
standard strains, with color change from orange to green by 
either SYBR Green I or calcein, as well as typical ladder 
bands pattern from electrophoresis [61–63]. Optimization 
of LAMP reaction was also performed, in details as follows. 
For reaction processed under different temperatures ranging 

Table 1   (continued)

Gene Sequence (5′-3′) Size References

F3 CGC​TGA​CAA​TCG​CTT​CTC​AT 20
B3 GTT​CTT​CGC​TTT​GGC​AAT​GT 20
FIP CTG​TCA​CCG​AGT​GCA​ACC​ACT​TAA​CCA​CAC​GAT​CTG​GAGCA​ 41
BIP GCA​TCA​CAA​TGG​CGC​TTC​CCA​CCG​TTG​GAG​AAG​TGA​CCTA​ 40
LF GTT​GAT​TTG​ATC​TGG​CTG​CATTG​ 23
LB AAC​CCG​AAC​AGC​TGG​TTC​T 19

Fig. 1   8-tube strips and PCR well plates for the biosystem platform

Fig. 2   Effect of different concentration of betain on the LAMP reac-
tion

Fig. 3   Optimization of the concentration ratio of calcein and Mn2+ 
(C(calcein) and C(Mn2+) is 1:20, 1:16, 1:12, 1:8, 1:4, 1:2, respec-
tively; NG, negative control)
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from 59 °C to 66 °C, insignificant difference was observed 
between 63 °C and 65 °C, and 65 °C was selected due to the 
efficiency, stability (according to previous studies), appli-
cability (significantly higher number of reported LAMP 
reactions had used this temperature) and reproducibility of 
this methodology. For reaction time ranging from 0, 15 min, 
30 min, 45 min, 60 min, 75 min, 90 min, the first time point 
for positive results to occur was found to be 30 min, and 
sufficient amplicons were obtained since 45 min. As a con-
sequence, 45 min was selected. For concentrations of betaine 
(0.3 M, 0.4 M, 0.5 M, 0.6 M and 0.7 M), insignificant differ-
ence was found, and thus 0.3 M was used for the considera-
tion of minimal expense (Fig. 2). In this study, calcein was 
selected to replace SYBR Green I for the color change for 
results determination as calcein is capable of preload in the 
reaction volume but SYBR Green I [64, 65]. For different 
ratios of calcein and Mn2 + (1:20, 1:16, 1:12, 1:8, 1:4, 1:2), 
1:4 was found to be optimal and thus selected (Fig. 3).

Verification of the high flux screening platform

For verification of the high flux screening platform on stand-
ard strains including E. coli, Pseudomonas aeruginosa, 
MRSA, MSSA, MRCNS, MSCNS, L. monocytogenes, Sal-
monella, V. parahaemolyticus, 8 strips (PCR tubes) were 
employed with different sets of primers, reaction volume 
(25 micro liters were used, with 0.3 M betaine and 1:4 of 
calcein and Mn2 +) preloaded at each tube of 8 strips. After 
loading of template DNA for each standard strain, reaction 
was proceeded in waterbath at 65 °C for 45 min [66]. As 
shown, color change from orange to green was observed 
for positive results, and 100% of specificity was obtained in 
this study (Fig. 4a). From template DNA loading to results 
determination, 50 min was required (Fig. 4b).

Application of the high flux screening platform

According to the results, for the first round as Group A 
for strains selection and Group B for detection, Opera-
tor 1 had selected 1 E. coli, 1 P. aeruginosa, 2 MRSA, 

1 MSSA, 1 MRCNS, 2 L. monocytogenes, 2 Salmonella, 
2 V. parahaemolyticus strains. As shown by the detec-
tion, all of the selected strains had been diagnosed by 
Operator 1 from Group B. For Operator 2, 2 E. coli, 1 P. 
aeruginosa, 2 MRSA, 2 MSSA, 2 MRCNS, 1 L. mono-
cytogenes, 1 Salmonella, 1 V. parahaemolyticus strains 
were selected, and all strains were correctly detected by 
Operator 2 from Group B [67–69]. For the second round 
as Group B for strains selection and Group A for detec-
tion, Operator 1 had selected 2 E. coli, 2 P. aeruginosa, 2 
MRSA, 2 MSSA, 2 MRCNS, 2 L. monocytogenes, 0 Sal-
monella, 0 V. parahaemolyticus strains. As shown by the 
detection, all of the selected strains had been diagnosed 
by Operator 1 from Group A. For Operator 2, 1 E. coli, 1 
P. aeruginosa, 1 MRSA, 1 MSSA, 2 MRCNS, 2 L. mono-
cytogenes, 2 Salmonella, 2 V. parahaemolyticus strains 
were selected, and all strains were correctly detected by 
Operator 2 from Group A [70]. In summary, 100% of accu-
racy was obtained by both groups for 2 rounds of experi-
ments (Fig. 5). As rapidity was concerned, 10–15, 8–10, 
45 and 3–5 min are required for DNA extraction, template 
DNA loading, LAMP reaction and results determination, 
respectively [71, 72]. In summary, the total time consump-
tion is 66–75 min, for simultaneous detection of 12 sam-
ples for 8 different pathogens.

Fig. 4   a Visual detection by 
calcein with fluorescence in 
LAMP amplified product, from 
40 min onwards to 60 min and 
orange color in 5-35 min. b 
Agarose gel electrophoresis of 
LAMP amplification prod-
ucts at different time interval 
(5–60 min), Lane M: 2000 bp 
ladder marker, 1–12 are 5 min, 
10 min, 15 min, 20 min, 25 min, 
30 min, 35 min, 40 min, 45 min, 
50 min, 55 min, 60 min)

Fig. 5   Example of electrophoresis of rfbE
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Discussion

In this study, a high flux screening based on nucleic acid 
isothermal amplification technique has been developed. 
Firstly, 8 common pathogens were selected and 8 species-
specific targets had been selected and analyzed for their 
unique specificity. Then, 8 different sets of primers for 
LAMP reaction had been further designed and optimized 
to obtain unique reaction temperature and time. Furtherly, 
the 8 detection assays had been integrated into a biosys-
tem panel for isothermal detection, including 8 strips (PCR 
tubes) and 96-well plates, with 8 standard strains verified 
for the accuracy [73–76]. At last, application of the estab-
lished high flux screening platform was used for detection 
for 48 samples in 4 different 96-well plates, with 2 groups 
of 2 operators using double-blind procedure. The accuracy 
of 100% was obtained, with the total time consumption as 
66–75 min (for 12 samples detection on 8 different patho-
gens) [77–79]. As concluded, through the bioprocess of the 
systematic platform based on LAMP technique, it’s been 
demonstrated to be capable of simultaneous detection of 
8 pathogens, with high sensitivity, specificity, rapidity and 
convenience.
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