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Abstract: This perspective considers the possibility that daytime’s intrusion into night made 
possible by electric lighting may not be as pernicious to sleep and circadian health as the 
encroachment of nighttime into day wrought by 20th century architectural practices that have 
left many people estranged from sunlight. 
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Introduction
The alternating availability and predictable ratio of sunlight to darkness emerging 
from the Earth’s rotation on its axis and revolution around the sun drives climate 
weather patterns, daily changes in temperature and humidity, as well as cycles of 
photosynthesis and chemical energy transfer across global food webs.1 Given the 
predictive power of this primordial signal (which lies at the root of all periodic 
change in the environment), the solar light/dark schedule became imprinted within 
the genome of the earliest organisms, who evolved molecular feedback loops 
matching the approximate timing of the Earth’s rotation calibrated by 
a centralized pacemaker network situated in immediate contact with photoreceptive 
organs.2 Sunlight is fundamental to our sense of time,3,4 and it is perhaps no 
surprise that the proliferation of light sources independent of the sun—starting 
with the domestication of fire—has increasingly challenged the circadian organiza-
tion and robustness of the sleep-wake cycle.5 While the introduction of electric 
lighting in the late 19th century is often charged with being at the forefront of this 
disruption,6 anecdotal evidence suggests that illumination from flame-based sources 
could also delay bedtimes and perturb sleep, so much so that candlelight avoidance 
at night was recommended as a sleep hygiene technique in the year 1800.7 

Contemporary research reveals that some individuals in the present day continue 
to exhibit circadian sensitivity to light levels approximating candlelight (< 4 lux, 
melanopic illuminance).8,9 An individual’s photic history may play a role in creat-
ing this heightened sensitivity.9,10

In the current manuscript, we provide a perspective on human-centric lighting, 
starting with the premise that such considerations are only made possible by the 
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retinal divergence of the image-forming visual system and 
the non-visual system associated with circadian timekeep-
ing, melatonin suppression, and arousal. If these two enti-
ties could not be biologically distinguished, then it is 
unlikely that most societies would be willing to trade the 
medical/emergency-care, security, work/business, and lei-
sure opportunities afforded by nighttime illumination for 
improvements in sleep and circadian function (eg, current 
use trends for self-luminous devices would suggest as 
much11). Next, we summarize the available data suggest-
ing that domestic and community light at night (LAN) has 
detrimental effects on sleep timing, duration, and quality. 
LAN directly modulates sleep but, in doing so, also influ-
ences many physical and mental health outcomes, some of 
which are outlined in communiqués from the World Health 
Organization, American Medical Association, and the 
United States National Toxicology Program.12 Upon 
reviewing the new standards that are being developed for 
reporting light exposure and integrating luminaires within 
the built environment (light-emitting diodes [LEDs] with 
controls permitting dynamic/customizable lighting 
regimes), we deconstruct the notion of “bright days, dark 
nights,” a simple principle that many in industry and 
academia use to describe optimal lighting conditions for 
sleep and circadian entrainment.13,14 In particular, we 
focus on work suggesting that the zeitgeber strength of 
the light prevailing throughout the day protects a person 
from the non-visual effects of ectopic light exposure that 
night, thereby improving sleep. In so far as there is 
a primacy lurking in this rule of thumb—that maximizing 
light availability in the photoperiod might be more con-
ducive to maintaining sleep-wake rhythms than minimiz-
ing contact with evening light—it reorients discussion 
away from LAN towards a discussion about which prac-
tices might best convey a daytime signal during waking 
hours. Zeitgeber strength can be enhanced by dynamic 
LED regimes or increased exposure to daylight, though 
daylight is arguably the preferred choice because of its 
added health benefits, including essential vitamin 
D synthesis. If the most germane “human-centric lighting” 
is natural sunlight, a final point thus emerges with regard 
to solar rights (arguably a subset of universal human 
rights) and the role of daylight in architecture. We end 
our perspective by discussing the history of solar rights 
extending back to antiquity and the evolution of building 
design in urban centers, raising the possibility that postwar 
conveniences permitting taller and deeper construction 
(eg, electricity and air conditioning) are just as responsible 

for modern sleep disruption as universal access to electric 
lighting.

The Non-Image Forming System in 
Brief
English dictionaries such as Merriam-Webster and Oxford 
define the “eye” as the image-forming organ of sight, with 
other entries suggesting concepts related to “seeing,” 
“looking,” and “attending.” Definitions for “retina” also 
converge on the notion that it is a sensory membrane that 
transduces light signals in the service of vision. In all these 
narrative variations, without exception, the eye and retina 
are described as accoutrements of the visual system. The 
everyday vernacular use of the words belies their equally 
central role in non-image forming (NIF) pathways, even 
though such knowledge has been available for almost two 
decades. The NIF system is anchored by a small subpopu-
lation of photosensitive retinal ganglion cells (pRGCs), so- 
called because they express melanopsin, a photopigment 
that absorbs short-wavelength light at maximum sensitiv-
ity around 490 nm after pre-receptoral filtering through the 
cornea, lens, and ocular media.15–20 pRGCs comprise only 
about 1% of the total retinal ganglion cell population in 
humans (which numbers upwards of 1.07 million cells)20 

but send direct connections to an array of sites in the brain 
to regulate diverse functions.21–24 The most prominent of 
the connections is a monosynaptic pathway running along 
the retinohypothalamic tract to the brain’s circadian pace-
maker, the suprachiasmatic nucleus (SCN), which enables 
entrainment to light-dark cycles.25–28

NIF processes mediated by pRGCs, including 
entrainment29–31 but also light suppression of pineal mel-
atonin synthesis32–36 and light-mediated arousal,36–38 exhi-
bit short-wavelength sensitivity consistent with the action 
spectrum for melanopsin. Blind humans and animals with 
mutations causing degeneration of classic photoreceptors 
retain many NIF functions.29,39–42 While these observa-
tions and others support the idea of there being an absolute 
functional dichotomy between the visual and NIF systems, 
it is important to note that rods and cones send inputs to 
pRGCs and influence their firing rates.16,43–47 What’s 
more, no single spectral sensitivity function can account 
for even simple NIF processes such as pupillary constric-
tion (where time-gated contributions are likely such that 
rods and cones initiate responses that are later sustained by 
pRGCs).48,49 The interplay between rods, cones, and 
pRGCs in refining other NIF responses, with cones for 
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example helping to specify phase-shifting responses to the 
kinds of rapidly changing light information experienced at 
dawn and dusk,50–52 underscores the strategic intercon-
nectedness of the visual and NIF systems when complex 
real-world stimuli are considered. Nuances aside, NIF 
processes do evince a surprising degree of separation 
from classic visual processes and can likely be targeted 
with dynamic lighting approaches to improve sleep/circa-
dian health whilst maintaining adequate illumination for 
work-related tasks. Part of the current focus of lighting 
practitioners, in fact, is in designing dynamic lighting 
standards for the workplace.

LAN’s Disruptive Effects on Sleep 
and Health
Exposure to community and household LAN affects 
dimensions of sleep health involving basic architecture, 
sleep timing and duration, as well as subjective quality. 
In the case of community LAN, the absolute effects of 
exposure—or lack of exposure—to nighttime illumination 
have been studied in the context of traditional societies 
devoid of electrification,53–56 people living in homes not 
wired for electricity,57 and individuals moving tempora-
rily away from an urban setting to a campground.58 

Under all these scenarios, people tend to sleep more 
relative to those with exposure to LAN and will retire 
to bed sooner (though results can be variable for sleep 
duration).54–56,59,60

The epidemiological effects of LAN have also been 
studied with respect to the intensity of upwardly directed 
outdoor illumination quantified from satellite imagery pro-
vided by the US Defense Meteorological Satellite Program 
(Operational Linescan System),61–63 the Visible and 
Infrared Imaging Radiometer Suite Day/Night Band (in 
the 500–900 nm spectral range),64,65 the International 
Space Station,66 and aerospace companies such as 
ImageSat International.67 Measurements suggest that 
80% of the global population and upwards of 99% of the 
population in Europe and the United States are exposed to 
ground-level LAN via street, commercial, and neighbor-
hood lighting.68 This accumulated exposure results in 23% 
of the world’s land mass being covered by indirect 
skyglow.68 Projections estimate that the radiance and 
extent of LAN will grow 2% annually from current 
numbers.69 LAN is omnipresent in the lives of many 
people, but there is geographic variation in its intensity 
and corresponding changes in the probability that 

individuals will experience issues with sleep or mental 
and physical health conditions connected to sleep. For 
example, when crosschecked with at-home sleep surveys 
done by telephone, greater outdoor LAN is associated with 
delayed and shortened sleep schedules, increased daytime 
sleepiness, and more dissatisfaction with sleep quality.70 In 
US adolescents (13–18 years of age), nationally represen-
tative surveys analyzed in the context of satellite imagery 
data suggest that higher outdoor levels of LAN are asso-
ciated with half-hour later weeknight bedtimes along with 
increased odds of having a mood or anxiety disorder in the 
past year.71 Similar trends in the reporting of depression 
symptoms and suicide ideation have been noted among 
South Koreans living in districts with brighter outdoor 
LAN.72 Beyond mental health, several studies have also 
linked outdoor LAN exposure to the incidence of chronic 
disease,73 particularly cancer.12,74–76 The association may 
result from light-induced melatonin suppression, down-
stream changes in the immune system, and facilitation of 
tumor growth.77 An important asterisk for many of the 
semi-ecological population studies of outdoor LAN is the 
potential for residual confounding by variables other than 
nighttime illumination that distinguish large urban centers 
from suburban and rural areas (such variables are difficult 
to control simultaneously). Further investigations in 
humans and animal models will be necessary to distin-
guish the exact strength of LAN’s health associations.78–81

Inside or outside the influence of community LAN, 
people freely choose to use electric lighting in their homes 
at night for daily chores, self-care, work, and leisure. When 
simulating domestic overhead illumination (eg, from kitch-
ens, bathroom vanities, or bedside lamps) or typical use of 
self-luminous devices, controlled experiments indicate that 
real-world intensities of household LAN can suppress mel-
atonin secretion in the hours before habitual bedtime (ie, 
after 20.00), delay sleep timing, shorten sleep duration, and 
reduce next-morning alertness.82–88 These observations sug-
gest that human-centric lighting practices require buy-in 
from individuals at a very personal level to be completely 
effective in optimizing sleep and circadian function. In other 
words: human-centric lighting is as much about personal 
choice as it is about technology and architecture.

Health Organizations Follow the 
Data and Voice New Concerns
The World Health Organization was one of the first agen-
cies to suggest long-term shiftwork is a carcinogen. 
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Monographs to this effect were released in 2007,89 with 
updates maintaining this outlook in 2019.90 In each state-
ment, the impacts of LAN on cancer risk and tumor 
development were emphasized, singling out the possible 
role of immunodeficiency resulting from chronic melato-
nin suppression.91,92 The American Medical Association 
(AMA) followed up with their own position statement in 
2012, in which they suggested that further research was 
warranted on environmental exposure to LAN and risk of 
cancer and other chronic diseases.93 In the Executive 
Summary of the AMA report, the carcinogenic effects 
associated with melatonin suppression were highlighted 
along with LAN’s possible role in exacerbating diseases 
such as obesity, diabetes, and depression.93 While these 
associations are plausibly causal, longitudinal exposure 
assessments of sleep in epidemiological research would 
help to fortify them into stronger policy statements.94

Unique to the 2012 AMA report was an additional 
commentary suggesting that children and adolescents 
might be particularly vulnerable to LAN’s disruption of 
sleep. This warning was prescient, as subsequent research 
has confirmed that preschool-age children, older children, 
and adolescents demonstrate enhanced melatonin suppres-
sion responses to evening light exposure in the hours 
preceding scheduled bedtime.95–99 Responses are not 
only two-fold more robust in children versus adults,98 

but are also longer lived; in one study, most of the children 
participating in the experimental protocol did not see their 
levels of melatonin recover to 50% of baseline in the hour 
after the light exposure had ended.99 The arrest of mela-
tonin secretion in children may result from increased ret-
inal illumination stemming from the higher transparency 
of their lenses and larger steady-state pupil sizes.100–102 

Adding to the pediatric issues surrounding LAN is that the 
lens transparency difference across age is most prominent 
at shorter wavelengths,102 the range of the visible spec-
trum at which the emissions peak for self-luminous 
devices .103 Nearly all individuals in the United States 
(ie, 90%) use self-luminous devices in the hour before 
bedtime and may not turn digital media off upon initiating 
sleep.11,104 For good sleep hygiene, the National Sleep 
Foundation recommends at least 30 minutes without tech-
nology before bedtime. However, this guideline is not 
customized for younger individuals who may require 
more time after their last light exposure to fully recover 
melatonin secretion. The concern is borne out in a meta- 
analysis of studies involving over 125,000 children, which 
found that evening use of self-luminous devices was 

associated with significantly worse sleep outcomes.105 

Any future recommendations for limiting LAN exposure 
(and assuring some standardized level of daytime light 
exposure), as well as future dynamic lighting standards, 
would benefit from age-specific metrics analogous to those 
used by the National Sleep Foundation106 to benchmark 
sleep duration across the lifespan.

The Protective Role of Daytime 
Light Against LAN
LAN has dominated much of the discussion regarding 
human-centric lighting and is formalized as a medical 
concern by the World Health Organization and American 
Medical Association. While the “bright days” part of the 
circadian ledger has received some attention,14 there is no 
current consensus as to which—brighter days or darker 
nights—is more influential for shaping good sleep and 
circadian outcomes. Data suggest that the brighter days 
component might carry weight, however. First, in-lab 
manipulations of photohistory that vary the brightness of 
the indoor lighting a participant is exposed to over the 
subjective day (broad-spectrum fluorescent, 1 lux vs 90 
lux) show that housing under dim light enhances subse-
quent arousal responses to a nighttime light stimulus.107 

Rises in alertness in a 1-lux history condition versus a 90- 
lux history condition are observed whether measured 
through subjective rating (the Karolinska Drowsiness 
Test), objective neuropsychological assessment (auditory 
psychomotor vigilance task), or physiologically, by quan-
tifying power density in the delta/theta band of the waking 
electroencephalograph.107 Accompanying the changes in 
arousal are other enhanced NIF functions combined with 
poorer sleep.108,109 Several independent groups have 
demonstrated that pre-exposure to inadequate daytime 
light leads to greater melatonin suppression upon viewing 
a test-light at night,10,110,111 as well as greater circadian 
phase-shifting responses.10,112 When measured across 
a divergent series of real-world or in-lab conditions, spar-
ser patterns of ambient illumination (with lower zeitgeber 
strength) during the day also associate with later sleep 
initiation, less sleep pressure/slow-wave-sleep buildup 
under states of rest or sleep deprivation, more nighttime 
awakenings, worse perceptions of sleep quality, less circa-
dian-robust sleep cycles, and increases in reported insom-
nia symptoms.113–126 These results are consistent with 
seasonally oriented studies of participants stationed in 
Antarctica that quantified (1) more light-induced 
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melatonin suppression, (2) increased pupillary constric-
tion, and (3) delayed phasing of the sleep-wake cycle in 
winter versus summer.127,128

Converging lines of evidence suggest that sensitivity to 
LAN increases when there is a lack of preceding daytime 
light, raising the possibility—in turn—that the health vul-
nerabilities associated with LAN can be counteracted or 
neutralized by adequate exposure to sunlight or electric 
indoor lighting. This premise has the potential to make 
a meaningful clinical impact once there is a data-driven 
consensus as to how much light a person requires through-
out the day (intensity and duration of exposure) to inocu-
late themselves against LAN’s non-visual physiological 
effects. Though such data are generally lacking, one 
dose–response study conducted by Kozaki and colleagues 
did maintain individuals in-lab under varying intensities of 
white fluorescent light (4523K) for 3 hours in the morning 
(09.00–12.00) before testing light-induced melatonin 
responses overnight (01.00–03.00).111 The design of this 
study was somewhat unconventional (eg, with the LAN 
stimulus being introduced 18 hours after the morning 
intervention), but in principle, the results indicate that 
melatonin suppression associated with LAN can be pre-
vented with bright early-day illumination. Future investi-
gation will be necessary to clarify how full-day profiles of 
light exposure counteract nocturnal NIF responses and the 
relative importance of these effects in optimizing melano-
pic EDI in the morning versus afternoon. Yet the way is 
clear towards establishing an evidence-based standard for 
the daily allowance of light. One must answer the ques-
tion: is there a daytime level of melanopic equivalent 
daylight illuminance that will completely minimize all 
NIF responses to LAN at LAN exposure levels anticipated 
to prevail domestically in most homes? The answer to this 
question remains unknown.

Evolution of Lighting Objectives
Up to the late 2000s, visual performance and comfort were 
the two cornerstones of lighting industry standards and 
design practices within the built environment. The empha-
sis is epitomized by the photopic luminous efficiency 
function V(λ) (grounded in human visual perception), 
which is the spectral weighting function commercially 
used to provide quantitative descriptions of light emissions 
between 380 and 780 nm.129–131 While architectural light-
ing is often still communicated in terms of illuminance 
(lux) and lumens per watt, a newer standard was devised 
by Lucas and colleagues132 and initially disseminated as 

a technical note by the Commission Internationale de 
l’Eclairage in 2015 before being formalized by interna-
tional stakeholders in 2018 (CIE S 026/E:2018).133 It 
recommends defining exposure based on light’s activation 
of each of the five photoreceptor types contributing to NIF 
responses (S cone, M cone, L cone, rhodopsin, and the 
melanopsin-encoded photoreception of pRGCs). The 
necessity of this new standard was clarified within a few 
years after the discovery of pRGCs and, since then, has 
grown more urgent as the deleterious effects of LAN 
exposure have come into scientific view.

The human experience of light can potentially be 
balanced with respect to both the visual and NIF systems 
and tailored to fit the needs of each across the day or 
through the seasons. This delicate precision would be 
enabled by the development of light-emitting diodes 
(LEDs), semiconductor devices that generate narrowband 
light when passed by an electric current.13 LED chips 
made of a mix of gallium nitride (GaN) and indium nitride 
(InN) or manufactured from aluminium, indium, gallium 
and phosphorus (AlInGap) are highly tunable with regard 
to an emission’s wavelength and intensity and—when 
assembled in array with the proper controls—can produce 
different patterns of light exposure with microsecond 
resolution.134 The government, commercial, and domestic 
adoption of stationary LED systems (ie, with a fixed pre-
defined light spectrum) represents one of the fastest tech-
nology transitions in history.135,136 LEDs are 40% more 
efficient than conventional fluorescent lighting,136 which 
leads to corresponding reductions in greenhouse gases; 
a 2014 report from the Department of Energy estimates 
that US LED installations prevented 7.1 million metric 
tons of CO2 emission.137 Concerns about energy efficiency 
and climate change have fueled a widespread conversion 
to stationary LED lighting, but health concerns about the 
non-visual effects of light are poised to add another stage 
of evolution in the form of dynamic lighting. With LED 
luminaires, room lighting does not have to remain static 
but can be adjusted in real time to accommodate the 
performance of the NIF system. At its most basic, dynamic 
lighting ensures that a waxing daytime signal is conveyed 
to building occupants in the late morning and early after-
noon, while a waning daytime signal is reinforced in the 
late afternoon. At a time consistent with local dusk, eve-
ning illumination provoking little NIF response can be 
made available to those on a day-active schedule or repro-
grammed to start another progression of sunrise and sun-
down for those arriving at the night shift.
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The international standards that will provide 
a framework for devising dynamic light regimes in public 
spaces are still under discussion and require different con-
versations about how electric light exposure should be 
scheduled in high-or-low-latitude areas with wider swings 
in daylight hours between summer and winter (ie, does one 
track the solar cycle in high winter or set an artificial 
schedule between 07.00 and 19.00, for instance?). 
Irrespective of the finer details, it is likely that daytime 
light exposure will be formulated around a lighting sys-
tem’s ability to meet a minimum zeitgeber strength mea-
sured in the vertical plane by melanopic equivalent 
daylight illuminance (EDI, in units of lux; for reference, 
see the Well Building StandardTM recommendations for 
circadian lighting design along with the CIE 2019 position 
statement).138 In everyday situations, this would mean that 
polychromatic stimuli regulated by automatic dimmers are 
blended between: a brighter intensity of blue-enriched 
spectrum of the highest acceptable color temperature and 
a dimmer intensity of blue-depleted spectrum of the lowest 
acceptable color temperature. Further consideration is 
necessary to determine what the exact light dosing should 
be at peak times of midday exposure for the typical popu-
lation and what accommodations, if any, are required for 
children or subgroups with environmental sensitivities.139 

As already mentioned, there is no general “Recommended 
Dietary Allowance” for light analogous to the daily nutri-
ent intake recommendations maintained by the US 
Institute of Medicine or health authorities in other 
countries.

Whichever light-dosing standards are established in the 
future, it is likely they can be better met with natural 
sunlight. Even with advances in dynamic lighting, lighting 
practitioners under most circumstances will be integrating 
luminaires within the drop ceilings of commercial build-
ings and offices, bundling them with materials connected 
to the heating, ventilation, and air conditioning (HVAC) 
systems. While cost-effective, this approach results in light 
emissions that are angled downward toward desks and 
floors to optimize occupant vision of the surrounding 
environment in the horizontal plane. It is not efficient for 
providing direct illumination into the occupants’ eyes, 
which is necessary for registering the light’s zeitgeber 
strength. Workarounds to redirect vertical light include 
changing the wall reflectance and using ceiling- 
suspended “pendent” luminaires that distribute illumina-
tion more evenly. These workarounds, however, belie the 
fact that electric lighting solutions alone are ill-equipped to 

provide the light levels necessary for circadian entrain-
ment (and protection against LAN effects) at standard 
rates of energy consumption. LED arrays can theoretically 
provide an adequate daytime signal, but challenges remain 
with regard to the cost-effectiveness of this approach.

Given what we are learning about the importance of 
daytime light exposure in the built environment, these 
indoor lighting efforts may not be sufficient. As such, are 
the health risks associated with inadequate light exposure 
sufficiently concerning that they should be granted deeper 
consideration in present-day building construction and 
renovation? Should all public architectural plans start 
first and foremost with design centered around windows 
or other “daylighting” methods that enhance the availabil-
ity of sunlight and should this design-first principle be 
codified into law? The answers to these questions need 
to be informed by what we currently know about the 
health effects of daylight140 and by historical insights 
related to legal protections for one’s “human right to the 
sun.” We touch on these issues below.

Daylight: Sleep, Performance, and 
Long-Term Health
Academic and industry studies have quantified the beneficial 
role of daylight exposure on worker productivity and school 
performance.119,141–143 A more circumscribed literature has 
evaluated its effects with respect to sleep and psychological 
wellbeing. Relative to participants working in daylight-rich 
offices (ie, upwards of 10-fold more equivalent melanopic 
lux), those working in windowless environments or behind 
traditional blinds exhibit (1) poorer overall sleep quality 
measured by the Pittsburgh Sleep Quality Index’s global 
score and sleep disturbances component as well as (2) ~30– 
45-minute shorter sleep duration measured via actigraphy.144 

Sleep differences track worse scores on decision-making 
tests and on dimensions of wellbeing itemized in the Short 
Form Health Survey, including indices related to vitality and 
perception of physical ability/limitations.143,144 Larger cross- 
sectional and longitudinal analyses of over 400,000 indivi-
duals from the UK Biobank offer a demonstration of the 
daylight → sleep connection at population scale. Cross- 
sectionally, the number of daytime hours spent by Biobank 
participants outdoors was associated with less sleep inertia, 
fewer insomnia symptoms, and advanced sleep-wake 
phases.145 These associations remained significant after 
adjusting for demographic, lifestyle, and employment fac-
tors. Auto-Regressive Cross-Lagged models examining the 
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longitudinal relationship between daylight exposure and 
sleep-related outcomes suggested moreover that the number 
of hours spent outdoors could statistically predict the like-
lihood of experiencing sleep inertia and insomnia.145

Findings at this stage suggest that sleep/circadian 
health problems are seeded in people when they are not 
exposed to the adequate amounts of daylight, thereby 
potentially increasing risk for other medical issues (genetic 
predispositions may leave some individuals particularly 
vulnerable to these exposure deficits146,147). In discussions 
concerning the relative advantages of daylight versus 
indoor electric lighting in meeting exposure needs, one 
could emphasize that the more circadian-optimal spectral/ 
intensity qualities of sunlight are difficult to simulate with 
overhead luminaires. Sunlight above the atmosphere and at 
the Earth’s surface has a broad continuous spectral power 
distribution with a prominent shoulder over the range of 
the spectrum to which melanopsin-bearing pRGCs are 
most sensitive. Intensity-wise, outdoor levels of sunlight 
extend beyond 100,000 lux at midday and remain above 
3000 lux when it rains. Outdoor illuminance is still at 1000 
lux at the start of civil twilight, which is two-fold brighter 
than the set point throughout the day for most office 
lighting.148

Beyond these attributes though, sunlight has a few 
unique properties that electric lighting does not. Due to 
its ultraviolet-B content, sunlight can direct the synthesis 
of vitamin D through the skin,149 which is essential for 
calcium absorption by bones and strengthening them 
against conditions like osteoporosis and rickets.150 

Sequestered under electric lighting, around one billion 
people globally are now deficient in vitamin D.151 As 
a result, the bone disease, rickets, is seeing a resurgence 
almost a century after it was thought to have been 
eliminated.152 A rise in shortsightedness (myopia) has 
also taken hold in many East Asian countries with dense 
urban environments such as China, Singapore and Japan, 
afflicting 70–80% of the pediatric and young-adult popu-
lations there.153–156 Being outdoors for 2–3 hours daily 
through the first several years of life can prevent the 
condition157 and may be the only realistic prescription 
considering that the biochemical pathways stimulated by 
daylight to control eye growth are not understood.158,159 

Placed in as complete of a health context as possible, it 
becomes obvious that daylight is rooted in our biology. 
Our external organs assume its daily presence, and 
a person’s physical and cognitive potential may depend 
on it. The right to daylight exposure has been codified 

under various legal protections since antiquity in obser-
vance of this (long-assumed) importance. This has chan-
ged in the electrified world, where some safeguards 
remain, some do not, and many go unheeded in urban 
development.

Daylighting: Law
For much of recorded history, starting in ancient Greece, 
issues surrounding solar rights drove building codes, 
design architecture, and top-down approaches to urban 
planning that positioned structures along street layouts 
collectively optimizing daylight exposure (a complete 
review can be found in160). As early as the 6th century 
A.D., the Justinian code also provided for the enforcement 
of solar rights through court decrees, prescriptive ease-
ments (that enabled a citizen to assert property claims 
against an owner’s land), and government allocations. 
Day-to-day in Rome/Byzantine, this meant that occupants 
were protected from illegal shadows or compensated when 
incident daylight on their property was blocked by an 
adjacent dwelling. The tradition of solar rights that started 
in Greece and Rome materialized in English Common 
Law (ie, derived from custom and judicial precedent) in 
the form of the 1663 “Ancient Lights” rule and was then 
codified into the United Kingdom statutory law by the 
Prescription Act of 1832.161 The doctrine asserts that the 
windows an owner uses to access daylight cannot be 
obstructed by another party if those windows have been 
in use for 20 years or more. Similar legal approaches have 
been taken in Japan, with Japanese courts shepherding 
a present-day permit system that recognizes a right to 
light not only for interiors via windows but also for the 
entire lot including the house and garden.162 The binding 
thread for most solar law is that sunlight travels a path 
across multiple parcels in any urban zone; everyone along 
that path should enjoy equal access to the illumination that 
is produced. Japanese courts have often cited health con-
cerns as the justification for enforcing solar protections.

Current daylighting standards are in limited evidence 
in most local jurisdictions beyond the United Kingdom, 
Japan, and Germany, which recently became the first 
country in the European Union to adopt EN 17037 (a 
new building standard that specifies design practices for 
achieving adequate daylight exposure indoors).163 Even 
across the metropolises of the United States, municipal 
legislation can only really be found in lower Manhattan’s 
1916 solar zoning legislation, which ensures the availabil-
ity of sunlight at street-level by prescribing minimum 

Nature and Science of Sleep 2022:14                                                                                               https://doi.org/10.2147/NSS.S251712                                                                                                                                                                                                                       

DovePress                                                                                                                          
31

Dovepress                                                                                                                                                             Fernandez

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


street widths, building setbacks (eg, a wedding-cake- 
shaped typology), and structural height limitations.164 

The American legal system has yet to recognize the solar 
rights of property owners or office workers and, like most 
of the rest of the world, lacks a coherent legal framework 
by which to do so. The international vacuum has undoubt-
edly contributed to daylight’s absence from: the World 
Health Organization’s Declaration on Occupational 
Health for All and “Healthy Cities” concept, the United 
Nations Sustainable Development Goals, as well as the 
United Nations Universal Declaration of Human Rights. 
In some tangible capacity, solar rights must become a part 
of global discussions on human wellbeing if they have any 
chance of being codified into building mandates wherein 
employers and community members are charged with the 
(properly placed) social responsibility of ensuring ade-
quate daylight exposure.

Daylighting: Architecture
In an engineering context, daylighting refers to practices 
that admit “beam sunlight, diffuse skylight, and reflected 
light from the exterior into a building” (Illuminating 
Engineering Society, 2013). Historically, inside or outside 
of mandates, developers have typically made efforts to 
direct daylight into enclosed spaces, starting with classic 
Roman architects that designed public bath houses around 
solar heating.165 These efforts were deprioritized after the 
late 19th century invention of the fluorescent lamp fol-
lowed by that of air conditioning in 1902. With these tools, 
architects were no longer reliant on windows to regulate 
indoor lighting and temperature, and thus could design tall 
structures (eg, skyscrapers) maximizing building occu-
pancy with deep floor plans and lower floor-to-ceiling 
heights.166 Financial incentives for skyscraper construction 
became increasingly relevant in the early 20th century as 
the price of land surged in major American cities, such as 
New York City, Chicago, and Philadelphia. Soon, in a shift 
that accelerated around the world in the 1960s, fluorescent 
indoor lighting and HVAC systems offered the promise of 
comfortable indoor environments that enabled people to 
live and build anywhere they wanted irrespective of the 
surrounding climate. During these decades of urban devel-
opment, little distinction was made between daylight and 
fluorescent lighting as both could be engineered with 
visual performance in mind. It took scientists until 
approximately the 1990s to form a consensus that endo-
genous circadian rhythms existed, were entrained by light– 
dark exposure, and helped to organize the sleep-wake 

cycle. The lag between the invention of electric lighting, 
on one hand—and our scientific understanding of circa-
dian rhythmicity and sleep, on the other—has resulted in 
the problem we face today: People spend most of their 
time indoors at workstations far removed from daylight 
and suffer unacknowledged health problems associated 
with this exposure deficit.

An expert discussion of what architectural steps should 
be taken to enhance the availability of daylight within the 
built environment is outside the purview of this commentary. 
Yet, a few advancements are worth noting that illustrate the 
variety of ways the problem can be approached. The first 
concerns advanced systems based on anidolic lighting (non- 
image optics) that use reflection, refraction, and diffraction 
methods to channel the delivery of daylight deeper into 
buildings. Here, light ducts or windows can be adapted 
with reflective louvers and prismatic film tiles to enhance 
daylight penetration. With a second approach, electrochro-
mic (EC) glazing, the transparency of the window glass can 
also be changed by application of a low-voltage electric 
current. These transparency changes are adjustable so that 
glare is minimized while optimizing the amount of biologi-
cally active short-wavelength light reaching the occupants. 
Anidolic lighting is best deployed when vertically integrated 
with the design features of the building façade. Fenestration 
schemes that incorporate atria, internal gardens, skylights, 
and room-individualized balconies are significantly rein-
forced when anidolic optical components are used to help 
distribute light throughout the space. Notably, current 
metrics that evaluate daylight performance under a given 
fenestration design (eg, Spatial Daylight Autonomy, Useful 
Daylight Illuminance, and Daylight Factor)167 require con-
version to melanopic variants to be most informative for 
human-centric lighting objectives.

One More Thing: A Thought About 
Seasonality
A consideration that sometimes gets lost in lighting discus-
sions is the relative importance of seasonality. Metropolitan 
areas in Sweden, Norway, and Finland might receive only 6 
hours of daylight in high winter, about half the daylength 
observed in tropical countries near the equator. Due to con-
ditions such as seasonal affective disorder, it seems intuitive 
that the built environment should compensate for this lack of 
winter daylight exposure. However, how does one execute 
this strategy? Should one respect seasonal distinctions and 
make light available in the spectrum consistent with the 
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latitude of the locale and time-of-year only for those 6 hours 
—perhaps at two-fold the normal radiance? Or should 
a protracted spectral-appropriate sequence be made available 
for 12 hours? What aspects of human physiology would 
benefit or suffer should one or the other regime be imple-
mented? We have the wherewithal to engineer the light–dark 
cycle at will, and the knowledge to intuit a fairly accurate 
daily pattern of healthy lighting. However, what happens 
when we have the power to abolish seasons? One could 
argue that lack of seasonality is already endemic to the 
modern world; the argument is not especially satisfying, 
though, when seasonal trends in depression and other con-
ditions are still measurable at population-scale. Advances in 
LEDs and daylighting will bring this question and others 
increasingly into focus.

Conclusion
In the current perspective, we have attempted to synthesize 
a number of considerations that factor into the concept of 
healthy circadian lighting beyond the elegant neurophysio-
logical data that originally highlighted the importance of 
pRGCs to the NIF system and the cells’ mechanistic role 
in translating light’s effects on the sleep and circadian 
systems (for more involved discussion of these topics, 
the reader is referred to Blume and colleagues, 2019168). 
From this synthesis, we suggest that sunlight is the most 
effective zeitgeber for entraining the sleep-wake cycle and 

a potential lever arm for preventing the unintended non- 
visual physiological effects of LAN exposure. Introducing 
more daylight into the built environment, however, is not 
without future challenges and involves a complex set of 
factors that sometimes go unrecognized and are difficult to 
negotiate in the short term (Figure 1).

Foremost among these challenges is that few legal 
statutes recognize the importance of sunlight to human 
wellbeing and even fewer that furnish protections guaran-
teeing access to it. For healthy circadian lighting to 
become a fundamental part of daily living, there must be 
an acknowledgement by international agencies and 
national governments that inadequate exposure to daylight 
is pernicious to human health, akin to the environmental 
laws that already acknowledge the dangers of smog to 
breathable air or the dangers of pesticides and heavy 
metals in drinking water. Regulatory bodies such as the 
US Environmental Protection Agency look to protect air 
quality, public water distribution systems, and agriculture 
by evolving standards that recognize the various ways 
these vital resources can be corrupted. The next step for 
human health would be for these agencies to develop and 
enforce analogous requirements for daylight exposure in 
offices, commercial buildings, and domestic homes that 
could be integrated with new architectural codes and 
design objectives. This evolution in environmental protec-
tion might take time to unfold but can be guided by 

Figure 1 A basic social-ecological model for circadian lighting. Maximizing daylight exposure might be more physiologically relevant for improving sleep-wake rhythms and 
sleep quality than minimizing nighttime light exposure. However, enhancing access to daylight involves many complex factors. Beyond obvious ones such as weather and time 
of year, daylight exposure depends on architecture and the physical environment where a person resides. The distribution of daylight is affected by the availability of 
surrounding vegetation and the layout of urban centers, especially as it pertains to the height and spacing between tall buildings. Windows and design features that facilitate 
entry of daylight (eg, atria) are not primary considerations in the floor plans for most public spaces. Broad adoption of solar rights that mandate minimal standards of daylight 
exposure for building occupants and inform the layout of new construction can augment a person’s sleep/circadian health. Personal choices about how a person spends their 
time, whether indoors with electric lighting or outdoors during the day, can add or subtract from these policy efforts.
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empirical data that clearly establish how much daytime 
light exposure is necessary to offset responses to LAN (ie, 
the factor that the WHO and AMA have associated with 
negative health outcomes, including cancer). Surprisingly, 
such data do not exist despite previous academic attempts 
to describe daytime light recommendations for indoor 
environments. Acquisition of these data is a sensible future 
direction for circadian lighting research.

Another research priority is to determine whether the 
needs of the visual and NIF systems can be balanced with 
dynamic indoor lighting alone. LEDs can help achieve this 
balance across the day but might be cost-prohibitive in 
windowless rooms. In such cases, light therapy from table-
top devices directed at eye-level could supplement over-
head LED lighting to ensure a daytime signal. However, 
experiments to test these interventions in real-world set-
tings are still rare, and an open question remains as to 
whether electric lighting can truly create environments that 
reinforce the circadian system while meeting all the per-
formance objectives of vision. In the event that an ade-
quate daytime signal cannot be easily accommodated by 
electric lighting solutions that optimize visual perception, 
it creates more of an impetus to develop legal sun rights 
that can be codified into newer building standards.

Finally, the influence of non-photic zeitgebers in set-
ting the threshold of daytime light exposure that will offset 
LAN responses is not known (to our knowledge, it is not 
even an active area of research). It is possible that proper 
meal timing and exercise during the day will lower this 
threshold, while mistiming of the two zeitgebers might 
raise it. A common limitation in circadian lighting 
research is the general lack of consideration of non- 
photic zeitgebers. The aforementioned studies—evaluating 
photic and non-photic zeitgebers side-by-side in an 
attempt to determine how one influences the functionality 
of the other—would thus represent a valuable intersection 
with significant implications for public health.

Healthy circadian lighting ultimately depends on per-
sonal choice. Where available, a person can choose to 
prioritize outdoor activities that will guarantee exposure 
to sunlight. They can also choose to limit the illumina-
tion they are exposed to at night and opt to align their 
eating and exercise schedules so that they are best posi-
tioned with the light–dark cycle. That said, efforts to 
ensure public access to daylight are not mutually exclu-
sive of these personal choices. The more tangible day-
lighting efforts become, the more they enter public 
consciousness, and the more likely they will factor into 

the health-related decision-making of the average person. 
Efforts to institutionalize the importance of daylight can 
thus produce halo effects, with success resulting in more 
people willing to commit to choices that will strengthen 
their sleep and circadian health. Let us not lose sight of 
this process.
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