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Abstract

In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation
Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-
wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation
in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short
intervals (0:01 s to 2 s: waking state and 0:01 s to 0:1 s: SWS) is related to highly coordinated muscle activity. In the waking
state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.).
On the other side, the observed anti-correlation over large time scales (30 s to 300 s: waking state and 0:3 s to 5 s: SWS)
during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an
anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this
transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we
find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-
correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to
a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several
stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body
acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep
and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the
nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms.
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Introduction

In the last two decades the influx of ideas from complex systems

physics have brought new insights into biomedical studies [1–5].

The concepts of fractals and structure of fluctuations have

enlightened analysis of physiological time series, for instance:

heartbeat series [6–8], breathing records [9–11] and gait dynamics

[12–15]. These three physiologic records have in common the

absence of typical periodicity that could guide the characterization

of the dynamics, and because of that, scientists are driven to the

study of signal fluctuation. Signal fluctuation is a mathematical

technique that classify fractal patterns of time series [16–19]. The

output of this methodology is a fractal analysis, the extreme case of

absence of order, or pattern, in signal is the white noise which has

a well-defined dimension. Most intricate scenarios can rise like

different fractal dimensions for distinct time intervals or multi-

fractality - a set of fractal dimensions [1,20]. Beyond fractal

dimensions, this paper is centred in exploring time scales of distinct

fractal regimes and, especially, transition times between fractal

scenarios considering typical states of mice sleep-wake cycle.

Specifically, in this study we focus on scaling and multifractal

features in locomotor dynamics of mice activity. This approach

can be useful to understand the neural, as well as environmental,

aspects related to body movement in different physiological

conditions. We lead in this work with accelerometer time series

recorded with a device placed on the head of a mouse. Previous

similar studies analysed nonlinear (multifractal) properties of

heartbeat physiological dynamics [1,6], as well as monofractal

1/f type scaling in the gait of adult individuals [14,15].

Furthermore, multifractal behaviour was found in children gait

and were gradually lost with maturation [14]. There are also

earlier studies on wrist and arm motion, which, in contrast to adult

gait, reported nonlinear scaling [21]. Acceleration is a measure of

animal activity, and in this way our work interfaces with the cited

works about heart, breath and gait dynamics. We employ the raw

accelerometer data instead of computing active versus inactive

intervals as in references [22–24] because we intended to capture

detailed activity patterns of individuals. In addition, our study

encompasses nine orders of magnitude in the time record, from

0:001 s to several hours. In this way our analysis capture activity
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bellow the time between two successive heartbeats to the entire

duration of sleep-wake cycle state. The novelty of our work consist

in using fractal concepts to analyse motor activity by taking into

account relevant physiologic durations like: the inter heartbeat

interval, the breathing period, the typical time of stereotyped

animal movements and the wake sleep duration cycle.

The main concept we employ in the analysis the accelerometer

data is the fractal dimension which is connected to signal fractal

correlation [16]. The human gait is a typical expression of motor

system phenomenon that exhibits high correlation [14,25] which

reflects the repetition and coordination of the integrated action of

neural and muscular system. The most illustrative picture of a high

correlation movement comes from a young person walking for a

short period (around 1 hour) without resting [12,14]. For an older

person the gait looses correlation; the image of a limping old man

whose next step seems not follow the previous one is a powerful

picture of absence of correlation. Human gait also produces a

somewhat artificial, but illustrative, example of anti-correlation

which comes from subjects that should, by suggestion, follow an

arbitrary synchronized signal; in this case, the individual attempt

to correct himself to adjust the step producing a negative feedback

which induces an anti-correlation trend [12]. The examples of

correlation and anti-correlation we have found in the free range

behaviour mouse are similar to those of human gait. The

correlation may be generally associated to skeletal activity patterns

usually present in individual body movement. Complementarily,

the anti-correlation may arise as a consequence of a negative

feedback normally associated to the fatigue of movement,

heartbeat or breathing.

In the analysis of signal auto-correlation we are driven to the

concept of fractals; in this context, correlated, no-correlated or

anti-correlated signals are characterized by power-law and distinct

fractal dimensions [20]. Indeed, there is a plethora of different

possibilities of autocorrelation signal characteristics. As an

illustration, a monofractal signal identifies an unique self-similarity

index, which can correspond to correlated, no-correlated or anti-

correlated behaviour. A bi-fractal data discloses two sub-sets with

different correlations and fractal dimension according to the time

scale and these different behaviours are typically separated by a

crossover time. A multifractal time series comprises a set of many

fractal dimensions for the same time scale [26].

Extensive analysis has shown that different correlation expo-

nents in DFA scaling characterize the heart rate of healthy subjects

and patients suffering from heart disease. Also, different exponents

have been found for the wake and the sleep periods. Moreover, the

crossover phenomenon in DFA scaling was reported in real

physiological signal when comparing scaling properties of the

cardiac dynamics during sleep and wake periods [27,28].

Furthermore, crossover patterns were observed in changing

regimens from rest to exercise (heartbeat fluctuations) [29],

between different sleep stages [11,30] and even across circadian

phases of cardiac (eletroencephalographic signal), breathing

(respiratory parameters) and locomotor dynamics [31]. Besides,

we are aware that the crossover might be an artefact of oscillatory

patterns embedded in the signal. The crossover artefact was

theoretically investigated [17], and also has been shown for real

heartbeat data [25]. On the other hand, scaling crossovers in

general locomotion may be related to intrinsic mechanisms of

physiological regulation, such as suprachiasmatic nucleus circadi-

an regulation and other neural output variances [32]. Thus, we

hypothesise that mouse locomotion dynamics during waking may

disclose a complex temporal organization characterized by a scale-

invariant fluctuation across a range of time scales.

In this paper we work on a comprehensive analysis of motor

activity of mice in free range environment using fractal and

correlation concepts. We propose that signal correlation analysis

could provide new insights not only for motor activity studies but

also into behavioural description of rodents. In addition,

fluctuation analysis can be used to identify and quantify patterns

of accelerometer records, in other words, a standard model of

motor activity based on time scales. Finally, the accelerometer-

based DFA analysis can be used as a robust tool for evaluating

promising therapies in models of motor alterations induced by

drugs or in neuromuscular diseases. Some rodent models of

demyelinating pathologies or neurodegenerative disorders such as

Parkinson disease could be good examples of a possible benefit on

this technique in a near future.

Results

A typical time series of accelerometer record encompassing one

hour is shown in Fig. 1(f). To facilitate the comparison between

these data and behavioural states, hipnogram is depicted in the

same plot. A visual analysis points out, as expected, that the

intensity of accelerometer response is higher when the individual is

awake as compared to SWS state. Our analysis was done

independently for resting SWS and waking states, otherwise it is

not possible to find defined patterns in the results. The two case

situations are: the individual in waking state without any sleep

episodes [see Fig. 2(a)] and in resting sleep state [see Fig. 2(b)],

that means, the sleeping individual that does not exhibit any

macroscopic movement (no arousals). We have identified these

two states as benchmarks we can use to classify the phenomenol-

ogy of actimetry (accelerometer records). In the following we will

always refer to these states as the waking and resting SWS states,

since each of this states show common characteristics. It is

important to highlight the universality of our results: all time series

we have analysed for all individuals share the same basic

phenomenology in the waking and resting SWS states.

The essence of results concerning signal fluctuation structure is

shown in Fig. 3. In this figure we explore Fourier and DFA results

of a typical waking (b)–(d) and resting sleep signal (a)–(c); the

signals themselves are shown in Fig. 2(a)–(b). We should invert the

time reading of the x-axis when we go from DFA to Fourier

pictures, for instance, a time t~0:1 s gives frequency

f ~1=0:1~10 Hz. The values of the DFA exponent, a, corre-

sponding to the slope of the DFA curve are shown in Fig. 2(a)–(b)

(dashed lines - as an eye guide). Note within the DFA graphic as

well the Fourier spectrum three different frequencies highlighted

by arrows (f1, f2 and f3). These frequencies may be related to DFA

humps and the crossover at approximately f1~3 Hz due to an

oscillation pattern given by breathing [15]. The other frequencies

match the oscillation pattern of the heartbeat f2 and muscle

tremor f3. We also see that for all time scale the mean coefficient

slope is a&0:7. In 3(b) we show the DFA and Fourier spectrum of

locomotor fluctuation during awake. We indicate in this figure two

frequencies (f1 and f2). The f2 frequency may cause a small DFA

hump at approximately f2~10 Hz and it is associated to the

heartbeat oscillation. The another f1 is actually a range of

frequencies from 0.05 Hz to 0.7 Hz that match the oscillation

pattern of physiological activities and stereotyped movements. We

also note that for time scale up to 7 seconds the coefficient slope is

a&1:0.

The analysis of fluctuations of the accelerometer signal reveals

the same basic structure for waking and SWS states. In both

situations we found the presence of an Highly Correlated (HC)

signal at low time scales while intermediate time scales reveals an

Mouse Activity across Time Scales: Fractal Scenarios
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Anti-Correlated (AC) patterns and very long times are marked by

a Non Correlated (NC) signal. For the waking state the passage

from HC to AC is not abrupt, we identify here a Multifractal

Transition (MT) which reveals a great richness of distinct

correlations. We remark that, despite a similar HC, AC and NC

pattern, the waking and sleep states differ regarding their time

scales and phenomenology. The time intervals for sleep states are

typically shorter than waking states what is expected since sleep is

mainly regulated by autonomic activity which are dominated by

smaller time scales as compared to behavioural times. In what

follows we show in detail these patterns that are illustrated in

Fig. 4 and Fig. 5.

(HC): The DFA technique for short times reveals a very high

correlation response of the accelerometer signal. The HC is found

from 0:1 to 2 s in the waking state, Fig. 5, and 0:01 to 0:1 in sleep

state, Fig. 4. This result follows the strongly correlated contraction

pattern of the muscle skeletal activity. For small time scales the

muscle skeletal activity is very coordinated, the short time scale of

motor activity can be imagined as a chain of small movements that

follow each other by necessity; for instance, each animal limb

movement is strongly correlated to the movement of the limb in a

previous instant. This simple picture of animal motor activity

points to a high correlation in the sequence of intervals of

movement. Of course, for long times individuals will follow

another movement pattern breaking the correlation. In the sleep

state the movement is dominated by heart and breathing

movements as well as thermogenesis processes (tremor, vibration

etc) which also implies in strong coordinate activity.

(AC): The high correlation of short time scale follows an anti-

correlated regime. For the sleep state the transition from HC to

AC can be characterized by a crossover while in the waking state

the transition is smooth; a detailed approach of this transition

reveals a rich multifractal structure which we discuss in detail later.

The time scale of the AC regime is quite different in the two

situations, for the waking state it goes from 30 s to 300 s while in

the sleep case it ranges from 0:3 s to 5 s. The physiology behind

the AC show some similarity in waking and SWS states. For the

waking state the AC regime is believed to be related to a cycle of

exercise and rest, once the motor physiology of free range animals

normally shows this oscillatory pattern. The apparent alternation

between periods of intense and relaxed activity produces a natural

anti-correlated patterns in the signal. For the SWS state the anti-

correlation is similar but it is probably related to the autonomic

system and it is rooted in the sympathetic parasympathetic

regulation of cardiac and breathing system. In a similar way, an

intense cardiac activity should be succeeded, via feedback control,

by a diminution in the heart rate and vice-versa [7].

Figure 1. Sequence of animal procedures and data acquisition. (a) Histological analysis. After all behavioural procedures and data collection,
all implanted C57-BL6 mice were perfused and brain slices were obtained in order to confirm if LFP electrodes were inserted in M1 and S1 cortical
regions and in hippocampus CA1 subfield as an inclusion criterion. (b) Surgical Matrix Electrode Implant: Under a isofurane anaesthesia, mice a
rectangle was opened in cranial bones for allowing a 16-tungsten electrode matrix implant combined with an accelerometer in the headstage. Eight
electrodes were placed in the S1/M1cortex (layers 3{5) and another eight in the CA1 subfield of hippocampus. (c) Electrophysiology. One week after
surgery, animals were submitted to a session of 12 hours continuous recording in a round open field maze. They were allowed to perform their
natural behaviours during the recordings, and to freely display the sleep-wake cycle. (d) LFP oscillations. All channels of hippocampus, cortex and
accelerometer were displayed in real time analysis in order to verify possible problems with ground or signal generation. (e) State map generation.
Real-time two-dimensional behavioural state maps were generated by plotting the following spectral ratios: x-axis, 24:5 Hz=0:59 Hz; y-axis,
0:520 Hz=0:555 Hz. Raw LFP and EMG activity were analysed during periods of WK, SWS, and REM sleep predicted by the two-dimensional state map.
(f) A typical AR (midlle) with the hypnogram generated by identification of waking (blue), SWS (red) and REM (green) sleep cluster separation (top). At
bottom two zooms of the raw accelerometer signal for resting SWS state (left) and waking state (right).
doi:10.1371/journal.pone.0105092.g001
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(NC): Considering long enough time scales the accelerometer

signal should loose completely its correlation. In other words, for

long times the memory of initial instants should vanish. The

paradigmatic signal that shows this behaviour is the white noise

whose signal at time tzDt is completely independent of signal at

time t, for Dt the time step. The absence of correlation in the

waking regime comes after a &20 minutes while in the sleep state

it happens after &10 s. The presence of NC in the experiment is

important for checking the consistency of our results.

(MT): The multifractal transition is present only in the waking

regime. This regime is characterized by a set of different correlated

patterns superposed in a same time scales that ranges from &3 s
to &30 s. In our observations most of the stereotyped behaviours

of mice such as scratching, roaming, short walking, sniffing, span

below &3 s. Inside each of these stereotyped behaviours the

animal activity is in the HC regime, but the composition of several

stereotyped behaviours show a more involved mathematical

description. Indeed, we have found that in the typical behavioural

range &3 s to &30 s where more complex phenomena take

place, the animal should aggregate several stereotyped behaviours.

In a behavioural perspective the succession of stereotyped

movements of the MT is related to the voluntary movement of

individuals. The result of this composition, each one with its

proper correlation length and fractal fluctuation signature forms

the multifractal pattern shown in Fig. 6.

Fig. 5 shows the DFA picture for 21 signal samples of the

waking state corresponding to 4 individuals. It is notable the

qualitative agreement among the curves; the HC, MT, AC

sequence is clearly visible in all samples. The DFA parameter for

the HC interval is SaT~(1:02+0:03) while for AC is

SaT~(0:21+0:04). With an auxiliary line we plot the slope,

computed as the average of slopes, for HC and AC regimes. We

notice that the passage from HC to AC is a curve with a smooth

slope variation. In the following we mathematically describe in

detail this time interval that extend approximately for

3 svtv30 s. The absence of a defined slope in this interval

unveils a richer geometric structure that deserves to be understood

in a physiologic context. In the next paragraph we explore the

computational techniques showing that, in this interval, the signal

is multifractal. Indeed, the HC and the AC regimes are

monofractal signal, that means, it is possible to full characterize

the signal with a single index the fractal dimension of the signal

which is not the case of the multifractal regime.

Multifractal behaviour in the dynamics of mice activities can be

also verified through the generalized Hurst exponent h(q),
multifractal scaling exponent t(q), and multifractal spectrum

f (a), respectively obtained through Eqs. (7), (8), and (10). Fig. 6

shows h(q), t(q), and f (a) for time series of mice activities obtained

of time interval that extend approximately for 3 svtv30 s. In this

case, it is interesting to note that the decrease of h(q) with an

increasing q and the non linear behaviour of t(q) with q are

observed for all mice activity samples. The relation between h(q)
and q leads to a linear dependence of t(q) with q. Moreover, the

linear dependence gives rise to a multifractal spectrum f (a) given

by a small arc, with small width 6. The absolute value for the

width of the multifractal spectrum D(a), that corresponds to the

difference between the maximum and minimum a, as well as the

shape of the multifractal spectrum, are related to the temporal

variation of the generalized Hurst exponent h(q) [18]. Further-

more, the degree of multifractality is given by the calculus of the

absolute value of the spectrum width. In this sense, the wider D(a),
more significant is the multifractality of the analysed time series

[33]. Here, the obtained width D(a) above 1:1, as signature of a

Figure 2. Accelerometer time series. (a) Sample of a time interval (600 seconds) record during a typical wake fluctuation activity for a healthy
mouse. In (c), (e) and (g) we show segments of the time series for the same wake state period at small time scales to visualize self-similar (fractal)
fluctuation. (b) Representative of a time interval (90 seconds) record during SWS sleep stage for the same mouse. In (d), (f) and (h) shows a sequence
of segments in many time scales of this fluctuation. These fluctuations are typical examples of noise-like time series.
doi:10.1371/journal.pone.0105092.g002

Mouse Activity across Time Scales: Fractal Scenarios

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e105092



rich and strong multifractal behaviour, irrespective of the

individual.

Fig. 4 show the DFA graphic for seven signal samples of the

resting sleep state. In this analysis we have used samples of four

individuals. The curves show a typical HC, AC, NC sequence.

Figure 3. DFA analysis and Power Spectrum. In (a) we show the DFA fluctuation function F (n) of locomotor fluctuation during sleep for the
time series presented in Fig. 2(b). In this figure we present the x-axis as a function of time in seconds, instead of points (1 second corresponds to
n = 1000 points). In (c) shows the Fourier spectrum that display three characteristic frequencies highlighted by arrows (f1, f2 and f3). These frequencies
are the most probable cause of the F (n) hump. The main frequency seems to be related to crossover at approximately f1~3 Hz which is the
breathing cycle. Other two frequencies may match the oscillation pattern of the heartbeat (f2) and physiological tremor (f3). We also note that for the
full time scale the coefficient slope is a&0:7. In (b) we show the DFA of locomotor fluctuation during awake from time series presented in Fig. 2(a). In
(d) shows the Fourier spectrum that also display two different frequencies which are highlighted by arrows (f1 and f2). The f2 frequency, typical of the
heartbeat, causes a slightly F (n) hump at approximately f1~10 Hz. The set at f1 indicates a range of frequencies from 0.05 Hz to 0.7 Hz that match
the oscillation pattern of physiological activities and stereotyped movements. We also note that for time scale up to 7 seconds the coefficient slope is
a&1:0.
doi:10.1371/journal.pone.0105092.g003

Figure 4. DFA: Resting SWS State. The fluctuation function F (n) versus the time scale size t (1 second corresponds to n = 1000 points) in double
logarithmic scale. The dotted lines shows the regions with different regimes. HC indicates a range in time-scale (from 0.01 s to 0.3 s) with highly
correlated regime corresponding to 1=f noise (fractal range). AC indicates a range in time-scale (from 0.4 s to 5 s) with anti-correlated regime. NC
indicates a range in time-scale (above 10 s) with descorrelation regime.
doi:10.1371/journal.pone.0105092.g004
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Diversely from the previous regime, the transition from HC to AC

shows a crossing over pattern in contrast with the smooth

transition of the waking state. The resting sleep state can be

characterized by three monofractal regimes in opposition to the

waking state that needs a multifractal regime in the HC to AC

transition. The F (n) that represent fluctuation function is diverse

among the states. In the top of the figure, with the highest

fluctuation there is the waking state, a similar picture is shown in

Fig. 5. At the bottom of the same figure we have the resting SWS

state with lowest fluctuations, these two curves are similar to the

ones shown in Fig. 4. Above the resting SWS state we have two

curves corresponding to individuals that sleep but present

Figure 5. DFA: Waking State. The fluctuation function F (n) versus the time scale size t (1 second corresponds n = 1000 points) in double
logarithmic scale. The dotted lines shows the regions with different regimes. HC indicates a range in time-scale (from 0:1 s to 3 s) with highly
correlated regime corresponding to 1=f noise (fractal range). MT indicates a range in time-scale (from 3 s to 30 s) with multifractal behaviour. AC
indicates a range in time-scale (from 30 s to 300 s) with anti-correlated regime. Furthermore MT is a long transition regime from HC to AC regimes. In
the low position at right side are inserted the main stereotyped behaviours with their average duration and standard error medium. Please note that
their duration in general are less than 3 s, which fits on HC regime. The inset shows a histogram of duration of mice stereotyped movements.
doi:10.1371/journal.pone.0105092.g005

Figure 6. Multifractal detrended fluctuation analysis (MF-DFA). (a) Generalized Hurst exponent h(q) for eight selected data series
corresponding to 4 mice. (b) Similar plot for the multifractal scaling exponent t(q). (c) Multifractal spectrum f (a) for the same signals. Here, h(q), t(q),
and f (a) are obtained, respectively, through Eqs. (7), (8), and (10), and Da corresponds to the width of the multifractal spectrum.
doi:10.1371/journal.pone.0105092.g006
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measurable movement. The fluctuation caused by small move-

ment of limbs hide the AC pattern in this situation. For this state

the correlation, caused by the episodic movement in the sleep,

prolong the correlation in the signal for larger times. Above the

SWS state and bellow the waking state we have two curves

corresponding to individuals that mix waking and sleep patterns.

Obviously, because of the higher fluctuation of the waking state

signal dominates the statistics the DFA resemble closely the one of

the waking state, but F (n) is smaller. We note that for long times

individuals will show episodes of sleep and waking states and, by

consequence, the accelerometer signal will necessarily loose all

correlation; this situation is indicated in figure by the line a~0:5.

Discussion

The accelerometer analysis can be an useful, low cost and non-

invasive technique that provides important hints about motor state

and behaviour of a species. The main objective of this paper is,

using fluctuation analysis, to propose a basic description of

accelerometer measurements for a freely behaving mouse. As far

as we know, this is the first time that DFA is being used to describe

mice physiologic motor patterns using accelerometer signal data,

an interesting way to classify activity patterns using neural

networks is done in [34]. We design a classification of activity

records using two benchmarks: the free waking and the SWS

resting state. However, in both sleep or waking states, we observe

the same tendency: small time lags are dominated by strong motor

correlation while larger times are marked by anti-correlation. For

large enough periods (above 80 min), signal becomes uncorrelated

as it should be expected for this methodology. The long term

objective of this study is to provide a setup to help scientist to use

accelerometer records as a safe tool to understand the effect of

drugs or physical therapeutics in the motor neural system. Our

group, in special, intends to study drugs that simulate Parkinson

disease which is well known to have a profound impact on

organism motility. In the following lines, we discuss fluctuation

correlation regimes in the light of physiological and behavioural

events starting from small to larger time scales, and considering

separately waking and sleep states.

Waking: Physiological activity and stereotyped
movements

When we look at the waking DFA curve (Fig. 5) the first scale

from 0:01 s to 3 s is an HC like regime. We situate in this interval

two important physiological events: the heartbeat and breathe

movements. Because in both waking and SWS recordings,

heartbeat and breathe movements are set on the first HC part

of DFA curve, we discuss in more details their influence when we

reach SWS analysis. Another important transition point is related

to mice stereotyped behaviour. Typical examples of stereotyped

behaviour for this species are: short walks, grooming, rearing,

resting and sniffing. We measure the duration of the stereotyped

behaviours in our experiment in the interval ranging from 0:5 to 3
seconds, see Fig. 5 and 7. The average duration of stereotyped

movement (&2 s) defines also a turning point in the DFA of

waking state (Fig. 5). Indeed, until the stereotyped movement

duration waking activity is HC; in this regime the recorded activity

is strongly related to skeletal muscle coordinated movement of

body and limbs. We state that, in a time scale below the average

duration of stereotyped behaviours, the DFA pattern is roughly

monofractal, while after this 3 s breaking point (an interval from

3 s to 30 s) we see in the curve an evolution to a more complex

pattern. According to this view, in waking state, the accelerometer

amplitude of these behaviours are so high that surpass the input

that result from cardiac or respiratory movements. Stereotyped

and basic movements usually depends largely on automatic control

programs situated on basal ganglia and lower parts of the brain

[35]. Based on environmental output, internal valuation of actions

and action selection, the animal may decide what will be the next

movement pattern, which can be simple, frequent and stereotyped,

or it can be less frequent and complex. The observation of Fig. 5

(inset) allows identification of a general duration of commonly

observed mouse ethogram parameters.

Waking: Complex behaviours
For the waking state we identify a distinct regime that start in

3 s and goes to 80 s that we call here complex behaviour window.

This regime has a proper physiological interpretation as a

composition of several stereotyped movements and gives origin

to a multifractal scenario. Let us consider a rough image of

fluctuation analysis technique to understand this complex behav-

iour. The DFA analysis is about correlation statistics over different

time scales, beginning with small, milliseconds intervals, and

finishing with durations of many hours. For the waking state a

duration of 1 s in the accelerometer recording will probably be

related to data inside a given stereotyped behaviours. On the other

side, a time window of, for instance, 12 s should fulfil a sequence of

four or five diverse stereotyped movements; a statistic over these

different stereotyped behaviours will not produce an unique fractal

exponent, but reflect the variability of this bundle of stereotyped

movements, each one with a characteristic time correlation [36].

For instance, given the stereotyped behaviours A, B, C, D, possible

sequences reflecting the observed variability in a 12 s interval

could be A, C, D, A; C, A, D, B; or D, A, D, C and so on, thus

increasing variability and unpredictability in DFA curve. Of

course, we cannot state that complex behaviour is composed

exclusively by sequences of stereotyped behaviours. Complex

behaviours may emerge as a natural tendency of experimentation

and are associated to the learning of the environment by

inspection and are associated with exploration of novelty. In this

study case, novelty was linked by the round maze, which was an

unknown environment for the mouse in the first minutes of

exploration. For avoiding the influence of a movement pattern

linked to novelty exploration, we removed the first hour of mouse

activity, in which the novelty-driven exploration behaviour is more

relevant. This procedure allowed us to focus on a movement

pattern that is evoked when the animal is more habituated with the

environment, and thus could better reflect the movement pattern

which occurs more frequently in the animal routine environment.

Waking: Movement and Resting (energy saving balance)
The accelerometer record reveals an interesting physiologic

feature for durations from 80 s to 1 hour: the activity is anti-

correlated, AC. The first AC record in physiology using

fluctuation analysis was noticed in long range human heartbeat

data [7]. In the cited work the author claims the autonomic system

is responsible for the autocorrelation regulation. In this work we

believe that a similar phenomenon is rooted in a general energy

saving balance principle common to life organisms. In studies of

locomotion related to free exercise in a running wheel mice and

other rodents exhibit a voluntary drive for exercise, which are

performed in temporal cycles or running and rest [37,38].

Complementarily, studies concerning locomotion in other species

highlight that animals present different moving patterns in their

environments. This is probably because they consider the amount

of energy they could intake during food search and the exploratory

risk which vary along time [39]. We believe that these biological

factors could be involved in the anticorrelation we found in
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waking, starting from the animal drive for exploration of a new

environment allied with the demand for exercise, until the

habituation with the environment, and a need for rest after a

period of exploration. However, the presence of an AC regime in

accelerometer record was not observed in human studies [12,13]

probably because most records consists of individuals walking

without resting evaluation. We believe that future experiments

designed to observe rest and movement cycle in free behaving

humans and other species should also find an AC pattern as we are

now describing for mice.

Resting SWS
Starting with small periods, as occurs in waking state, the first

relevant physiological parameter is the heart beat. We situate mice

heart rate in a 10 to 15 Hz interval (0:07 s to 0:1 s) [40]. Basal

heart rate is essentially dictated by atrioventricular and sinoatrial

peacemaker activity [41,42], which occurs by spontaneous activity

of autorritmic cells and nervous system autonomic control [42,43].

The observation of Fig. 4 shows that the effect of the heart beat

seems not modify the slope of the DFA curve both to SWS and

waking state. This might be due to the fable movement amplitude

of this signal considering that the accelerometer is situated on

individuals head. The major crossover time of fluctuation analysis

of the resting SWS state is given by the breathing duration cycle,

that immediately follows heartbeat interval. Above breathing

period we capture the oscillatory muscle activity of several

breathing cycles; bellow this duration the accelerometer records

the muscle movement inside each breathing cycle. The movement

inside breathing cycle is a typical HC patterns that is present in

any highly coordinate skeletal muscle activity. The respiratory

movement has a frequency from 2 Hz to 4 Hz (0:25 s to 0:5 s)

[42] in mice. We believe that, due to a larger movement amplitude

driven by breathe muscles, the effect of respiratory weight in

accelerometer records is more intense than cardiac stimuli.

We discussed above that AC regime in SWS state can be

interpreted as an artefact caused by the periodicity of breathing

cycle. However, we also point out the possibility of AC

phenomenon be a true feedback mechanism. Respiratory rate is

controlled by specialized neuron nuclei localized in the pons and

medulla oblongatta, such as pre-Böltzinger and Böltzinger

complexes. These nuclei are probably responsible for different

rhythm patterns, and receives also influences from other parts of

the brain. These connexions can include chemoreceptors of

retrotrapezoid nucleus, which are sensitive to CO2, and Ph

variation. In this way, variation of blood gases are linked to an

automatic response feedback mechanism which regulates respira-

tory rate. Neurons coming from superior centres such as cortex

and cerebellum also modulate basic respiration rhythms [44–46]

and this input are also related to muscle effort and complex

movements [47]. In special, since the perception and response to

oxygen and carbonic acid blood concentration may occur starting

from a half second (the time space of a breathe complete cycle),

this mechanism may lead per se to an alternation of breathing

frequencies in a SWS or waking resting state. The variation of

inputs on respiratory nuclei associated to the chemosensory

feedback response might explain our findings of anti-correlation

during SWS sleep.

In addition, the most prominent peaks observed in SWS Fourier

analysis (Fig. 3), could be associated to breathe (first), heartbeat

(second), and to physiological tremor frequencies (third). In this

context, it is important to highlight that physiological tremor in

mice, which has origin on basal muscle frequencies [48,49] can

represent an important source of variation of the raw signal. This

physiological frequencies also vary according to the muscle type

[50,51]. We emphasize that this tremor can be perceived simply

by placing an habituated mouse on the hands of the researcher.

Finally we compare the scaling properties of the activity

fluctuation during sleep and wakefulness time intervals in healthy

mice. Remarkably, the difference in scaling behaviour between

sleep and wake periods is comparable to previous works on the

human heartbeat [27,28]. Our outcomes corroborate these works

that show the difference between the coefficients around

awake{asleep~0:2. Our results shows a difference around 0:3
[see Fig. 3]. Elucidating the nature of the sleep-wake dynamics can

lead to a better understanding of the mechanisms of egulation of

autonomic neuro-motor activity. Furthermore, these results

indicate that in the transition from sleep to wake the observed

phase transition in the scaling behaviour across time scales from

Figure 7. DFA activity analysis related to main physiological and behavioural events. In this picture we put the main physiologic and
behavioural durations associated with the DFA accelerometer data curves. On the upper position we plotted regions of HC, MT and AC for waking
state curve (shown in red), on the lowered position are indicated the HC, AC and NC regimes for resting sleep curve (in light green). For the resting
SWS state the main physiologic event is the breathing cycle while for the waking state the main event is the behavioural time.
doi:10.1371/journal.pone.0105092.g007

Mouse Activity across Time Scales: Fractal Scenarios

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e105092



lower to higher scaling exponent does not depend on species

characteristics (whether human or mouse) that are associated with

fundamental aspects of neuroautonomic regulation and sympatho-

vagal balance common for mammalian species.

Conclusion
We use the DFA method to understand activity patterns in mice

during waking and resting SWS state. Both states are marked by a

high correlation (HC) pattern for short time scale and subsequent

anti-correlated (AC) behaviour at large time scale. During wake we

credit the HC pattern to the coordinated skeletal body movement.

Exclusively for waking state, we detect a multifractal behaviour

which we attribute to the composition of stereotyped movements

with distinct characteristic scales. The AC regime during waking

state is probably related to physiologic behavioural strategy of

alternating periods of predominant movement or rest. During

SWS, the DFA curve begins with HC, which is mainly attributed

to cardiac and respiratory coordinated movements. For both wake

and SWS the observed HC regime, which encompasses at least

two decades at time scales and is characterized by very different

fractal exponents for wake and SWS, is indicative of a critical

behaviour with a phase transition that has been reported also in

that physiological systems [52,53].

We believe that our work will be helpful to future studies of

behavioural refinement of the ethogram or concerning the action

of drugs over muscle activity and motor behaviour. Once we have

a clear benchmark of the normal DFA curve of mice in waking

and SWS state we can analyse the effect of drugs on motor activity.

Good examples of motor diseases which could be studied in the

light of DFA analysis in animal models could include Parkinson,

Huntington chorea, Alzheimer and tardive dyskinesia.

Materials and Methods

Animals
In these series of experiments there were used adult male

C57Bl{6 mice (2–5months). Animals were housed in home cages

after surgery in 12=12 hs light/dark schedule, lights on at 7 a.m.

and food and drink ad libitum. This study was carried out in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the Committee on the

Ethics of Animal Experiments IINN Intenational Institut of

Neuroscience of Natal- Edmond and Lily Safra (Permit Number:

08/2010). All surgery was performed under isoflurane anaesthesia,

and all efforts were made to minimize suffering.

Behavioural recordings, synchronization and
identification of wake-sleep states

Behaviours were recorded using a Panasonic videocamera and

AMcap software in behavioural groups. In surgery groups, video

recordings were synchronized to Local Field Potentials (LFPs) and

accelerometer data. This three parameters were used together for

confirmation of sleep-wake states selection given by LFPs waves.

Spectral analysis of sleep-wake cycle was used to identify and

quantify occurrence of waking, paradoxical sleep or REM and

slow wave-sleep (SWS) states, using Plexon system for multiple

LFP channel processing. Online LFP spectral maps for the

characterization of waking and REM/SWS sleep states in mice

were employed [54]. Animal behaviour and LFP were continu-

ously observed and recorded in real time for 12 hours. The first 4

recording hours was used in this study for comparisons among

treatments. Animals were grouped according to the following

categories: WK (active exploration of the environment perceived

by video and accelerometer with whisking and hippocampal

alpha/theta rhythm), SWS (stillness with eyes closed and large-

amplitude slow hippocampal oscillations) and REM sleep. To find

the resting SWS sleep intervals we use short time windows in

which motor activity remained constant. That means, we use

accelerometer record to choose time windows that do not show

arousals.

Open field apparatus
After one week of surgery, animals were anaesthetized with

isoflurane, for connecting the tungsten wires of the electrode

matrix with those of plexon multielectrode recording device. After

that, animals were injected with saline (NaCl 0:9%,2 ml) and were

placed in an open field apparatus (50 cm diameter and 30 cm
high) at 10 a. m. and recorded for 12 hours. This injection was

made because a saline-injected animal can serve as a golden

parameter for comparison with drug injected ones in further

studies. During this time, animals were not disturbed in order to

allow them to disclose in a free manner all the typical movement

patterns of SWS and REM sleep, or waking state.

Multielectrode implantation surgery
Animals were implanted with 16 chronic electrodes in the

hippocampus (5 electrodes), motor and somatosensory cortex (4
electrodes each one) for intracranial local field potentials (LFPs)

recordings. Matrix dimensions were 0:9x2:10 mm, and electrodes

were of 1:5 mm length, composed of 0:05 mm diameter tungsten

coated wires, that were attached to an omnetics 16-pin connector.

This matrix was implanted in a rectangular hole in the skull

(bregma coordinates 0:075 and 1:65 right, and 2:1 mm caudal,

thus repeating the first coordinate points), under isoflurane

anaesthesia. An electrode matrix was placed in animals head

using liquid acrylic also with the help of three screws that were

used together as ground. Also, an accelerometer with X,Y, Z axes

orientation sensor was associated to the headstage, attached to

male connector plugged in a head female omnetics connector.

Complementarily, a ten fold pre-amplification circuitry was

located in association 4 cm distant from animals head, in order

to reduce noise. The LFP signal at a sample rate was amplificated

in a second time by a Plexon 500 x pre-amplifier and recorded in a

64{channel Plexon system for neural recording analysis.

The accelerometer device
We use a three axis accelerometer sensor (ADXL330 from

Analog Devices) installed over to the connector that matches over

the mice implanted electrode matrix. This provides a very tight

mechanical connection to the animal head, for activities measure-

ment. The three signals were routed from the accelerometer to the

headstage using appropriated flexible wires to keep a space about

30 mm. The headstage is home-made and was designed to have

16 channels by the use of high input impedance operational amps,

and its output was electrically compatible to the plexon

electrophysiological measurement system. This provides simulta-

neous recordings for electrophysiological signals and activities.

During experiments, the headstage and its cable were kept

suspended by the use of a rubber band. A correct adjusts for its

strength can avoid a substantial mass load to the head of the

animal. This configuration provided a good degree of flexibility

and comfort for animal movements during the experiments. Both

electrophysiological and inertial signals were initially conditioned

in the headstage and then routed to the plexon electrophysiolog-

ical system. The three axis accelerometer signals from the sensor

were low pass filtered to have a {3dB frequency limit around
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40 Hz, and for convenience all signals were acquired at a rate of

1 KHz.

Histological preparations
After all behavioural data collection, all surgery animals were

subject to histological preparations. Briefly, after electrophysiology

recordings, animals were euthanatized in deep anaesthesia with

isoflurane, and perfused with PBS pH 7:4, and paraformaldehyde

4%; brains were removed, freezed at {80oC and sliced at 30 mm
thickness. In order to confirm if electrodes were localized near

CA1 hippocampus layers or at 1:5 mm deep in the cortex Nissl

staining of coronal slices was performed.

Data acquisition and treatment
This paper works with measurements of accelerometer sensor

located at the head of a mouse and we use accelerometer records

to make inference about physiologic state of the organism. A naive,

but essential question, is what an accelerometer record? The

answer of this question is not movement. The acceleration is the

variation of velocity, a particle that moves at constant velocity

shows zero acceleration. Acceleration, in a crude way, is related

with force. In order to vary the velocity of a particle, or the limb,

head or tail of an animal, it is necessary to use muscular force.

Besides, an animal can stay at the same place in space but if it

shakes or trembles the head the accelerometer shows intense

response. In a physiologic perspective the accelerometer records

skeletal muscular activity of the body. In other words, the

accelerometer is a noninvasive apparatus that quantify motor

activity of an organism. The accelerometer output consists in three

components of the acceleration vector a(i)~(ax,ay,az). For

starting our mathematical analysis of data we combine the vector

components in a single quantity similar to the vector module at the

same time that we extract the average of each vector component.

The new T(i) vector formed from the components of a(i) is

defined as:

T~(ax{�aax)z(ay{�aay)z(az{�aaz) ð1Þ

where �aa is the arithmetic average of a. We performed DFA as well

Fourier analysis over each of the components of the acceleration

and over T the results are similar, our option for using T comes

from the robustness of the results, an analysis over the modulus of

a vector is more trustful than over any of its components.

Mathematical analysis
The Detrended Fluctuation Analysis DFA is an improvement of

the rescaled range method used to compute the Hurst exponent.

The DFA estimates Hurst exponent in a more rigorous way

because it eliminate the trend in the signal before computing

deviations if the signal relative to its average [55–58]. In what

follows we expose DFA in some detail, let start with the a time

series t~t1,t2,::,ti,::,tN for N the length of the vector. The first

step consists in integrating the series:

s(j)~
Xj

i~1

(ti{�tt) ð2Þ

Where �tt is the local average. Furthermore the new time series is

divided into equal boxes of size n. Inside each box of length n a

least-squares line is fitted using a linear function, s(i)fit which is

called the local trend. The DFA can be adapted to detrend any

continuous function, due to the bounded characteristic of the

accelerometer signal a linear detrend is enough. We detrend s by

subtracting it from the local trend, that means:

S(i)~s(i){s(i)fit ð3Þ

For any box size n we estimate the root mean square fluctuation

F (n)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

½S(i)�2
vuut ð4Þ

The equation above is computed for any box of size n; at the

end we have a scaling relation F (n)!na, where a is the DFA

scaling exponent and this is a identical to the Hurst index [18,59],

which is related to the power spectrum exponent b by b~2a{1
[60,61]. Furthermore, the exponent a represents the scaling of

fluctuation F (n) according to the scale n. The interpretation of a in

the statistical mechanic context is: a~0:5 corresponds to the

uncorrelated white noise, the result we should expect in a null

model perspective or the case of complete randomness. The case

0vav0:5 corresponds to anti-correlation while 0:5waw1 shows

positive correlation. The special case a~1 corresponds to 1=f

noise [62].

To estimate the multifractal properties of our experimental data

we have calculated the multifractal spectra based on the Multi-
fractal Fluctuation Analysis MF-DFA method [33,36,63]. In a

brief description of the MF-DFA method for a given time ti

contain N data points as follows. First we integrate the time series

s(j)~
Pj

i~1 (ti{�tt), j~1,:::,N. Then we divide the new time series

s(j) into a non-overlapping segments of size n, so that N:nNn.

After we apply a linear regression for n-th segment (n~1,:::,Nn) to

estimate the best fitting sn(k), where k~1,:::,n. In the next step we

calculate the mean square fluctuation for the n-th segment as:

F2(n,n):
1

n

Xn

k~1

Ds((n{1)nzk){sn(i)D2: ð5Þ

The last step we calculate the q-th order fluctuation function as:

Fq(n):
1

Nn

XNn

n~1

F2(n,n)q=2 ð6Þ

The scaling of the fluctuation function as we have shown above

but now for the moment q is given by:

Fq(n)!nqh(q), ð7Þ

where h(q) represents a generalized Hurst exponent. Monofractal

time series have a unique Hurst exponent h(q)~H and this is a

identical to the DFA scaling exponent a. In turn, for multifractal

time series the value of h(q) depends nonlinearly on q. From this

point, the multifractal scaling exponent t(q) can be calculate from

h(q) by the relation:
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t(q)~qh(q){1: ð8Þ

So, if there is a linear dependence of the spectrum t(q) with q,

the time series is considered monofractal, otherwise it is multi-

fractal. Moreover, it is possible to characterize the multifractality

by considering the multifractal spectrum f (a), where a is the

Holder exponent. The multifractal spectrum f (a) can be obtained

from a Legendre transform of the t(q) exponent:

a~t
0
(q), ð9Þ

f (a)~qa{t(q): ð10Þ

The magnitude of the multifractality in time series is usually

estimated by the width of the spectrum Da~amax{amin [64]. We

deal in this paper with measurement of accelerometer record with

an acquisition rate of 1000 Hz. The typical time (period)

corresponding to this frequency is To~0:001 s. To compute

F (n), for n the time scale, we start with n~10 which corresponds

to a time 10To~0:01, which is the minimal time depicted in the

figures of the manuscript. Indeed, to construct F (n) it is necessary

to make a statistical average and n~10 is a minimal statistical

sample that produces trustable results.
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