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Background: Spatial ability is vital for human survival and development. However,

the relationship between large-scale and small-scale spatial ability remains poorly

understood. To address this issue from a novel perspective, we performed an activation

likelihood estimation (ALE) meta-analysis of neuroimaging studies to determine the

shared and distinct neural bases of these two forms of spatial ability.

Methods: We searched Web of Science, PubMed, PsycINFO, and Google Scholar

for studies regarding “spatial ability” published within the last 20 years (January 1988

through June 2018). A final total of 103 studies (Table 1) involving 2,085 participants

(male = 1,116) and 2,586 foci were incorporated into the meta-analysis.

Results: Large-scale spatial ability was associated with activation in the limbic lobe,

posterior lobe, occipital lobe, parietal lobe, right anterior lobe, frontal lobe, and right

sub-lobar area. Small-scale spatial ability was associated with activation in the parietal

lobe, occipital lobe, frontal lobe, right posterior lobe, and left sub-lobar area. Furthermore,

conjunction analysis revealed overlapping regions in the sub-gyrus, right superior frontal

gyrus, right superior parietal lobule, right middle occipital gyrus, right superior occipital

gyrus, left inferior occipital gyrus, and precuneus. The contrast analysis demonstrated

that the parahippocampal gyrus, left lingual gyrus, culmen, right middle temporal gyrus,

left declive, left superior occipital gyrus, and right lentiform nucleus were more strongly

activated during large-scale spatial tasks. In contrast, the precuneus, right inferior frontal

gyrus, right precentral gyrus, left inferior parietal lobule, left supramarginal gyrus, left

superior parietal lobule, right inferior occipital gyrus, and left middle frontal gyrus were

more strongly activated during small-scale spatial tasks. Our results further indicated

that there is no absolute difference in the cognitive strategies associated with the two

forms of spatial ability (egocentric/allocentric).
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Conclusion: The results of the present study verify and expand upon the theoretical

model of spatial ability proposed by Hegarty et al. Our analysis revealed a shared

neural basis between large- and small-scale spatial abilities, as well as specific yet

independent neural bases underlying each. Based on these findings, we proposed a

more comprehensive version of the behavioral model.

Keywords: large-scale spatial ability, small-scale spatial ability, activation likelihood estimation, meta-analysis,

behavioral model

INTRODUCTION

Spatial ability is a core cognitive function that plays a significant
role in individual intelligence. In general, spatial ability has
been defined as the ability to understand the relationships
among different positions in space or imagined movements
of two- and three-dimensional objects (Clements, 1999; Wang
et al., 2014). Specifically, spatial ability can be divided into
two major categories: large-scale spatial ability and small-scale
spatial ability. Large-scale spatial ability refers to the ability
of individuals to carry out cognitive processing of spatial
information in the large-scale environment. During this process,
the viewer’s perspective changes with respect to the larger
environment, but the spatial relationships among individual
objects remain the same (Hegarty and Waller, 2004; Wang
et al., 2014). Representative examples of large-scale spatial ability
include navigation and spatial orientation abilities (Jansen, 2009;
Höffler, 2010; Wang et al., 2014). Navigation ability refers to
the ability to navigate within a large-scale environment in
which the spatial relationships among landmarks cannot be fully
apprehended from a single vantage point (Wang and Carr, 2014),
while spatial orientation refers to the ability to imagine objects
from different perspectives (Yilmaz, 2009; Turgut, 2015).

Small-scale spatial ability can be defined as the ability to
mentally represent and transform two- and three-dimensional
images that can typically be apprehended from a single vantage
point (Wang and Carr, 2014). Small-scale spatial ability mainly
refers to spatial visualization and spatial relations capabilities
(Jansen, 2009; Höffler, 2010). Spatial visualization is defined as
the ability to manipulate complex spatial information involving
the configurations of shapes (e.g., image folding or movement)
or to mentally transform a two-dimensional object into three-
dimensional object (Linn and Petersen, 1985; Yang and Chen,
2010). Spatial relations ability refers to the ability to recognize the
relationships among the visual components of an object (Bosnyak
and Nagy-Kondor, 2008; Turgut, 2015).

Currently, the relationship between large- and small-scale
spatial ability can be explained using four models: (1) The
“unitary model” assumes that spatial abilities along the two
scales exhibit complete overlap, (2) while the “partial dissociation
model” proposes that the two types of spatial ability exhibit
similarities and differences. (3) In contrast, the “total dissociation
model” assumes that the two sets of abilities are distinct. Lastly,
(4) the “mediation model” assumes that small- and large-scale
spatial abilities can be dissociated, but are determined by a third
variable (Hegarty et al., 2006; Jansen, 2009). That is, while Models

1 and 2 propose that the two forms of spatial ability are related,
Models 3, and 4 propose that they are not.

Each of the aforementioned models has been verified to
some extent in previous studies. For instance, Hegarty and
Waller (2004) observed a dissociative relationship between
mental rotation and perspective-taking spatial abilities. A meta-
analysis by Wang et al. (2014) further suggested that small-
and large-scale spatial abilities are best characterized as separate
entities. However, other studies have yielded conflicting results.
Kozhevnikov et al. (2006) demonstrated that spatial navigation
performance can be predicted based onmental rotation ability. In
addition, Malinowski (2001) reported that mental rotation skills
are significantly correlated with wayfinding performance during
an orienteering task.

Notably, in a study that examined spatial abilities, spatial
updating, verbal abilities, and working memory in 221
participants, Hegarty et al. (2006) reported results that were
consistent with the partial dissociation model only. Moreover,
they specified the degree of overlap between small-scale
and large-scale abilities, providing new insights regarding
the similarities, and differences between these abilities (see
Figure 1). Although their work is of great significance, the
partial dissociation model remains problematic for two reasons:
The model is currently incomplete, and evidence for the neural
basis of such a model requires further and more comprehensive
verification.

The rapid development of neuroimaging techniques in
recent years has prompted extensive investigation of large- and
small-scale spatial abilities using functional magnetic resonance
imaging (FMRI) and positron emission tomography (PET). In an
effort to verify and expand the model of spatial ability proposed
by Hegarty et al. (2006), the present study aimed to elucidate
the neural basis of large- and small-scale spatial abilities via
activation likelihood estimation (ALE) analysis (Eickhoff et al.,
2012).

MATERIALS AND METHODS

Literature Search and Study Selection
We searched Web of Science, PubMed, PsycINFO, and Google
Scholar for studies regarding “spatial ability” published within
the last 20 years (January 1988 through June 2018). In order to
retrieve the maximum number of relevant articles, we classified
the search keywords into the following four series based on the
type of spatial ability, yielding a total of 76 groups:
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TABLE 1 | Summary of studies included in the present meta-analysis.

Study N(Male) Mean

age

Country Task and Contrast Foci

Large-scale spatial ability

Janzen and Weststeijn (2007) 15(8) 22.6 Netherlands Decision point items>non-decision point items in object location and

route direction task, in-route items>against-route items

18

Nemmi et al. (2013) 19(11) 25.05 Italy Route task>control 13

Ohnishi et al. (2006) 246(133) 30.2 Japan maze task>control 22

Ino et al. (2002) 16(16) 32.3 Japan Mental navigation task>control 10

Hartley and Maguire (2003) 16(16) 28.9 UK Good navigation performance>poor navigation performance,

wayfinding>trail following, wayfinding>route following

23

Baumann et al. (2010) 17(17) 31.6 Australia Navigation task>control, good navigators>poor navigators 64

Janzen and Jansen (2010) 20(10) 24.75 Netherlands Objects seen once at a decision point in wayfinding task>once at a

non-decision point

7

Xu et al. (2010) 20(20) 24.2 Norway The conditions of Normal, Without and Blocked in navigation task>Line

following

83

Schinazi and Epstein (2010) 16(5) 23 USA Decision point in real-world route learning>non-decision point,

in-route>against-route

16

Latini-Corazzini et al. (2010) 16(16) 21.2 Italy Route task>control, survey task>control, route task>survey task 31

Iaria et al. (2008) 10(5) 23.08 Canada Highly familiar pathway in navigation task>control, bottom-up attention

mechanisms>control, direct events>action events and perceptual event

86

Rosenbaum et al. (2004) 10(10) 26.4 Canadian Mental navigation task>control 35

Rauchs et al. (2008) 16(8) 22.1 Canada Common navigation task>control 62

Wolbers et al. (2007) 13(7) 21–29 USA Path integration>control 16

Wolbers and Büchel (2005) 11(11) 19–28 Germany Learning, performance, and change phase in navigation task>control 17

Hirshhorn et al. (2011) 13(5) 26.7 Unknown Distance judgment, Proximity judgment, blocked route problem

solving, and landmark sequencing>control

33

Rosenbaum et al. (2007) 7(4) 46.57 Canada House recognition task>control 9

Brown et al. (2010) 20(9) 21.36 USA Overlapping>non-overlapping 69

Iaria et al. (2007) 9(4) 24.9 Canada Acquisition of the cognitive map and using the cognitive map>control 35

Grön et al. (2000) 24(12) 26 Germany Navigation task>control 18

Weniger et al. (2010) 19(11) 25 Switzerland Decide point during navigation in a virtual maze>control 17

Pine et al. (2002) 20(5) 13.9–

28.8

USA memory-guided navigation task and arrow- guided navigation

task>control

27

Iaria et al. (2003) 14(7) 25.3 Canada Place-learning task>control 17

Shelton and Gabrieli (2002) 12(6) 23.1 USA Route encoding>fixation, survey encoding>fixation, route

encoding>survey encoding

52

Maguire et al. (1997) 11(11) 45 UK Routes, landmarks, film plots,and film frames tasks>control 35

IglóiI et al. (2010) 19(19) 24.3 UK Training trials in navigation>control trials, allocentric and egocentric

responses trials>control trials, allocentric responses trials>egocentric

responses trials

95

Marsh et al. (2010) 25(21) 32.5 USA Spatial learning>control 27

Rodriguez (2010) 11(5) 24–39 USA Allocentric test>cue-place test, encoding>test phases 51

Orban et al. (2006) 24(12) 23.5 Belgium Navigation task>control 24

Moffat et al. (2006) 30(15) 27 Unknown Younger adults and older adults>control 46

Lambrey et al. (2012) 18(9) 21 UK Self-rotation conditions in perspective taking task>table rotation

conditions, self-rotation conditions>array rotation conditions, good

performance>poor performance

13

Ino et al. (2007) 1(1) 55 Japan Navigation task>control 7

Whittingstall et al. (2014) 18(5) 20–28 Canada Visuospatial imagery task>control 14

Kaiser et al. (2008) 24(12) 28.15 Germany Third-person-perspective>first-person-perspective 14

Hirshhorn et al. (2012) 16(6) 26.43 Canada Navigation task>control 12

Pintzka et al. (2016) 53(0) 22.5 Norway Successful>failed navigation 23

Jandl et al. (2015) 26(13) 63.7 Germany Navigation trials>visual memory trials 12

Ledoux et al. (2013) 22(16) 30.48 Canada Wayfinding task>control 13

(Continued)
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TABLE 1 | Continued

Study N(Male) Mean

age

Country Task and Contrast Foci

Powell et al. (2012) 82(32) 21.6 UK Landmark task>control 28

Ganesh et al. (2015) 23(11) 23 Netherlands Egocentric mental spatial transformations>allocentric mental spatial

transformations

8

Etchamendy et al. (2012) 30(12) 26.53 Canada Concurrent spatial discrimination learning task>control 12

Clemente et al. (2013) 14(0) 21.64 Spain Navigation>video, navigation>photographs 10

Mazzarella et al. (2013) 20(9) 27.7 Unknown Altercentric condition in perspective taking task>control, egocentric

condition>control

94

Lee et al. (2005) 10(10) 22–25 Hong Kong Spatial orientation task>control 39

Lux et al. (2003) 14(14) 26.8 Germany Spatial orientation task>control 10

Kesler et al. (2004) 13 14.5 USA Spatial orientation task>control, difficult>control 8

SMALL-SCALE SPATIAL ABILITY

Hugdahl et al. (2006) 11(6) 30 Norway Mental rotation task>control 4

Schöning et al. (2007) 34(14) 32 Germany Mental rotation task>control 95

Gogos et al. (2010) 10(0) 55.4 Australia Mental rotation task>control 16

Weiss et al. (2009) 16(16) 20–39 Germany Mental rotatio>stimulus categorization, mirrored

presentation>non-mirrored presentation

59

Suchan et al. (2002) 10(4) 28.9 Germany Mental rotation task>control 27

Wraga et al. (2010) 18(8) 22 USA Perspective task>object-in-hand task, rotation task>fixation 50

Johnston et al. (2004) 9(5) 25.8 UK Different orientation>same orientation 3

Suchan et al. (2006) 11(6) 27 Germany Simultaneous matrix rotation>simultaneous 3-D cube rotation,

simultaneous 3-D cube rotation>simultaneous matrix rotation,

successive matrix rotation>successive 3-D cube rotation

19

Jordan et al. (2001) 9(1) 21 Germany Three mental rotation conditions>control 36

Podzebenko et al. (2002) 10(5) 28.3 Australia Mental rotation task>control 14

Seurinck et al. (2005) 24(0) 23 Belgium Mental rotation task>control 36

Creem-Regehr et al. (2007) 16(7) 21 USA Hand and viewer rotation tasks>control 35

Sluming et al. (2007) 10(10) 41 UK Mental rotation task>control 14

Wolbers et al. (2003) 13(9) Unknown Germany Mental rotation task>control 11

Keehner et al. (2006) 14(7) Unknown Australia Different degrees of rotation>control 10

Lamm et al. (2007) 13(13) 23–31 Austria Location and orientation condition during mental rotation>control 16

Vingerhoets et al. (2002) 13(13) 29 Belgium Rotated hands and figures>control 31

Wraga et al. (2005) 11(7) 25 USA Object rotation task>control, self-rotation task>control 51

Corradi-Dell’Acqua et al.

(2009)

17(17) 28.31 Germany Body schema and body structural rotation>control, stimulus

strategy>control

5

Halari et al. (2006) 19(9) 25.78 UK Mental rotation task>control 27

Creem et al. (2001) 12(6) 24 USA Mental rotation task>control 15

Thomsen et al. (2000) 11(6) 30 Norway Mental rotation task>control 4

Vingerhoets et al. (2001) 10(5) 26 Belgium Mental rotation task>control 5

de Lange et al. (2005) 6(6) 25 Netherlands Mental rotation task>control 10

Logie et al. (2011) 21(7) 30–35 UK Mental rotation>control, high imagers>low imagers 16

Levin et al. (2005) 12(6) 20.67 USA Mental rotation task>control 18

De Lange et al. (2006) 17(17) 24 Netherlands mental rotation task>control 7

Ferri et al. (2014) 18(9) 24 Italy Mental rotation of one’s own right hand>mental rotation of one’s own

left and other’s hand, angular orientation>control

25

Kawamichi et al. (2007) 14(14) 18–33 Japan Mental rotation task>control 40

Jordan et al. (2002) 24(10) 23.17 Germany Three mental rotation conditions (3d, abstract, letter)>control,

3D-condition>the ABSTRACT- and LETTER-conditions

36

Lamm et al. (2001) 13(13) 24.5 Austria Mental rotation task>control 11

Paschke et al. (2012) 10(10) 25 Germany mental rotation task>control 3

Milivojevic et al. (2008) 14(8) 26.21 New Zealand Stimulus rotation during a mirror-normal parity judgment

task>letter–digit category judgment task

15

(Continued)
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TABLE 1 | Continued

Study N(Male) Mean

age

Country Task and Contrast Foci

Ng et al. (2001) 12(12) 29.25 UK Line orientation experiment>control, mental rotation

experiment>control

15

Stoodley et al. (2012) 9(9) 25 USA Rotated letters>upright letters 18

Wilson and Farah (2006) 7(3) 18–23 USA Letter and object mental rotation>control 11

Papeo et al. (2012) 18(0) 22–28 USA Motor strategy and visuospatial strategy>control 15

Schendan and Stern (2007) 16(7) 21.2 USA Mental rotation task>control 26

Kucian et al. (2006) 20(10) 27.2 Switzerland Mental rotation task>control 13

Zacks et al. (2002) 24(9) 19–31 USA Spatial transformation tasks>control 36

Seurinck et al. (2011) 16(16) 24 Netherlands Mental rotation task>control 16

Seurinck et al. (2004) 22(11) 25.4 Belgium Mental rotation task>control 46

Vanrie et al. (2002) 6(3) 25.2 Belgium Mental rotation task>control 60

Carrillo et al. (2010) 42(23) 31.89 Spain Mental rotation task>control 2

O’Boyle et al. (2005) 6(6) 14.3 Australia Mental rotation task>control 7

Ecker et al. (2006) 10(0) 20–30 UK Mental rotation task>control 15

Baumann et al. (2012) 14(7) 21.5 Australia Spatial relations task>control 4

Bodin et al. (2010) 11(5) 20–35 Sweden Mental rotation task>control 20

Gao et al. (2017) 30(15) 19–25 China Mental rotation task>control 10

Prescott et al. (2010) 8(8) 14.2 Australia Mental rotation task>control 18

Goh et al. (2013) 97(50) 22.6 USA Visuo-spatial judgments>control 7

Wolbers et al. (2006) 16(16) 19–29 Germany Spatial visualization task>control 6

Ebisch et al. (2012) 22(0) 20–24 Italy Induction–visualization>induction–spatial relationships,

visualization–induction>visualization–spatial relationships

8

Blacker and Courtney (2016) 32(8) 18–30 USA Spatial relations>location 36

Newman et al. (2016) 36(21) 8 USA Mental rotation task>control 8

Kucian et al. (2005) 22(10) 25.9 Switzerland Mental rotation task>control 37

Elizabeth and Paul (2011) 16(4) 18–28 USA Matching in embedded figures task>searching 16

FIGURE 1 | Model characterizing the relationship between large- and small-scale spatial abilities, as proposed by Hegarty et al. (2006).
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(1) Spatial ability/Spatial cognition/Spatial perception/Spatial
information processing+ FMRI/PET.

(2) Large-scale Spatial ability/Small-scale Spatial ability +

FMRI/PET.
(3) Navigation/Spatial orientation/Spatial visualization/ Spatial

relations+ FMRI/PET.
(4) Navigation task/test + FMRI/PET; Draw maps task/test

+ FMRI/PET; Way-finding task/test + FMRI/PET; Map
learning task/test + FMRI/PET; Spatial orientation task/test
+ FMRI/PET; Perspective taking task/test + FMRI/PET;
Spatial visualization task/test+ FMRI/PET;Mental rotations
task/test+ FMRI/PET; Paper folding task/test+ FMRI/PET;
Spatial relations task/test+ FMRI/PET; Water level task/test
+ FMRI/PET; Card rotation task/test + FMRI/PET; Figures
task/test + FMRI/PET; Differential aptitude task/test +

FMRI/PET.

After four rounds of the above search process, a total of
826 documents were identified. We then examined each of
the documents in full, incorporating those with the following
characteristics into our meta-analysis:

(1) All participants were healthy individuals.
(2) The study must have included whole-brain rather than

region-of-interest analyses, and the data reported must have
been standardized (Montreal Neurological Institute (MNI)
or Talairach space).

(3) The study must have utilized behavioral experimental
methods, and the articles must have included brain imaging
data obtained from individuals following independent
experimental tasks.

(4) If an experimental result was reported in multiple papers,
only one instance was utilized for the meta-analysis.

Following this screening process, a total of 103 studies (Table 1
and Figure 2; see Supplementary Table 1 for PRISMA
Checklist) involving 2,085 participants (male = 1,116) and
2,586 foci were incorporated into the meta-analysis (see
Supplementary Table 2). Among these foci, 1,372 were
associated with large-scale spatial ability, while 1,214 were
associated with small-scale spatial ability.

Activation Likelihood Estimation (ALE)
ALE, which treats activation foci reported in neuroimaging
studies not as single points but as spatial probability distributions
centered at the given coordinates, is the most common algorithm
for coordinate-based meta-analysis (Eickhoff et al., 2012). In the
present study, we utilized the revised algorithm for ALE analysis
proposed by Eickhoff et al. (2009). This algorithm models the
spatial uncertainty—and thus the probability distribution—of
each focus using an estimation of the inter-individual and
inter-laboratory variability typically observed in neuroimaging
experiments, rather than using a pre-specified full-width at
half maximum (FWHM) for all experiments as originally
proposed. The modified permutation procedure reflects the null-
distribution of a random spatial association between studies
(i.e., random-effects analysis), rather than between foci (i.e.,
fixed-effects analysis; Eickhoff et al., 2016, 2017). The “modeled

FIGURE 2 | Procedure of data selection (PRISMA 2009 Flow Diagram).

activation” (MA) map is computed by the following procedure.
First, all foci reported for a given study are modeled as Gaussian
probability distributions. The information provided by the foci of
a given study is thenmerged into a single 3D-volume. To this end,
the modeled probabilities are combined over all foci reported
in that experiment by taking the voxel-wise union of their
probability values (Eickhoff et al., 2009). The respective activation
probabilities (the values of the MA maps) are then recorded,
yielding as many values as there had been studies included in
the current meta-analysis. These values correspond toMA values,
that were sampled from random, spatially independent locations.
The union of these activation probabilities is then computed
in the same manner as done for the meta-analysis itself in
order to yield an ALE score under the null-hypothesis of spatial
independence (Eickhoff et al., 2009, 2012).

The ALE method is advantageous in that it may help
to resolve several issues in current brain imaging research.
First, the number of participants involved in single brain
imaging studies is generally low, often providing unstable results.
Second, single-brain imaging results are likely influenced by
certain experimental conditions (e.g., scan parameters). Third,
interpretations regarding the function of a given brain region
derived from a single study are often based on a small number
of experimental tasks.

Ginger ALE software (version 2.3; http://www.brainmap.org/
ale) was used to conduct the current meta-analysis, including
the conversion of Talairach coordinates into MNI space. Loci
in both cerebral and cerebellar regions were all focused by the
current research. The resulting p-value maps were threshold
using cluster-level family-wise error (FWE) correction at p <

0.05, with a cluster-defining threshold of p < 0.005 and 5,000
permutations (Eickhoff et al., 2012). The results were overlaid
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onto an anatomical template (Colin27 T1 seg MNI.nii; http://
www.brainmap.org/ale) and displayed using Mango software
(http://rii.uthscsa.edu/mango).

RESULTS

Our ALE analysis identified 16 clusters of consistent activation
related to large-scale spatial ability. The largest two clusters
of activation in the bilateral limbic lobe were centered in the
bilateral parahippocampal gyrus. Other clusters were primarily
located in the bilateral posterior lobe, bilateral occipital lobe,
bilateral parietal lobe, right anterior lobe, bilateral frontal lobe,
and right sub-lobar area (Table 2, Figure 3). Clusters exhibiting
consistent activation in the analysis of small-scale spatial ability
were concentrated mainly within the bilateral parietal lobe,
bilateral occipital lobe, bilateral frontal lobe, right posterior lobe,
and left sub-lobar area (Table 3 and Figure 3).

We then compared the ALE results for large- and small-
scale spatial abilities to identify common and distinct neural
regions associated with each ability. Conjunction analysis
revealed that bilateral sub-gyrus, right superior frontal gyrus
(SFG), right superior parietal lobule (SPL), right middle
occipital gyrus (MOG), right superior occipital gyrus (SOG),
left inferior occipital gyrus (IOG), and bilateral precuneus
were activated for both large- and small-scale spatial abilities
(Table 4 and Figure 4). In addition, large- and small-scale spatial
ability contrasts demonstrated correspondence in the bilateral
parahippocampal gyrus, left lingual gyrus, bilateral culmen, right
middle temporal gyrus (MTG), left declive, left SOG, and right
lentiform nucleus (Table 5 and Figure 4). Conversely, small- and
large-scale spatial ability contrasts converged in the bilateral
precuneus, right inferior frontal gyrus (IFG), right precentral
gyrus, left inferior parietal lobule (IPL), left supramarginal gyrus,
left SPL, right IOG, and left middle frontal gyrus (MFG; Table 5
and Figure 4).

DISCUSSION

In the present study, we conducted an ALE meta-analysis
to elucidate the neural basis of large- and small-scale spatial
abilities. Our results indicated that large-scale spatial tasks were
associated with increased activation in the parahippocampal
gyrus, SOG, MOG, precuneus, posterior cingulate, lingual gyrus,
sub-gyrus, right SFG, left cuneus, and left SPL. This result
is consistent with the findings of Boccia et al. (2014) and
Kühn and Gallinat (2014) regarding individual navigational
capabilities. Furthermore, cognitive processing of individual
large-scale spatial information was associated with activation
in the declive, culmen, left IOG, right lentiform nucleus, and
right claustrum. These findings are in accordance with those
of several previous studies, which have also suggested that the
parahippocampal gyrus plays a key role in large-scale spatial
ability (Connor and Knierim, 2017; Cullen and Taube, 2017;
Epstein et al., 2017; Lisman et al., 2017; Moser et al., 2017).

Our analysis also revealed that small-scale spatial tasks were
associated with higher activation in the IPL, MOG, left SPL,

left IOG, MFG, and IFG. These results are consistent with the
findings of Tomasino and Gremese (2016) regarding individual
mental rotation capabilities. Furthermore, cognitive processing
of individual small-scale spatial information was also associated
with activation in the precuneus, right MFG, right tuber, right
declive, and left insula.

Notably, our ALE conjunction analysis revealed that the sub-
gyrus, right SFG, right SPL, right MOG, right SOG, left IOG,
and precuneus participate in the cognitive processing of both
large- and small-scale spatial information. These results are in
accordance with the model proposed by Hegarty et al. (2006),
which argues that there is a partial intersection/association
between individual large-scale and small-scale spatial abilities.
Hegarty et al. (2006) speculated that this association arises from
the fact that spatial ability is not a completely independent
cognitive function, as both large- and small-scale spatial ability
involve cognitive processes such as visual processing and working
memory. Indeed, our results support this notion, suggesting
a shared neural basis for large- and small-scale spatial ability.
Extensive research has demonstrated that the sub-gyrus, right
SPL, right MOG, right SOG, left IOG, and precuneus are
associated with the processing of visual spatial information (Fink
et al., 2003; Price and Devlin, 2003; Bristow et al., 2005; Konen
et al., 2005; Slotnick and Moo, 2006; Deutschländer et al., 2008;
Choi et al., 2010; Seo et al., 2012). Additional studies have
indicated that the sub-gyrus, right SFG, and precuneus are
significantly associated with working memory tasks (Mitchell,
2007; Chein et al., 2011; Fassbender et al., 2011; Ma et al., 2012;
Opitz et al., 2014). Furthermore, the right sub-gyrus, right SFG,
right MOG, and precuneus have been associated with attention
(Wu et al., 2007; Kelley et al., 2008; Thakral and Slotnick, 2009;
Li et al., 2012; Majerus et al., 2012), while the sub-gyrus and
left precuneus have been associated with the planning process
(Wagner et al., 2006; Jankowski et al., 2009; Crescentini et al.,
2012). The sub-gyrus has also been implicated in executive
function (Kerstin et al., 2005; Schubotz and von Cramon, 2009;
Jin et al., 2012; Dambacher et al., 2014).

Taken together, these findings suggest that both large-
and small-scale spatial ability involve visual processing and
working memory of spatial information, as well as cognitive
processes such as attention, planning, and executive control.
These processes may represent vital cognitive and behavioral
foundations for the overlap and interaction between large- and
small-scale spatial ability. In this context, an individual first
relies on attention to capture visual spatial information, following
which working memory aids in the preparation and processing
of the input. The individual then develops a detailed plan to
finish the current spatial cognitive task. The planning process is
often embodied in the corresponding task execution strategy for
large-scale spatial tasks. For small-scale spatial tasks, it is often
embodied in the operational scheme developed by the participant
according to his/her own operational capabilities. Execution of
the plan and behavioral responses during the experimental task
are under the control of executive function.

We further analyzed the specific neural activity involved in
large- and small-scale spatial abilities. Our analysis indicated
that large-scale spatial tasks were associated with more intense
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TABLE 2 | ALE meta-analysis results for large-scale spatial ability.

Cluster No. Hemisphere Brain regions BA x y z ALE(10−2) Cluster size (mm3)

1 R Parahippocampal gyrus 36 26 −38 −10 0.102188 9912

R Declive 26 −60 −12 0.032387

R Parahippocampal gyrus 36 −22 −22 0.026213

2 L Parahippocampal gyrus 36 −24 −46 −6 0.079631 5784

3 R Superior occipital gyrus 19 42 −78 32 0.051903 4400

R Middle occipital gyrus 19 40 −80 22 0.046983

R Precuneus 7 26 −76 46 0.034177

R Precuneus 7 26 −66 36 0.024326

4 L Posterior cingulate 30 −16 −56 18 0.07205 4224

5 R Posterior cingulate 30 18 −52 16 0.072787 3512

R Culmen 10 −46 2 0.037102

6 L Lingual gyrus 18 −6 −80 −2 0.050804 3384

R Lingual gyrus 18 18 −68 0 0.036607

R Culmen 6 −72 −2 0.034144

L Declive −16 −76 −8 0.027501

7 R Sub-gyral 6 28 6 54 0.049654 2856

8 R Precuneus 7 18 −62 58 0.048159 2752

L Precuneus 7 −2 −66 54 0.031828

9 R Superior frontal gyrus 6 4 14 50 0.04669 2096

10 L Middle occipital gyrus 19 −32 −86 24 0.057178 1896

L Superior occipital gyrus 19 −32 −84 38 0.025026

L Cuneus 17 −20 −80 20 0.02431

11 L Superior parietal lobule 7 −18 −62 62 0.044397 1832

12 L Sub-gyral 6 −26 0 58 0.048783 1752

13 L Inferior occipital gyrus 19 −42 −78 0 0.043239 1504

L Middle occipital gyrus 19 −44 −82 12 0.025768

14 R Lentiform nucleus 18 −4 −12 0.0353 1376

R lentiform nucleus 26 −6 −12 0.034406

R Parahippocampal gyrus 22 −10 −16 0.031555

15 L Parahippocampal gyrus −26 −20 −18 0.028272 1256

16 R Claustrum 32 24 −4 0.052402 1112

BA, Brodmann area; R, right; L, left; ALE, activation likelihood estimation.

activation of the parahippocampal gyrus, left lingual gyrus,
culmen, right MTG, left declive, left SOG, and right lentiform
nucleus. Indeed, previous studies have indicated that the
parahippocampal gyrus, left lingual gyrus, culmen, and right
MTG are significantly associated with the processing of
information related to virtual environments (Weniger et al., 2009,
2013; Mellet et al., 2010; Nieuwland, 2012; Fairhurst et al., 2013).
Additional studies have demonstrated that the parahippocampal
gyrus, left lingual gyrus, culmen, and left SOG are associated
with the processing of information related to construction, scene,
and place (Suzuki et al., 2005; Henderson et al., 2008; Mullally
et al., 2012; Rémy, 2014; Sulpizio et al., 2014; Zeidman et al.,
2015). The parahippocampal gyrus, left lingual gyrus, and culmen
have also been implicated in autobiographical memory (Maguire
and Dhassabis, 2010; Whalley et al., 2012; Wilbers et al., 2012).
Several studies have further reported that the parahippocampal
gyrus, culmen, and left SOG are associated with episodic memory
(Suzuki et al., 2009; Reggev et al., 2011; Demaster and Ghetti,

2013), while the right parahippocampal gyrus, left lingual gyrus,
left culmen, and left declive are associated with semantic memory
(Grossman et al., 2003; Assaf et al., 2005; Kodama et al., 2015).
Recent research has also demonstrated that the right lentiform
nucleus is associated with emotional processing (Goldin et al.,
2008; Telzer et al., 2014; Wardle et al., 2014; Touroutoglou et al.,
2015). Taken together, these findings suggest that, relative to
small-scale spatial ability, large-scale spatial ability relies more
heavily on the cognitive processing of spatial information related
to aspects of the virtual environment (e.g., construction, scene,
place, etc.), and on the autobiographical, episodic, and semantic
aspects of memory. Our findings further suggest that large-scale
spatial ability is associated with greater emotional responses.

In contrast, small-scale spatial tasks were associated withmore
intense activation in the precuneus, right IFG, right precentral
gyrus, left IPL, left supramarginal gyrus, left SPL, right IOG,
and left MFG. Previous studies have revealed that the precuneus,
right IFG, right precentral gyrus, left IPL, left SPL, right IOG,
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FIGURE 3 | ALE meta-analysis of neuroimaging studies regarding large-scale spatial ability (A) and small-scale spatial ability (B). Coordinates are presented in

millimeters (mm). ALE, activation likelihood estimation.

and left MFG are associated with motor imagery (Kaladjian
et al., 2007; De Lange, 2008; Chen et al., 2009; Thompson and
Baccus, 2012; Chinier et al., 2014; Lissek et al., 2014). Additional
studies have demonstrated that the precuneus, right IFG, right
precentral gyrus, left supramarginal gyrus, left IPL, and left MFG
are associated with control of the finger and hand, particular
for grasping and tapping movements (Culham et al., 2003;
Vandermeeren et al., 2003; Müller et al., 2011; Schweisfurth et al.,
2011; Akhlaghi et al., 2012; Lavrysen et al., 2012; Stefanics and
Czigler, 2012). Moreover, the right precentral gyrus, left IPL,
and left supramarginal gyrus have been associated with working
memory (Mitchell, 2007; Burgess and Braver, 2010; Chein et al.,
2011; Fassbender et al., 2011). In addition, several studies have
indicated that the precuneus, right IFG, right precentral gyrus,
left IPL, and left supramarginal gyrus are involved in arithmetic
and calculation (Gruber et al., 2001; Fehr et al., 2007; Benn
et al., 2013). Some studies have also reported that the right
precentral gyrus and right IFG are assocaited with matching
activities (Darcy Burgund et al., 2005; Soulières et al., 2009).
Taken together, these findings indicate that, relative to large-scale
spatial ability, small-scale spatial ability relies more heavily on
motor imagery, mental processes associated with finger and hand
movements, and cognitive processes such as working memory,
calculation, and matching.

However, it is noteworthy that although there are brain
regions related to individuals’ working memory in the common
part of large- and small-scale spatial ability and in the unique

part of the small-scale spatial ability, these brain regions are
still different with respect to the cognitive process and the
functions they are specifically involved in. First of all, the
cognitive process shows that the working memory includes
such three processes as encoding, maintenance, and retrieval;
however, the sub-gyrus in the common part is involved in the
encoding process, precuneus is involved in the maintenance
process, and SFG is involved in the retrieval process; whereas the
precentral gyrus in the unique part is involved in the encoding
and maintenance processes, IPL is involved in the retrieval
process, and supramarginal gyrus is involved in the encoding
and retrieval processes (Langel et al., 2014). Then, the function
of the working memory shows that these brain regions serve as
the significant neural foundations of the central executive system
in individuals’ workingmemory. The central execution system, as
the core component of the working memory, has such important
functions as selection, inhibition, updating, and conversion
(Collette and Linden, 2002). In the common part, however,
SFG is mainly responsible for updating in the central executive
system, and precuneus is mainly responsible for selection. In
addition, IPL and supramarginal gyrus in the unique part are
also crucial brain regions for updating (Bledowski et al., 2009;
Borst and Anderson, 2013). To sum up, we believe that although
both large- and small-scale spatial ability involves the cognitive
process of encoding, maintenance, and retrieval in individuals’
workingmemory, small-scale spatial ability also involves working
memory processes that more precuneus, IPL and supramarginal
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TABLE 3 | ALE meta-analysis results for small-scale spatial ability.

Cluster No. Hemisphere Brain regions BA x y z ALE(10−²) Cluster size (mm3)

1 R Precuneus 7 26 −66 48 0.089947 24816

R Precuneus 7 26 −56 56 0.075651

R Precuneus 31 34 −74 26 0.049883

R Inferior parietal lobule 40 36 −40 42 0.048361

R Middle occipital gyrus 18 34 −82 2 0.042117

2 L Superior parietal lobule 7 −26 −64 50 0.059831 22584

L Inferior parietal lobule 40 −38 −40 46 0.056222

L Inferior parietal lobule 40 −46 −36 46 0.048675

L Precuneus 7 −16 −62 54 0.047647

L Precuneus 7 −20 −74 48 0.045286

L Inferior occipital gyrus 19 −42 −72 −4 0.043441

L Inferior occipital gyrus 19 −36 −78 0 0.041091

L Middle occipital gyrus 18 −30 −90 12 0.039092

L Inferior occipital gyrus 18 −36 −86 −2 0.037764

L Middle occipital gyrus 19 −34 −78 18 0.024928

L Precuneus 31 −26 −78 24 0.024692

3 R Middle frontal gyrus 6 28 −2 56 0.086822 4968

4 L Middle frontal gyrus 6 −24 −4 54 0.073822 4880

5 R Inferior frontal gyrus 9 52 8 26 0.070489 4696

6 L Superior frontal gyrus 6 2 12 50 0.072562 4608

R Medial frontal gyrus 8 6 26 46 0.030976

7 L Inferior frontal gyrus 9 −48 8 28 0.057083 3160

8 R Tuber 42 −62 −32 0.040321 2944

R Declive 44 −64 −16 0.036898

9 L Insula 13 −32 26 0 0.039269 976

TABLE 4 | Results of conjunction analysis for large- and small-scale spatial ability.

Cluster No. Hemisphere Brain regions BA x y z ALE(10−2) Cluster size (mm3)

1 R Sub-Gyral 6 26 4 56 0.049543 1760

2 R Superior frontal gyrus 6 4 14 50 0.04669 1704

3 R Superior parietal lobule 7 20 −62 58 0.045159 1616

4 L Sub-Gyral 6 −26 0 58 0.048783 1440

5 R Middle occipital gyrus 19 34 −78 20 0.035724 1136

R Superior occipital gyrus 19 36 −74 30 0.03098

6 L Inferior occipital gyrus 19 −42 −76 −2 0.036802 664

7 L Precuneus 7 −18 −62 58 0.036471 640

8 R Precuneus 7 26 −74 48 0.032807 464

9 R Precuneus 7 26 −66 36 0.024326 120

gyrus are involved in. It can also be understood this way: although
working memory is involved in the cognitive processing of large-
and small-scale spatial information of individuals at the same
time, the involvement in the latter is wider and deeper. On
the other hand, the selection and updating functions of the
central executive system in the working memory also constitute
the common basis of individuals’ large- and small-scale spatial
ability, but the small-scale spatial ability, compared with the
large-scale spatial ability, is more dependent on the updating
function. Therefore, the result that this working memory is

present in the common part of the large- and small-scale spatial
ability and in the unique part of the small-scale spatial ability is
not contradictory. Moreover, this result, to a certain extent, also
mutually supports the phenomenon that the working memory
training as found by many researchers in the domain of cognitive
training can lead to a significant transfer influence on individuals’
spatial ability (Alloway et al., 2013; Borella et al., 2017; Nilsson
et al., 2017).

Although large- and small-scale spatial ability are to some
extent associated at both the neural and behavioral levels,
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FIGURE 4 | Results of conjunction and contrast analyses. (A) The common regions associated with large- and small-scale spatial ability. (B) Brain regions exhibiting

greater activation for large-scale spatial ability than for small-scale spatial ability. (C) Brain regions exhibiting greater activation for small-scale spatial ability than for

large-scale spatial ability. Coordinates are presented in millimeters (mm).

they are profoundly different in many ways. Large-scale spatial
ability reflects more of the individual’s ability to process
spatial information related to actual or virtual situations. In
such cases, regions associated with the cognitive processing of
environmental information (e.g., construction, scene, place, etc.)
will be activated more intensely, following which brain regions
corresponding to autobiographical and episodic memory will be
engaged. In addition, as large-scale spatial tasks often require
more detailed explanation, semantic memory load will be greater
for such tasks than for those associated with small-scale spatial
ability. Interestingly, we also observed activation of emotion-
related regions during large-scale spatial tasks. One explanation
for this finding was that experimental tasks in general might
elicit emotional responses. Individuals are more prone to such
negative emotions as anxiety and fear when completing large-
scale spatial tasks. For instance, Lawton (1994) and Malinowski
and Gillespie (2001) found that wayfinding performance was
negatively correlated with anxiety. Lawton and Kallai (2002)
further discovered that women showed greater anxiety than
men in large-scale spatial tasks. In addition, many scholars
focus on the stress responses of individuals in navigation tasks

(Duncko et al., 2007; Schwabe et al., 2007, 2009). Therefore, when
compared with small-scale spatial ability, the large-scale spatial
ability of individuals is more often studied by being linked to
emotional factors. Consistent with these studies, our findings
also showed that individuals have actually activated the emotion-
related brain regions when completing large-scale spatial tasks.
Alternatively, experimental materials depicting beautiful scenery,
architecture, or familiar scenes may evoke various emotional
responses among individual participants. Such task elements as
the stimulus materials and the experimental scenarios for the
large-scale spatial tasks at this stage are much more plentiful than
smaller-scale space tasks. It is for sure that this also prompts them
to have more elements affecting individual emotions potentially.
So, can the improved and enriched small-scale spatial tasks or
research paradigms affect individuals’ activities and emotion-
related brain regions? We believe that this question still warrants
validation of more studies.

In contrast, our findings indicated that small-scale spatial
ability was more strongly associated with brain regions
involved in motor imagery, grasping, calculation, and matching,
suggesting that this form of spatial ability reflects an individual’s
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TABLE 5 | Results of contrast analysis for large- and small-scale spatial ability.

Cluster No. Hemisphere Brain regions BA X Y Z ALE(10−2) Cluster size (mm3)

LARGE-SCALE SPATIAL ABILITY>SMALL-SCALE SPATIAL ABILITY

1 R Parahippocampal gyrus 35 25 −36.8 −10.5 0.09013 6368

R parahippocampal gyrus 35 32 −23.3 −22 0.021

2 L Lingual gyrus −14.7 −56.5 14.6 0.05872 4016

3 L Culmen −24.3 −43 −7.5 0.05677 3536

L Culmen −20.3 −42.3 −17.7 0.02638

4 R Culmen 17.4 −52.2 14.6 0.069 3392

5 R Middle temporal gyrus 19 41 −76 35.4 0.0448 936

6 L Culmen 0 −3.5 −73.2 −1.7 0.0239 616

L lingual gyrus 18 −10 −76 −6 0.02136

L Declive −14.7 −77.3 −8.7 0.02416

7 L Superior occipital gyrus 19 −36.2 −83.8 30 0.03538 464

8 R Lentiform nucleus 15 −2.7 −12.2 0.0278 440

R Lentiform nucleus 20 −3 −10 0.02655

R Lentiform nucleus 22 −8 −10 0.02424

9 L Parahippocampal gyrus −28 −24 −16 0.02198 128

L Parahippocampal gyrus −26 −18 −17 0.00386

SMALL-SCALE SPATIAL ABILITY>LARGE-SCALE SPATIAL ABILITY

1 R Precuneus 7 26.6 −63.3 48.7 0.0659 3008

R Precuneus 7 25.3 −54.7 59 0.05862

2 R Inferior frontal gyrus 9 55.1 10.9 28.7 0.03762 1352

R Precentral gyrus 6 58 8 30 0.02762

R inferior frontal gyrus 44 55 12 19 0.02476

R Precentral gyrus 6 43 9.3 21.3 0.02805

R Precentral gyrus 6 44 4 22 0.01912

R Inferior frontal gyrus 9 47 14 20 0.02064

3 L Inferior parietal lobule 40 −48 −40 46 0.03136 968

L Inferior parietal lobule 40 −47 −43 49 0.02126

L Supramarginal gyrus 40 −46.7 −36.7 41.3 0.0275

L Inferior parietal lobule 40 −38 −48 58.5 0.02253

4 L Superior parietal lobule 7 −25 −74 52 0.0222 936

L Precuneus 7 −21.7 −61.4 45.7 0.02749

L Precuneus 7 −23 −53 55 0.02721

5 R Inferior occipital gyrus 19 37.5 −79.4 6.2 0.03082 888

6 L Middle frontal gyrus 6 −20.3 −6.6 52.9 0.0387 568

L Middle frontal gyrus 6 −22 −9.2 62 0.02362

7 R Precuneus 7 30 −42 42 0.025 504

ability to process spatial information for specific objects. In this
case, judgments are made based on imagination and mental
representations. Thus, grasping, calculation, and matching
functions may aid individuals in operating upon mental
representations. Because imagination and operation abilities
reflect working memory function, our findings suggest that
small-scale spatial ability relies more heavily on working memory
than other aspects of memory function. Given these findings, we
propose a new model, as shown in Figure 5.

The current model was proposed on basis of Hegarty
et al. (2006)’s model. We validated and supplemented their
model from the neuroimaging level. We know that each
region of our brain has many corresponding functions,

and we proposed the current model mainly based on the
following three considerations: first, based on our own
literature accumulation and experience and taking into account
the functional intelligence of the relevant brain regions
from such database as Neurosynth (http://neurosynth.org/)
and Brainnetome (http://atlas.brainnetome.org/bnatlas.html),
we determined the aspects of cognitive function that brain
regions mainly involve in the current ALE results; then, we
examined whether these functions were consistent or directly
associated with the cognitive activity components of the various
components of Hegarty et al. (2006)’smodel, thereby determining
whether our findings can support Hegarty et al. (2006)’s model;
lastly, by summarizing the work in the previous two steps,
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FIGURE 5 | Model of the relationship between large- and small-scale spatial ability based on the current findings.

findings of previous studies, and our understanding of the
individual spatial ability, we proposed the current model that
would supplement and deepen Hegarty et al. (2006)’s model
finally.

In general, the findings of the present research supported
and extended the model proposed by Hegarty et al. (2006).
With regard to the large-scale spatial ability, first, Hegarty et al.
summed up the cognitive components specific to individuals’
large-scale spatial ability based on his own studies, including
addressing and spatial learning based on sensing of body
motions. In fact, both “updating” and “learning” refer to
the process of encoding the spatial stimulus information by
individuals, and this spatial stimulus information is on basis
of sensing of body motions. According to Hegarty et al.
(2006), on the one hand, these stimuli were derived from the
real environment; on the other hand, these stimulus messages
also contained information regarding the “self.” Our model
based on the current ALE results also supported such a view.
According to ourmodel, individuals’ large-scale spatial ability not
only involves individuals’ processing of such real-world spatial
stimulus information as constructions, scenes and places, but also
contains individuals’ cognitive processing of the virtual context
space stimulus information. Moreover, we have also found that
the brain regions associated with individuals’ autobiographical
memory, episodic memory, semantic memory and emotional
responses are also deeply involved in individuals’ large-scale
spatial cognition, among which the first two items are associated
with individuals’ “self ” information. Secondly, Hegarty et al.
(2006) also thought that individuals’ large- and small-scale
spatial ability involves individuals’ encoding of the visual spatial
stimulus information, maintenance of spatial representations in
the working memory and process of inference on the basis of
these spatial representations. Not only does our model support
the above conclusions fully, but also we further propose that
all the processes of encoding, maintenance and retrieval, and
the core central execution system components in the working
memory are important for individuals’ spatial ability. In addition,

we believe that the final inference process involves mainly the
ability of individuals’ planning and executive control. Finally, as
mentioned earlier (also as Figure 5), another important addition
and extension of the current research to Hegarty et al. (2006)’s
model was that we attempted to present the cognitive ability base
specific to individuals’ small-scale spatial ability.

Notably, we observed no distinct differences in the cognitive
processing strategies utilized during large- and small-scale spatial
tasks. Currently, strategies for processing spatial information
are divided into three main categories: (1) egocentric-allocentric
(Galati et al., 2000), (2) whole-part (Li and O’Boyle, 2011; Janssen
and Geiser, 2012), and (3) motor imagination-visual processing
(Tomasino and Gremese, 2016). However, the basis and theory
of these three categories are quite similar, and we speculate that
the latter two represent variations upon the first category.Whole-
part strategies are likely to be utilized during the processing
of large-scale spatial information, while motor imagination-
visual processing strategies are likely to be utilized during the
processing of small-scale spatial information. Some researchers
have hypothesized that large-scale spatial tasks primarily require
egocentric strategies, while small-scale tasks primarily require
allocentric strategies (Malinowski, 2001; Zacks et al., 2001; Peña
et al., 2008).

A meta-analysis by Boccia et al. (2014) revealed that
navigation tasks were associated with greater activation of the
right SOG, right angular gyrus, and right precuneus when
egocentric rather than allocentric strategies are adopted. A
subsequent meta-analysis by Tomasino and Gremese (2016)
revealed that small-scale spatial tasks were associated with greater
activation in the right postcentral gyrus, left IPL, left postcentral
gyrus, left SPL, and right angular gyrus when egocentric
strategies are adopted. In contrast, allocentric strategies were
associated with greater activation of the right precuneus, right
SFG, right SOG, left MOG, left SPL, left inferior temporal
gyrus (ITG), left IOG, left MOG, and right posterior medial
frontal gyrus. Interestingly, the right precuneus, right SOG, and
left SPL reflect opposing processing strategies for large- and
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small-scale spatial tasks. Taken together, these findings suggest
that there is no absolute difference in cognitive processing
strategies between large- and small-scale spatial ability, and
that either egocentric or allocentric strategies may be utilized
in both task types. Differences in strategy selection may
be related to individual differences such as the interaction
between gender and verbal working memory (VWM)/visual
spatial working memory (VSWM) ratio (Wang and Carr,
2014).

The present study possesses several limitations of note. First,
unlike meta-analyses performed in other fields of research, ALE
calculations based on neuroimaging do not consider the size of
an effect; consequently, they cannot include evidence for the
absence of an effect (i.e., so-called null results). Furthermore,
ALE analyses cannot illuminate the temporal dynamics of
cognitive processes (Winlove et al., 2018). Secondly, as most
participants in the included studies were relatively young, we
were unable to explore the effect of life-long development on
the relationship between large- and small-scale spatial ability.
Finally, we investigated spatial ability in healthy individuals only.
Further studies are required to determine whether similar results
can be obtained in patients with major depressive disorder,
schizophrenia, attention deficit hyperactivity disorder, autism,
and Alzheimer’s disease.

CONCLUSION

The results of the present study verify and expand upon the
theoretical model of spatial ability proposed by Hegarty et al.
(2006). Our analysis revealed a shared neural basis between large-
and small-scale spatial abilities, as well as specific yet independent
neural bases underlying each. Based on these findings, we

proposed a more comprehensive version of the behavioral model
(Figure 5). Our results further suggest that there is no absolute
difference in cognitive strategies adopted during large- and small-
scale spatial tasks.
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