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Abstract

Background: Genomic prediction in multiple populations can be viewed as a multi-task learning problem where
tasks are to derive prediction equations for each population and multi-task learning property can be improved by
sharing information across populations. The goal of this study was to develop a multi-task Bayesian learning model
for multi-population genomic prediction with a strategy to effectively share information across populations. Simulation
studies and real data from Holstein and Ayrshire dairy breeds with phenotypes on five milk production traits were used
to evaluate the proposed multi-task Bayesian learning model and compare with a single-task model and a simple data
pooling method.

Results: A multi-task Bayesian learning model was proposed for multi-population genomic prediction. Information was
shared across populations through a common set of latent indicator variables while SNP effects were allowed to vary
in different populations. Both simulation studies and real data analysis showed the effectiveness of the multi-task model
in improving genomic prediction accuracy for the smaller Ayshire breed. Simulation studies suggested that the
multi-task model was most effective when the number of QTL was small (n = 20), with an increase of accuracy by
up to 0.09 when QTL effects were lowly correlated between two populations (ρ = 0.2), and up to 0.16 when QTL effects
were highly correlated (ρ = 0.8). When QTL genotypes were included for training and validation, the improvements
were 0.16 and 0.22, respectively, for scenarios of the low and high correlation of QTL effects between two populations.
When the number of QTL was large (n = 200), improvement was small with a maximum of 0.02 when QTL genotypes
were not included for genomic prediction. Reduction in accuracy was observed for the simple pooling method when
the number of QTL was small and correlation of QTL effects between the two populations was low. For the real data,
the multi-task model achieved an increase of accuracy between 0 and 0.07 in the Ayrshire validation set when 28,206
SNPs were used, while the simple data pooling method resulted in a reduction of accuracy for all traits except for
protein percentage. When 246,668 SNPs were used, the accuracy achieved from the multi-task model increased by
0 to 0.03, while using the pooling method resulted in a reduction of accuracy by 0.01 to 0.09. In the Holstein
population, the three methods had similar performance.

Conclusions: Results in this study suggest that the proposed multi-task Bayesian learning model for multi-population
genomic prediction is effective and has the potential to improve the accuracy of genomic prediction.
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Background
Genomic prediction has become a new tool for selection
of candidates based on genomic estimated breeding values
(GEBV) through the use of dense markers covering the
whole genome [1]. To predict GEBV, a training data set
with genotypes and phenotypes is used to derive the
* Correspondence: liuhong@ualberta.ca
1Department of Agricultural, Food and Nutritional Science, University of
Alberta, Edmonton, AB T6G 2P5, Canada
Full list of author information is available at the end of the article

© 2014 Chen et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
prediction equations, where all marker effects are estimated
simultaneously. GEBV for selection candidates that
have genotypes are then predicted by summing up all
the marker effects. The accuracy of GEBV is affected by
several factors [2,3], of which the number of individuals in
the training data set and the marker density are of crucial
importance [2,3].
In Holstein dairy cattle, genomic prediction has been

successfully applied using the Illumina BovineSNP50
single nucleotide polymorphism (SNP) panel [4,5]. For
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smaller populations such as Ayrshire in dairy cattle,
acquisition of a large number of animals to be included
in the training data set for genomic prediction still
remains a challenge. One strategy is to combine data of
the small populations with data from other populations
to increase the size of the training set. However, simply
pooling data from different populations may result in
unfavorable accuracies if the marker density is low or
the populations have diverged for a long time [6-8].
Increasing the marker density is one of the possible
solutions because the linkage disequilibrium (LD) phase
persistence between markers and quantitative trait loci
(QTL) among different populations would likely to im-
prove. However, a recent study in Jersey and Holstein
dairy cattle reported a very limited advantage by using a
very high density SNP panel [9]. Few studies have been
dedicated to research new methods or strategies other
than simply pooling data together for genomic predic-
tion. Brondum et al. [10] proposed an approach called
BayesRS for multi-population genomic prediction, where
a location specific genetic variance derived in one popula-
tion were used as priors for another population. They
found that for some traits, BayesRS might be advantageous
compared to the approach of simply pooling training data
sets for distantly-related populations; but for closely related
populations the method did not perform better than simply
pooling data together.
Multi-task learning, the term first coined by R Caruana

[11], aims to improve learning performance by simultan-
eously learning from related tasks. In text and speech
recognition, image reconstruction and many other areas
where data are collected from multiple sources, multi-task
learning has been successfully applied [12-14]. Recently,
the multi-task learning has attracted a growing interest
in biological science for sequence and gene expression
analyses [15-17] as well as genome-wide association
studies (GWAS) [18]. To our knowledge, the application
of multi-task learning in genomic selection has not been
reported so far.
Bayesian learning models using stochastic search vari-

able selection (SSVS) has been widely used and proven
effective for genomic prediction in a single population
[1,19-21]. Normally, SSVS uses some types of spike and
slab distributions as priors for SNP effects. A latent in-
dicator variable (0 or 1) is associated with each SNP,
with 0 indicating that the SNP is irrelevant to the trait
and is excluded from the model, and 1 indicating that
the SNP is associated to the trait phenotype and is included
in the model. In this study, it was assumed that multiple
populations share the same set of latent indicator variables
which can be learned jointly. The goal was to develop a
multi-task Bayesian learning model for multi-population
genomic prediction and to evaluate its performance on
both simulated and real data.
Methods
In this section, single-task Bayesian learning model, the
simple data pooling method, and the multi-task Bayesian
learning model were introduced. A Gibbs sampling
algorithm was designed to implement the multi-task
Bayesian learning model. Monte Carlo simulation
studies were conducted to evaluate the performance of
the proposed multi-task model. Real data on five milk
production traits from Holstein and Ayrshire dairy
breeds were also used to test the effectiveness of the
multi-task model.

Single-task bayesian learning model
In a single reference population of n animals with
genotypes on m SNP markers, the statistical model can
be written as:

yi ¼ μþ
Xm
j¼1

xijaj þ ei;

Where yi is the phenotypic value for the ith animal
(i = 1,…,n), μ is the intercept, xij is the genotype for
the jth SNP locus (j = 1,…,m) of the ith animal, which is
coded 0, 1 or 2, depending on the number of copies from
a specified allele, aj is the regression coefficient for the
jth SNP (allele substitution effect), and ei is the random
residual error.
A flat prior distribution is assigned to μ. aj is assumed

a mixture of a normal distribution N 0; σ2a
� �

and a point
mass density at zero (denoted by a Dirac delta function
δ0(aj) hereinafter). The weights for the two distributions
are (1-w) and w, respectively, so that ajjw; σ2a

� �e 1−wð Þ
N 0; σ2a
� �þ wδ0 aj

� �
: w follows a uniform prior distribu-

tion. A latent indicator variable γi is introduced for each
SNP, so that when γi=1 , ajeN 0; σ2a

� �
, and when γi=0 ,

aj=0. Prior distribution for each γi is assumed i.i.d. and
follows Bernoulli distribution with probability (1-w). So
the joint prior density for γ is f γjwð Þ ¼

Y
j

w 1−γ jð Þ 1−wð Þγ j .

Residual errors are assumed from a multivariate normal
distribution N 0; Iσ2

e

� �
. The prior distribution for σ2a σ2e

� �
is a scaled inverse Chi-square distribution with degree of
freedom va(ve) and scale factor s2a s2e

� �
.

Simple data pooling method
Suppose animals are from a number of c different popula-
tions. In a simple data pooling method, animals from
multiple populations are pooled together to form a single
training data set. It is assumed that the population origin
for each individual is known prior to the analysis. Popula-
tion origin is included as a fixed effect. The effect of each
SNP is assumed to be the same across populations.
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Multi-task Bayesian learning model
For c populations with nk animals in the k-th population,
the statistical model can be written as:

yik ¼ μk þ
Xm
j¼1

xijkajk þ eik i ¼ 1;⋯; nk and k ¼ 1;⋯; cð Þ;

In matrix notation, this can be written as:

yk ¼ μk1þ Xkak þ ek;

where yik is the phenotypic value for the ith animal in
the kth population; μk is the general mean of population
k; xijk is the genotype for the jth SNP locus of the ith

animal in the kth population; ajk is the jth SNP effect in
population k, and eik is the random residual effect; and
in the matrix notation, yk, ak, and ek are vectors of pheno-
typic values, SNP effects, and residual effects, respectively;
1 is a vector with all elements set to 1; and Xk is the design
matrix relating yk to ak. In the model, ajk allows the jth

SNP effect to have a different value in population k. To
share information among different populations, a com-
mon latent indicator variable indicating whether SNP j is
associated with a QTL is used across populations. Accom-
modating these features into a Bayesian model produces
the multi-task Bayesian learning model.
The following prior distributions for the unknown

parameters and hyper-parameters are assumed in the
multi-task Bayesian learning model:

μkeflat distribution;�
ajk jγ j; σ2ak

�eγ jN 0; σ2ak
� �þ�1−γ j�δ0 ajk

� �
;

ðγ jjwÞew1−γ j 1−wð Þγ j ;

w eUniform 0; 1ð Þ;

σ2
ak jvak ; s2ak

� �e vaks2ak=2
� �vak=2

Γ vak=2ð Þ σ2
ak

� �− 1þvakð Þ=2
exp −

vaks2ak
2σ2

ak

� �
;

ekjσ2
ek

� �eN 0; Iσ2ek
� �

;

σ2ek jvek ; s2ek
� �e veks2ek=2

� �vek=2
Γ vek=2ð Þ σ2

ek

� �− 1þvekð Þ=2
exp −

veks2ek
2σ2ek

� �
:

The likelihood function of the whole data given all the
parameters in the model is:

Yc
k¼1

2πσ2
ek

� �−nk
2 exp −

1
2
σ−2
ek yk−μk−Xkak
� �0

yk−μk−Xkak
� �� �

So the joint posterior density function is:
f ðσ2
a; σ

2
e ;w; γ; a; μjyÞ∝

Yc
k¼1

σ2
ek

� �− vek þ nk
2

−1
exp −

yk−μk−Xkak
� �0

yk−μk−Xkak
� �þ veks2ek
2σ2ek

" #
σ2
ak

�8<:
Gibbs sampling algorithm
A Gibbs sampling algorithm was designed to draw
samples for unknown (hyper-) parameters from their
full conditional posterior distributions. To avoid reducibility
of Markov chain, γj and ajk are jointly sampled by first
sampling γj from f ðγ jjθj− ; yÞ followed by sampling ajk
from f ðajk jγ j; θj− ; yÞ; where θj− represents all parameters

except γj and ajk. Full conditional posterior distributions
for μk ;w; σ

2
ak and σ2ek can be derived by picking up the

relevant parts from the joint posterior distribution. Deriv-
ation for the density function f ðγ jjθj− ; yÞ and sampling of

γj are described in the Appendix. The Gibbs sampling
steps are described as below:

Step 1. Initialize the parameters w; γ; σ2ak ; σ
2
ek ; μk and ak :

Step 2. For j=1,···, m

a. Sample γj from Bernoulli distribution with
probability 1/(1+qj),

qj ¼
w

1−w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
k

x′jkxjk
σ2
ak

σ2
ek

þ 1

� �s
exp −

1
2

X
k

μ̂2
ajk

σ̂ 2
ajk

 !
;

in which

μ̂ajk ¼
x

0
jk yk−μ̂k−X1k:jk−1âlþ1

1k:jk−1−Xjkþ1:mkâljkþ1:mk

	 

x0
jkxjk þ σ2

ek=σ
2
ak

;

and

σ̂ 2
ajk ¼

σ2ek
x0
jkxjk þ σ2ek=σ

2
ak

(see Appendix for details).

b. For k=1,···c, sample ajk from

f ðajk jγ j; θj− ; yÞ ¼
δ0 ajk
� �

if γ j ¼ 0

N μ̂ajk ; σ̂
2
ajk

	 

if γ j ¼ 1

(

Step 3. Sample w from Beta distribution

f ðwjγÞ ¼ 1
B α;βð Þw

α−1 1−wð Þβ−1; where α =m − ∑ γj and β = ∑ γj.

Step 4. For k=1,···, c, sample σ2ak from scaled inverse
Chi-square distribution

χ−2 vak þ
X

γ j;
vaks2ak þ

X
γ ja

2
jk

vak þ
X

γ j

 !
�− vak
2

−1
exp −

vaks2ak
2σ2

ak

� �9=; Yc
k¼1

Ym
j¼1

γ j σ
2
ak

� �− 1
2 exp −

a2jk
2σ2

ak

 !
þ 1−γ j
	 


δ0 ajk
� �24 35w 1−γ jð Þ 1−wð Þγ j

8<:
9=;



Table 1 Number of animals used for genomic prediction

Ayrshire Holstein

Training set 393 2084

Validation set 65 214

Total 458 2298
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Step 5. For k=1,···, c, sample σ2ek from scaled inverse
Chi-square distribution

χ−2 vek þ nk ;
veks2ek þ yk−μk−Xkak

� �′
yk−μk−Xkak
� �

vek þ nk

 !

Step 6. For k=1,···, c,

Sample μk from N
yk−Xk âkð Þ0 yk−Xk âkð Þ

nk
;
σ̂ 2
ek
nk

� �
Repeat Step 2 to 6 until a set number of iterations are

reached.
It can be shown in step 2 that information from

all populations are used to generate the latent vari-
able γj, and the SNP effect ajk is generated for each
population.

Computer program
Computer programs were written in C language to im-
plement the multi-task Bayesian learning model, single-
task Bayesian learning and the simple data pooling
method. Programs and source codes are available upon
request.

Monte Carlo simulations
The aim of the simulation was to evaluate the perform-
ance of the proposed multi-task Bayesian learning model
and to compare with the single-task model and the simple
data pooling method. Different scenarios were considered
that differ in number of QTL affecting the trait, corre-
lations of the QTL effects between different popula-
tions, and the density of SNP panels used for genomic
prediction.
Real genotypes from 458 Ayrshire and 2,298 Holstein

bulls were used for simulations. All Ayrshire animals
and 690 Holstein animals were genotyped on the Illu-
mina BovineHD BeadChip (800 k) SNP panel, and the
remaining 1,608 Holstein animals were genotyped on the
Illumina BovineSNP50 BeadChip (50 k) SNP panel. SNPs
meeting one of the following criteria were excluded: minor
allele frequency (MAF) lower than 0.05, missing genotype
rate greater than 0.10, highly correlated with any other
SNP genotype (95% genotypes from two loci identical
or in complementary). SNP locations were determined
against Bovine genome assembly UMD3.1 [22]. SNPs
with unknown locations or on sex chromosomes were
discarded. SNPs filtered in one breed were also removed
from the other breed. After editing, 246,668 SNPs from
the 800 k panel and 28,206 SNPs from the 50 k panel were
kept for analyses.
For ease of computation, only SNPs from the first 10

chromosomes were used. Four scenarios were considered
with combinations of QTL number being either 20 or 200
and the correlation of QTL effects between the two
populations being low (ρ = 0.2) or high (ρ = 0.8). For
each scenario, QTL were randomly sampled from the 50 k
panel. For each QTL j, allele substitution effects in the
two populations, αj1 and αj2, were sampled from a
bivariate normal distribution with mean 0 and variance-

covariance structure
P ¼ 1 ρ

ρ 1

� �
σ2 in which σ2 = 1. Breed-

ing value of each animal i, was calculated as ai ¼
X
j

Xjαj

where Xj is the QTL genotypes coded as 0, 1 or 2, number
of copies on an arbitrarily chosen allele. Total additive
genetic variance were calculated within each breed as
σ2
a ¼

X
j

2pj 1−pj
	 


α2j, where pj is the QTL allele frequency.

For each animal i, a residual effect ei, was sampled from a
normal distribution with mean 0 and variance σ2

e , so that
phenotypic value of the animal yi=ai+ei. σ2

e was equal to
σ2a to give a trait with heritability of 0.5. Each scenario
was replicated 10 times.
Four SNP panels of different density, the original

800 k panel, and the mimicked 400 k, 200 k, 100 k by
selecting every 2nd, 4th, and 8th SNP, respectively, from
the 800 k panel were used for genomic prediction. For
each scenario described above, the simulated QTL were
removed from the SNP panels. A special scenario was
designed to keep all QTL genotypes in the 800 k panel
for genomic prediction. The 50 k genotypes of 1,608
Holstein animals were imputed to 800 k using genotype
imputation software FImpute developed by Sargolzaei
et al. [23]. Imputation accuracy was evaluated on a set of
126 animals that have been genotyped on both the 50 k
and 800 k panel, and the ratio of the genotypes that were
correctly imputed was 0.9930.
For training and validation purposes, 393 Ayrshire and

2,084 Holstein animals born before 2004 were used as
training set, 65 Ayrshire and 214 Holstein animals born
in and after 2004 were used for validation. The number
of animals used for genomic prediction is shown in
Table 1. The simulated phenotypic values for training
animals were used to derive SNP effects using different
models. Degree of freedom of the inverse chi-square
distributions for variances of SNP effects and residual
effects were set to 4 and 10, respectively. The scale
parameter S2a was derived from the expected value of a
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scaled inverse chi-square distributed random variable,
i.e., E(σ2) = S2v/(v − 2) and hence S2a ¼ σ2a va−2ð Þ=va where
σ2a is the true additive genetic variance. S2e was derived
similarly. The Gibbs chain was run for 50,000 cycles with
the first 10,000 discarded as burn-in. Marker effects were
estimated as averages from all post burn-in samples. Gen-
omic breeding values for animals in the validation set were
estimated as the sum of population mean and all marker
effects. Accuracy was evaluated as Pearson’s correlation
coefficient between genomic estimated breeding values
and true breeding values for validation animals, i.e. r
(GEBV, TBV). Regression of true breeding value on
genomic estimated breeding values, b(TBV, GEBV),
was also calculated to evaluate the bias of the genomic
estimated breeding values.

Real data
Five milk production traits including milk yield, fat yield,
protein yield, fat percentage and protein percentage were
used for the same set of animals in the simulation study.
Bull proofs (estimated breeding values from progeny
testing, EBV) from April 2008 were used as phenotypes
for training animals, and bull proofs from December
2011 were used for validation animals. All proofs were
provided by Canadian Dairy Network (CDN) and had
reliability above 0.65.
Two SNP panels with 28,206 SNPs from the 50 k

panel and 246,668 SNPs from the 800 k panel were used
for genomic prediction. Degree of freedom of the inverse
chi-square distributions for variances of SNP effects and
residual effects were set to 4 and 10, respectively. Scale
parameters for the two distributions were derived in the
same way as described in the simulation study, but instead
of using true additive genetic variance and residual
variance, estimated variances were used. Estimated addi-
tive genetic variances and residual variance were obtained
from ASReml [24] by fitting an animal model with a
population mean, animal effect, and random residual
effect. The pedigree contained 15,731 animals for the
Holstein population and 4,926 animals for Ayrshire.
For 28,206 SNPs, the Gibbs sampling procedure was
run for 50,000 iterations with the first 10,000 discarded
as burn-in; and for 246,668 SNPs, the Gibbs sampling
procedure was run for 100,000 iterations with the first
50,000 discarded as burn-in. Burn-in period was deter-
mined by visually inspecting the Gibbs chain. All sam-
ples after the burn-in period were kept. SNP effects
were estimated by averaging all samples after the burn-
in period. After the estimation of SNP effects, the GEBV
was calculated for animals in the validation set by sum-
ming up the population mean and all the SNP effects.
Accuracy was measured as Pearson’s correlation coefficient
between GEBV and the 2011 bull proofs for validation
animals.
Results
Monte Carlo simulation study
Table 2 shows the accuracy of genomic prediction with
simulated 20 QTL. In the Ayrshire validation set, multi-
task Bayesian learning model performed the best among
the three methods within each SNP panel used under
the scenario with either a low (ρ = 0.2) or high (ρ = 0.8)
correlation of simulated QTL effects between Ayrshire
and Holstein populations. The greatest increase of accur-
acy was observed when ρ was 0.8 and when density of the
SNP panel was the highest (accuracy increased from 0.67
for the single-task method to 0.83 for the multi-task
method). Simply pooling data together substantially re-
duced the prediction accuracy in Ayshire when ρ was
0.2. The greatest reduction of accuracy was observed
when ρ was 0.2 and when density of the SNP panel was
the highest (accuracy decreased from 0.71 for the
single-task method to 0.56 for the pooling method).
When ρ was 0.8, the pooling method had an increased
accuracy in Ayrshire compared with the single-task
method. The pooling method produced substantially
lower accuracy than the multi-task model in the Ayrshire
validation set, especially when QTL effects were lower
correlated between the two populations. In the Holstein
validation set, the multi-task model performed similar or
slightly better than the single-task model. The pooling
method had a slightly reduction of accuracy when ρ was
0.2, and had a similar accuracy compared with the single-
task method when ρ was 0.8. Within each method,
increasing density of the SNP panel generally improved
prediction accuracy in both the Ayrshire and Holstein
populations. Table 2 also shows the slopes of regression of
true breeding values on the GEBV. Regression coefficients
of true breeding values on GEBV were less than one
for the pooling method indicating that the GEBV were
inflated.
Table 3 shows the accuracy of genomic prediction

with simulated 200 QTL. In the Ayrshire validation
set, the multi-task model had slightly higher predic-
tion accuracy within each SNP panel compared with
the single-task model under either scenario with low
(ρ =0.2) or high (ρ =0.8) correlated QTL effects be-
tween the Ayrshire and Holstein populations. Pooling
method performed similar or slightly worse compared
with single-task model when ρ was 0.2, and generally
performed better when ρ was 0.8. The pooling method
also performed slightly better than the multi-task
model when ρ was 0.8 and when density of the SNP
panel was relatively high. When ρ was 0.2, regression
coefficients of true breeding values on GEBV were less
than one for the pooling method indicating that the
GEBV were inflated. The three methods performed
similar in the Holstein validation set. Overall, the ac-
curacy was lower compared with scenarios when only



Table 2 Accuracy {expressed as correlations between true breeding values (TBV) and genomic estimated breeding
values [GEBV; r(TBV, GEBV)]}, and slopes [b(TBV, GEBV)] of regression of TBV on GEBV for genomic prediction with 20
simulated QTL

Ayrshire Holstein

SNP panel Single-task Pooling Multi-task Single-task Pooling Multi-task

r(TBV, GEBV)

ρ = 0.2

800 k 0.71 ± 0.02 0.56 ± 0.04 0.75 ± 0.02 0.91 ± 0.01 0.90 ± 0.01 0.91 ± 0.01

400 k 0.64 ± 0.04 0.53 ± 0.04 0.73 ± 0.03 0.90 ± 0.01 0.86 ± 0.01 0.90 ± 0.01

200 k 0.60 ± 0.05 0.50 ± 0.04 0.68 ± 0.02 0.88 ± 0.01 0.84 ± 0.01 0.88 ± 0.01

100 k 0.57 ± 0.04 0.47 ± 0.04 0.63 ± 0.03 0.84 ± 0.01 0.81 ± 0.02 0.84 ± 0.01

ρ = 0.8

800 k 0.67 ± 0.05 0.76 ± 0.02 0.83 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01

400 k 0.66 ± 0.05 0.72 ± 0.02 0.80 ± 0.01 0.90 ± 0.01 0.89 ± 0.01 0.90 ± 0.01

200 k 0.66 ± 0.04 0.68 ± 0.02 0.76 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01

100 k 0.61 ± 0.04 0.63 ± 0.04 0.72 ± 0.02 0.83 ± 0.01 0.83 ± 0.01 0.84 ± 0.01

b(TBV, GEBV)

ρ = 0.2

800 k 1.06 ± 0.05 0.73 ± 0.05 1.04 ± 0.05 0.98 ± 0.02 1.01 ± 0.01 0.98 ± 0.01

400 k 1.06 ± 0.05 0.76 ± 0.06 1.06 ± 0.05 0.99 ± 0.02 1.00 ± 0.01 0.98 ± 0.01

200 k 1.02 ± 0.06 0.75 ± 0.05 1.03 ± 0.04 1.00 ± 0.01 0.99 ± 0.01 0.98 ± 0.01

100 k 1.00 ± 0.06 0.75 ± 0.05 1.03 ± 0.06 1.00 ± 0.01 1.00 ± 0.02 0.99 ± 0.01

ρ = 0.8

800 k 1.10 ± 0.06 0.90 ± 0.03 1.10 ± 0.04 0.99 ± 0.02 1.00 ± 0.02 0.99 ± 0.02

400 k 1.09 ± 0.06 0.89 ± 0.04 1.07 ± 0.04 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.02

200 k 1.14 ± 0.06 0.89 ± 0.06 1.04 ± 0.05 0.98 ± 0.02 1.00 ± 0.02 0.98 ± 0.03

100 k 1.08 ± 0.08 0.85 ± 0.06 1.06 ± 0.05 0.98 ± 0.03 0.99 ± 0.03 0.98 ± 0.03
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20 QTL were simulated regardless of the methods
used.
To evaluate the performance of the three methods

under situations where all QTL genotypes can be ac-
quired and included for genomic prediction, Table 4
shows the accuracy of genomic prediction when QTL
genotypes are included together with SNP marker
genotypes for training and validation. When 20 QTL
were simulated, using multi-task model improved the
accuracy by 0.16 and 0.22 in the Ayrshire validation set
for scenarios where correlation of QTL effects between
the Ayrshire and Holstein populations was 0.2 and 0.8,
respectively. Using the pooling method reduced the accur-
acy in Ayrshire by 0.12 when ρ was 0.2, but increased the
accuracy by 0.17 when ρ was 0.8. When 200 QTL were
simulated, using the multi-task model increased the pre-
diction accuracy by 0.03 and 0.07, respectively, for ρ equal
to 0.2 and 0.8. The pooling method reduced the accuracy
by 0.04 when ρ was 0.2, and increased the accuracy by
0.11 when ρ was 0.8. The pooling method outperformed
the multi-task model only for the scenario where 200
QTL were simulated with their effects highly correlated
between the two populations. In the Holstein validation
set, the multi-task model had similar or slightly higher
accuracy compared with the single-task model. The
pooling method had similar accuracy as the single-task
model when ρ was 0.8. When ρ was 0.2, the pooling
method had slightly lower accuracy compared with the
single-task model. Regression coefficients of true breed-
ing values on GEBV were less than one for the pooling
method except for the scenario of 200 simulated QTL
with effects highly correlated between the two popula-
tions, indicating that the GEBV predicted by the pooling
method were inflated.

Real data analysis
Table 5 shows the accuracy of genomic prediction for
milk production traits using real data. For the Ayrshire
validation set, the multi-task model increased the accuracy
by up to 0.07 compared with the single-task model, while
the simple data pooling method resulted in reduced accur-
acy in general. The greatest increase in accuracy using



Table 3 Accuracy {expressed as correlations between true breeding values (TBV) and genomic estimated breeding
values [GEBV; r(TBV, GEBV)]}, and slopes [b(TBV, GEBV)] of regression of TBV on GEBV for genomic prediction with 200
simulated QTL

Ayrshire Holstein

SNP panel Single-task Pooling Multi-task Single-task Pooling Multi-task

r(TBV, GEBV)

ρ = 0.2

800 k 0.46 ± 0.02 0.44 ± 0.04 0.47 ± 0.03 0.77 ± 0.01 0.76 ± 0.01 0.77 ± 0.01

400 k 0.46 ± 0.02 0.43 ± 0.03 0.47 ± 0.02 0.76 ± 0.01 0.76 ± 0.01 0.76 ± 0.01

200 k 0.46 ± 0.02 0.42 ± 0.04 0.47 ± 0.02 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.01

100 k 0.45 ± 0.02 0.41 ± 0.03 0.46 ± 0.03 0.74 ± 0.01 0.74 ± 0.01 0.74 ± 0.01

ρ = 0.8

800 k 0.54 ± 0.04 0.57 ± 0.02 0.56 ± 0.03 0.74 ± 0.02 0.75 ± 0.01 0.75 ± 0.02

400 k 0.54 ± 0.03 0.56 ± 0.03 0.55 ± 0.03 0.74 ± 0.02 0.74 ± 0.02 0.74 ± 0.02

200 k 0.54 ± 0.03 0.56 ± 0.02 0.55 ± 0.03 0.73 ± 0.02 0.73 ± 0.02 0.73 ± 0.02

100 k 0.53 ± 0.03 0.52 ± 0.02 0.54 ± 0.03 0.72 ± 0.02 0.72 ± 0.02 0.72 ± 0.02

b(TBV, GEBV)

ρ = 0.2

800 k 1.14 ± 0.08 0.89 ± 0.09 1.16 ± 0.09 1.07 ± 0.01 1.09 ± 0.01 1.07 ± 0.01

400 k 1.14 ± 0.09 0.91 ± 0.08 1.13 ± 0.09 1.07 ± 0.01 1.09 ± 0.01 1.07 ± 0.01

200 k 1.14 ± 0.09 0.88 ± 0.08 1.14 ± 0.09 1.08 ± 0.01 1.09 ± 0.01 1.08 ± 0.01

100 k 1.15 ± 0.09 0.89 ± 0.09 1.15 ± 0.09 1.09 ± 0.02 1.11 ± 0.03 1.09 ± 0.02

ρ = 0.8

800 k 1.12 ± 0.11 1.00 ± 0.06 1.07 ± 0.09 1.01 ± 0.02 1.00 ± 0.02 1.01 ± 0.02

400 k 1.11 ± 0.11 1.02 ± 0.07 1.08 ± 0.09 1.01 ± 0.02 1.00 ± 0.02 1.01 ± 0.02

200 k 1.12 ± 0.11 1.04 ± 0.07 1.11 ± 0.09 1.01 ± 0.02 1.01 ± 0.02 1.01 ± 0.02

100 k 1.11 ± 0.11 0.99 ± 0.07 1.10 ± 0.10 1.01 ± 0.02 1.01 ± 0.02 1.01 ± 0.02

Table 4 Accuracy {expressed as correlations between true breeding values (TBV) and genomic estimated breeding
values [GEBV; r(TBV, GEBV)]}, and slopes [b(TBV, GEBV)] of regression of TBV on GEBV for genomic prediction with
simulated QTL genotypes included for training and validation

Ayrshire Holstein

No. of QTL ρ Single-task Pooling Multi-task Single-task Pooling Multi-task

r(TBV, GEBV)

20 0.2 0.76 ± 0.04 0.64 ± 0.04 0.92 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 0.97 ± 0.01

20 0.8 0.71 ± 0.05 0.88 ± 0.02 0.93 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

200 0.2 0.57 ± 0.03 0.53 ± 0.03 0.60 ± 0.04 0.77 ± 0.01 0.76 ± 0.01 0.78 ± 0.01

200 0.8 0.54 ± 0.04 0.65 ± 0.02 0.61 ± 0.04 0.76 ± 0.02 0.78 ± 0.02 0.77 ± 0.01

b(TBV, GEBV)

20 0.2 1.01 ± 0.06 0.83 ± 0.08 0.99 ± 0.03 1.00 ± 0.01 1.00 ± 0.02 1.00 ± 0.01

20 0.8 1.04 ± 0.08 0.89 ± 0.06 0.97 ± 0.03 0.98 ± 0.01 1.01 ± 0.02 0.99 ± 0.01

200 0.2 1.23 ± 0.10 0.89 ± 0.06 1.16 ± 0.08 1.00 ± 0.03 1.03 ± 0.03 1.01 ± 0.03

200 0.8 1.10 ± 0.09 1.06 ± 0.06 1.12 ± 0.09 0.98 ± 0.03 0.97 ± 0.03 0.98 ± 0.02
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Table 5 Accuracy of genomic prediction of breeding values for milk production traits

Ayrshire Holstein

Trait Single-task Pooling Multi-task Single-task Pooling Multi-task

No. of SNP: 28,206

Milk yield 0.52 0.44 0.54 0.66 0.65 0.66

Fat yield 0.64 0.55 0.66 0.63 0.64 0.63

Protein yield 0.70 0.60 0.70 0.69 0.69 0.68

Fat % 0.66 0.58 0.72 0.74 0.74 0.74

Protein % 0.48 0.51 0.55 0.67 0.68 0.67

No. of SNP: 246,668

Milk yield 0.54 0.53 0.55 0.64 0.64 0.64

Fat yield 0.67 0.62 0.67 0.63 0.64 0.63

Protein yield 0.72 0.68 0.72 0.66 0.66 0.66

Fat % 0.66 0.65 0.69 0.77 0.77 0.78

Protein % 0.51 0.42 0.53 0.71 0.68 0.70

Chen et al. BMC Genetics 2014, 15:53 Page 8 of 11
http://www.biomedcentral.com/1471-2156/15/53
multi-task model compared with single-task model was
for fat percentage (0.06) and protein percentage (0.07)
when 28,206 SNPs were used. For the Holstein validation
set, the single-task model, simple data pooling method,
and the multi-task model performed similar regardless of
the traits studied.

Discussion
Traditionally, genomic prediction with data from multiple
populations were implemented either by running genomic
prediction within each population (single-task) or by sim-
ply pooling data together. Single-task genomic prediction
cannot utilize information from other populations and
therefore, the accuracy of genomic prediction is largely
determined by the size of training data set [2,3]. For
breeds with only a small number of animals having both
DNA marker genotypes and phenotype data, the accur-
acy of genomic prediction can be low [25]. Combining
the data with other breed populations has the potential to
improve the prediction accuracy. It is however, difficult
to effectively account for the differences of SNP effects
among different populations by simply pooling data
together. If the marker density is low or the populations
are divergent from each other, simply pooling data to-
gether may result in unfavorable prediction accuracies
[6]. The multi-task Bayesian learning model proposed in
this study uses information from all populations simultan-
eously while allowing the SNP effects to vary in different
populations. Different populations share information
through a common set of latent indicator variables. When
the target trait has a similar genetic background in related
populations, it is reasonable to assume that some shared
QTL affecting a common trait in different populations.
However, the linkage disequilibrium phase between SNP
markers and QTL are likely to be inconsistent, especially
when the marker density is low. Therefore, the multi-task
Bayesian learning model is more flexible about the SNP
effects and is likely to have better performance than a
simple data pooling method.
Results from simulation studies support the use of

multi-task Bayesian model for multi-population genomic
prediction especially when there are a few QTL affecting
the trait. For the scenario where a few QTL affect the
trait, the increase of accuracy by using multi-task model
was greater when QTL effects had a higher correlation
between two populations. The accuracy was further in-
creased when QTL genotypes were included for training
and validation. These results are expected as the higher
the correlation of QTL effects between two populations,
the more informative information the two populations
can share. Including QTL genotypes also increased the
amount of information to be shared between the two
populations. Results suggest that the proposed multi-task
Bayesian learning model is effective in combining infor-
mation from multi-populations to improve accuracy of
genomic prediction.
Results from simulation also showed that simply pooling

data together may reduce the accuracy of genomic predic-
tion if QTL effects were lowly correlated between two
populations or if a relatively low density SNP panel was
used. When QTL effects had a high correlation between
two populations and the SNP panel was high, the pooling
method increased the accuracy compared with single-task
model. When the correlation of QTL effects between two
populations was high, the pooling method was inferior to
the multi-task model if the number of QTL was small, but
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outperformed the multi-task model if the number of QTL
was large. These results are reasonable since the pooling
method assumes the same SNP effects among different
populations. This assumption will be violated if the
correlation of QTL effects is low between two popula-
tions and may result in poor performance of the pool-
ing method. The multi-task model proposes to share
information through the same latent indicator vari-
ables. Correlations of QTL effects among different
populations are not explicitly used and therefore, in-
formation across populations may not be fully utilized
if such correlations are high. This might be why the
pooling method still outperformed the multi-task model
when the number of QTL is large and the correlation of
QTL effects between two populations was high.
Results from real data analyses in this study showed

that the multi-task Bayesian learning model produced a
similar or higher accuracy compared to the single-task
model, and that simply pooling data together resulted in
a reduced accuracy when the marker density was low.
SNP effects could be different across populations, espe-
cially when lower density markers were used [6]. These
results are in agreement with results from simulation
studies.
Gains of accuracy by using the multi-task model were

higher for fat percentage and protein percentage traits
than for other traits. This is likely due to that large QTL
or genes such as DGAT1, have larger influence on the
percentage traits than on the yield traits [26,27]. These
results agreed with simulation studies which showed that
the multi-task model performed better when there are
fewer QTL affecting the trait.
In this study, only two dairy cattle breeds were consid-

ered, and the multi-task Bayesian learning model was
shown to be effective and more beneficial to the population
with a smaller data size. For the larger population, using
multi-task model did not produce much improvement. The
little improvement in the larger population could be due
to that the smaller population is too small to be able to
have a significant impact on the larger population. In
practice, there are situations where many populations are
to be combined for analysis with each one contributing a
small amount of data, a typical example as in beef cattle
production. It would be interesting to test the performance
of the multi-task model under such scenarios.
The current multi-task model considered additive gen-

etic effects only. Non-additive genetic effects, which have
gained growing interests with availability of genomics
information [28-30], can also be accommodated into the
multi-task model. A similar strategy used in this study
to sharing information across populations for additive
genetic effects may also be applied to non-additive genetic
effects. Inclusion of non-additive genetic effects in the
multi-task model warrants further investigation.
The proposed multi-task Bayesian learning model used
a spike and slab mixture distribution to conduct variable
selection and shrinkage for SNP effects. This prior set-
ting is similar to that in the BayesCπ method proposed
by Habier et al. [21]. Other types of mixture distribu-
tions currently being used for genomic prediction
[1,19,20], can also be adapted to the multi-task model.
The strategy used in the multi-task Bayesian learning
model allows different populations to share informa-
tion through a common latent variable assumed for
each SNP. Such strategy has been shown effective in
both simulation and real data studies; however, other
strategies may also be exploited, for example, by mod-
eling the joint distribution of the SNP effects among
different populations. Further investigations are required
to evaluate alternative strategies for sharing information
across populations.
In this study, the Bayesian models were implemented via

a Gibbs sampling algorithm adopting the residual-update
computing strategy proposed by Legarra and Misztal [31].
Computing time for this algorithm is proportional to the
number of animals and number of SNPs in the model. For
the training sample size of 2,477 animals and genotypes of
246,668 SNPs, the proposed multi-task model requires 44
CPU hours to complete 150,000 Gibbs sampling cycles on
a Linux cluster system with Intel X5675 3.07GHz CPU.
With increased training sample size and increasing marker
density to a very high density panel or even sequence data,
computing burdens would become a concern. A recent
study [32] has improved the residual-update algorithm
resulting in the CPU time reduced by 35.3 to 43.3%.
The authors in the same study [32] also proposed an alter-
native algorithm which reduced CPU time by 74.5 to
93.0%. Approximation algorithms based on expectation-
maximization (EM) [33-35] and variational Bayes [36]
have also been proposed to replace the time consuming
Markov chain Monte Carlo (MCMC) sampling based
algorithms. Adapting these algorithms to accommodate
the multi-task Bayesian learning model would be of
great interest.

Conclusions
A multi-task Bayesian learning model was proposed for
multi-population genomic prediction. The multi-task
model shares information across populations through
a common set of latent indicator variables while allow-
ing the SNP effects to vary in different populations.
Simulation studies and real data analysis suggest that
the proposed multi-task Bayesian learning model is
effective and beneficial to populations where a small
number of training animals are available. Accuracy of
genomic prediction in small populations can be improved
by using the multi-task model especially for traits affected
by a few QTL with large effects.
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Appendix
Sampling of rj in the multi-task Bayesian learning
model
With the assumption of independence between θj− and

rj, by Bayes’ theorem, one has

f ðrj ¼ 1jθj− ; yÞ ¼
f ðyjrj ¼ 1; θj−Þf rj ¼ 1

� �
f yjrj ¼ 1; θj−
� �

f rj ¼ 1
� �þ f yjrj ¼ 0; θj−

� �
f rj ¼ 0
� �

¼ 1
1þ qj

;

ðA:1Þ
where

qj ¼
f ðyjrj ¼ 0; θj−Þf rj ¼ 0

� �
f
�
yjrj ¼ 1; θj−Þf rj ¼ 1

� �
¼ f rj ¼ 0

� �
f rj ¼ 1
� � Yc

k¼1

f ðykjrj ¼ 0; θj−kÞ
f ykjrj ¼ 1; θj−k
� �:

ðA:2Þ

Similarly,

f ðrj ¼ 0jθj− ; yÞ ¼
qj

1þ qj
:

Next, the conditional likelihoods f yk rj ¼ 0; θj−kÞ
���

and

f yk rj ¼ 1; θj−kÞ
���

will be derived.
Suppose one is at the (l+1)th Gibbs sampling iteration,

and wants to sample γj and ajk, the linear regression
model given all parameters except γj and ajk can be
written as:

y�k ¼ xjkajk þ ek ;

Where y�k ¼ yk−μ̂k−X1k:jk−1âlþ1
1k:jk−1−Xjkþ1:mk âljkþ1:mk :

Given the priors that ðajk jγ jÞeγ jN 0; σ2ak
� �þ 1−γ j

	 

δ0

ajk
� �

and ðekjσ2
ekÞeN 0; Iσ2

ek

� �
; the conditional likelihood of

yk can be written as:

f ðykjrj ¼ 0; θj−kÞ ¼ 2πσ2
ek

� �−nk=2 exp −
y�k′y

�
k

2σ2ek

� �
ðA:3Þ

And

f ykjrj ¼ 1; θj−k
� � ¼ 2πð Þ−nk=2 Vy�k

��� ���−1=2 exp −
y�

0
k V

−1
y�k
y�

2

 !
ðA:4Þ

Where Vy�k ¼ xjkx
0
jkσ

2
ak þ Iσ2ek is the (co-) variance

matrix of y�k given that rj=1.
Then, Vy�k

��� ��� and V−1
y�k

are derived.

Vy�k

��� ��� ¼ xjkx
0
jkσ

2
ak þ Iσ2ek

��� ��� ¼ σ2nkek xjk
σak
σek

x
0
jk
σak
σek

þ I

���� ����;
By applying Sylvester’s determinant theorem, one has

Vy�k

��� ��� ¼ σ2nk
ek x′jkxjk

σ2ak
σ2ek

þ 1

� �
ðA:5Þ

It can be easily verify that V −1
y� is:

V−1
y�k

¼ σ−2
ek I−

xjkx′jk
x′jkxjk þ σ2ek=σ

2
ak

 !
ðA:6Þ

Substituting A.5 and A.6 into A.4, one has

f yjrj ¼ 1; θj−
� � ¼ 2πσ2ek

� �−nk=2 x′jkxjk
σ2ak
σ2ek

þ 1

� �−1=2

exp −
y�

0
k y

�
k− x′jky

�
k

	 
2
= x′jkxjk þ σ2ek=σ

2
ak

	 

2σ2ek

8><>:
9>=>;

ðA:7Þ

Denote μ̂ajk ¼
x
0
jk yk−X1k:jk−1âlþ1

1k:jk−1−Xjkþ1:mkâljkþ1:mk

� �
x0jkxjkþσ2ek=σ

2
ak

; σ̂ 2
ajk ¼

σ2ek
x0jkxjkþσ2ek=σ

2
ak

; and substitute (A.7) and (A.3) into (A.2),

one gets

qj ¼
w

1−w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
k

x′jkxjk
σ2ak
σ2ek

þ 1

� �s
exp −

1
2

X
k

μ̂2
ajk

σ̂ 2
ajk

 !
ðA:8Þ

Finally, γj can be drawn from a Bernoulli distribution
with probability 1/(1+qj).
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