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Selection of morphological features of pollen grains for chosen
tree taxa
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ABSTRACT
The basis of aerobiological studies is to monitor airborne pollen
concentrations and pollen season timing. This task is performed by
appropriately trained staff and is difficult and time consuming. The
goal of this research is to select morphological characteristics of
grains that are the most discriminative for distinguishing between
birch, hazel and alder taxa and are easy to determine automatically
from microscope images. This selection is based on the split
attributes of the J4.8 classification trees built for different subsets of
features. Determining the discriminative features by this method,
we provide specific rules for distinguishing between individual taxa,
at the same time obtaining a high percentage of correct classification.
The most discriminative among the 13 morphological characteristics
studied are the following: number of pores, maximum axis, minimum
axis, axes difference, maximum oncus width, and number of lateral
pores. The classification result of the tree based on this subset
is better than the one built on the whole feature set and it is almost
94%. Therefore, selection of attributes before tree building is
recommended. The classification results for the features easiest
to obtain from the image, i.e. maximum axis, minimum axis, axes
difference, and number of lateral pores, are only 2.09 pp lower than
those obtained for the complete set, but 3.23 pp lower than the results
obtained for the selected most discriminating attributes only.

KEY WORDS: Pollen grains identification, Morphological features,
Attribute selection, Classification tree

INTRODUCTION
The basis of aerobiological studies is to monitor airborne pollen in
order to determine the abundance of pollen and pollen season
timing. This is primarily associated with the continually increasing
number of people suffering from airborne allergies (Heinrich,
2002). Recent research shows that in Poland over 45% of its
inhabitants suffer from various allergies (Samolin ́ski et al., 2014).
The main sources of allergens include pollen grains (Holgate et al.,
2001). In the case of Poland, in spring it is birch pollen that shows
the strongest allergenic properties (Rapiejko, 2008; Piotrowska and
Kubik-Komar, 2012). Hazel (Corylus) and alder (Alnus) belong to
the same family (Betulaceae) and cause allergic cross reactions
(Valenta et al., 1991; Rapiejko, 2008). Pollen seasons of the

above-mentioned plants partially overlap and thus their pollen
grains may be recorded during the same time.

In pollen monitoring, Hirst-type samplers are used, which
actively suck in pollen grains from the air (Hirst, 1952). The
trapping surface is sticky tape that traps aeroplankton particles.
Pollen grains trapped on the tape are examined under a light
microscope – they are identified and counted. This task is performed
by appropriately trained staff and is difficult and time consuming
because the differences in the morphological structure of pollen
grains of some taxa are very small and finding them largely depends
on the position of the grain on the tape. Moreover, airborne pollen
concentrations reach very high values, in particular during the tree
pollen period (Piotrowska and Kubik-Komar, 2012), which also
translates into slide examination time; for example, during the birch
pollen season one microscope slide corresponding to 24 h is
examined for 3 h on average. Therefore, there is a need to automate
or facilitate this process. In palynological practice, an optical
microscope is often the only tool for acquisition of digital images.
Therefore, we refer only to the papers devoted to analysis of digital
images acquired by optical microscopy. Existing fully automated
pollen monitoring systems are largely based on systems other than
optical microscopy (Kawashima et al., 2017).

A fully automated taxa classification system should include:
(1) microscope slide preparation, including pollen trapping, slide-
making capability as well as capability to make images at different
focus heights; (2) image recognition; and (3) online presentation of
results. The second stage of the system can be divided into two
major steps: pollen grain detection and taxa discrimination
(Dell’Anna et al., 2010). The first fully automated pollen capture
and image-based recognition system was constructed in Germany
(Oteros et al., 2015). However, most of the works concerning
automated recognition of pollen types propose automation of only
some parts of pollen recognition systems i.e. taxa classification
(Li and Flenley, 1999) or grain detection and classification from
earlier prepared images (France et al., 2000; Chen et al., 2006;
Tello-Mijares and Flores, 2016).

The issue that we address in our research is the stage associated
with taxa discrimination.

Our aim was to select the morphological features of pollen grains
that most strongly discriminate between the three investigated types
of pollen (birch, alder and hazel) and at the same time can be easily
determined automatically from a microscope image. This selection
was made on the basis of the results of classification of the J4.8
decision trees built based on various subsets of features.

When manually classifying pollen grains, a researcher analyzes
them under a microscope, paying special attention to the distribution
and appearance of the characteristic elements of the grain. The
characteristics that distinguish the pollen grain of a specific taxon
from other taxa can be the following, among others: grain size and
shape, number and arrangement of apertures, exine and intine
thickness, exine sculpture, and internal texture.Received 13 November 2017; Accepted 3 April 2018
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The pollen grains analyzed in this study (examples of their
images are shown in Fig. 1) differ from each other primarily in their
shape and number of pores; the alder pollen grain has five pores,
sometimes four or six, whereas the birch and hazel pollen grains –
three (only two are sometimes visible, depending on the position).
Unlike the birch pollen grain, the hazel pollen grain is more
triangular in polar view and has less protruding pores. The studied
pollen grains also differ in oncus size.
Microscopic visibility of pores and onci greatly depends on the

position of the grain on the tape. The researcher can control the
focus setting of the microscope in order to observe the grain at
different depths and thus better perceive the characteristic structural
elements. When analyzing a single microscope image, it is much
more difficult to correctly describe these characteristics and
therefore the procedure of their automated identification should
also include automated microscope control and focus adjustment to
particular grains. However, it is not the subject of this study.

RESULTS
The classification tree was built based on all the features determined
and on the full set of observations is shown in Fig. 2. A detailed
description of the tree diagram structure created in WEKA is
presented in the WEKA documentation (Witten et al., 2016).
The tree diagram shows that the feature that most distinguishes

Alnus from the other taxa is number of pores, which had a value of
over three in most cases for this taxon (66 out of 75). The other
grains had three visible pores at the most. Among these
observations, it was possible to classify Corylus at the lower
levels of the tree mainly due to the size of the grain axis. For 69 out
of 75 pollen grains of this taxon, the values of the above-mentioned
attribute were greater than 24.39 µm for the maximum axis and
22.24 µm for the minimum axis. Fig. 2 shows that Betula is the
taxon with the smallest grain size and that the maximum axis in most
of its grains is not more than 24.39 µm. Furthermore, the other taxa
can also have small grains, but the features that additionally
distinguish most birch grains are the maximum oncus width of not
more than 10.19 µm and a smaller difference between the axes
compared to the other taxa.
The percentage of correct classification of observations on which

the tree was built was 98.67%.
Table 1 shows the results of the fivefold cross-validation. Apart

from the percentage of correct classification, the features included in
the nodes of each tree are also specified.
The average percentage of correct classification for the fivefold

cross-validation was 92.89%. When this procedure was repeated
1000 times, an almost identical result (92.81%) was obtained.

Based on the results presented in Fig. 2 and Table 1, a conclusion
has been drawn that the following are the features that most strongly
discriminate between the studied taxa: number of pores, maximum
axis, minimum axis, axes difference, maximum oncus width,
number of lateral pores. Let us denote this set as Best6.

Fig. 3 shows a histogram of two features: number of pores and
number of lateral pores, whereas Fig. 4 presents the range of
variation of the other features from Best6 for the taxa analyzed.
These graphs reflect the situation presented in the tree structure in
Fig. 2 and described above. It can be seen that for a large majority of
Alnus grains the number of pores and the number of lateral pores are
above three, which makes these traits good features to distinguish
this taxon from the other ones. In turn, it can be seen in Fig. 4 that,
except for the differences between the maximum axis and the
minimum axis, the average values of the features presented in this
graph are higher in the case of Corylus relative to the other taxa.

In order to determine number of pores, we must first determine
the number of top pores, number of oblique pores, and number of
lateral pores. Likewise, to determine maximum oncus width, we
must determine the width of all onci. From that we can also easily
determine the minimum value of this quantity. Thus, the following
features can be added at low cost to the Best6 features: number of
top pores and number of oblique pores as well as minimum oncus
width. This set of attributes is denoted as Best6+3.

Hence, the next step in simplifying the model was to narrow down
the set of features to the above-mentioned groups of attributes and to
verify this classification using fivefold cross-validation.

This model validation method alone was sufficient since the tree
built on all observations with the narrowed set of features is identical
as in Fig. 2.

The results presented in Table 2 show that the classification
accuracy of the trees built on the six most strongly discriminative
features is higher than for the trees built on the wider set. This may
be associated with overlearning, that is, the overfitting of the tree to
the training data, but our observations reveal that this is primarily
associated with the selection of the best splitting attribute at a
particular stage of tree building, even if the division obtained in
additional several steps could prove to be better.

As an example, we present the structure of Tree 1 from Table 2 for
both sets of features (Fig. 5).

It can be seen that the tree for the Best6+3 group selected the
attribute minimum oncus width, which immediately discriminates
between birch and alder at the leaf level, but with worse efficiency
in the test than the two-stage division obtained in the tree for the
Best6 group using the features axes difference and number of
lateral pores.

Fig. 1. Examples of microscope images of pollen grains of the studied taxa. Original microscopic images were converted to grayscale and contrast was
stretched for the purpose of readability.
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When the model validation procedure was repeated 1000 times,
the classification accuracy was 93.95% for Best6 and 93.12% for
Best6+3.
From the point of view of image analysis, determining all the

Best6 features can be troublesome. We made an attempt to build
classifiers based on the easiest, in our opinion, features to be
automatically identified among these six features and these were the
following: number of lateral pores, minimum axis, maximum axis,
and axes difference. This feature set is denoted as Easiest4.
For the training based on all observations, the correct classification

of the same set was 96.89% (Fig. 6). The results of the fivefold cross-
validation for Easiest4 features set are also presented in Table 2.
It can be seen that number of pores and maximum oncus width,

omitted in the construction of the models for Easiest4, were of major
importance in the discrimination of taxa. The percentage of correctly
classified data decreased by almost 4 pp. However, it is worth noting
that the classification accuracy, based on only four features that are
relatively easy for automatic identification, is more than 90%. When
the construction of the tree based on the four-feature set was repeated
1000 times, the percentage of correct classification was 90.72%.

DISCUSSION
Our research was focused on the taxa discrimination part of the
pollen monitoring system. In most of the studies devoted to this

stage, the image-based taxa classification has been carried out using
neural networks (Li and Flenley, 1999; France et al., 2000; Tello-
Mijares and Flores, 2016). Other types of classifiers have been used
less frequently, e.g. the nearest neighbor method (Chen et al., 2006;
Bonton et al., 2001; Boucher et al., 2002), bayes classifiers (Ranzato
et al., 2007; Tello-Mijares and Flores, 2016), the support vector
method (SVM) (Marcos et al., 2015; del Pozo-Baños et al., 2015),
and random forest (Tello-Mijares and Flores, 2016).

The selection of the decision tree as the method for obtaining the
model in our work was not accidental. This classifier performs well
for smaller datasets and besides it provides full information on the
classification at each stage of division. One can observe what
features are selected at individual tree levels, what the threshold
values of these features are, and what subsets are determined by
them. Hence, when building a tree model, we obtain an accurate
insight into the classification process, which in turn translates into
identification of relationships between the features describing the
research material and the individual classes that we are considering.
We realize that the classifier chosen by us (decision tree) belongs to
simple classifiers and the classification quality would certainly have
been higher if we had used a different mechanism, but at this stage
our aim was to describe in detail the classification rules and the
decision tree enables such rules to be inspected, unlike the above-
mentioned classifiers.

Fig. 2. The J4.8 tree for the full set of features.
The sample size is equal to 225 observations (75
per class indicated by the studied taxa). The
training and test sets are the same. The chosen
attributes are in elliptical shape, whereas the
classes are represented by a rectangle shape. The
numbers between the tree branches represent the
limit value of the attribute for instance classification.
The classification results on the testing set are
shown in brackets. The first number in the bracket
in the leaf node is the total number of observations
(or their weighted number) reaching the leaf. The
second number is the measure of misclassification.
If the data have missing attribute values and this
feature is chosen as the splitting criterion at some
level above the leaf node, then these numbers are
weighted. min, minimum; max, maximum; diff,
difference.

Table 1. Results of fivefold cross-validation of the J4.8 algorithm for the full set of features

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

88.89% 95.50% 88.89% 100% 91.11%
Number of pores Number of pores Number of pores Number of pores Number of pores
Max. axis Max. axis Min. axis Max. axis Max. axis
Max. oncus width Max. oncus width Axes diff. Max. oncus width Max. oncus width
Min. axis Min. axis Max. axis Max. oncus height Max. oncus height
Min. oncus width Axes diff. Number of lateral pores Axes diff. Axes diff.
Max. oncus height Number of lateral pores Number of lateral pores Number of top pores
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In our study, we focused on the discrimination of the following
taxa: (1) the ones that are common in Poland and exhibit a very
strong allergenic effect; (2) with partially overlapping pollen
seasons; and (3) the similarity of their pollen grains is high and
therefore discrimination between them is problematic.
The studied set of taxa has a significant effect on classification

results. The pollen grains of four plant types typical of New
Zealand: Hoheria populnea, Phormium tenax, Phymatosorus
novaezelandiae, and Podocarpus totara can be easily
discriminated due to their shape. However, differentiating them
only by the texture features allowed 100% of correctly classified

instances to be obtained (Li and Flenley, 1999). The first automated
system for detection and classification of pollen grains of
Polemonium caeruleum, Nymphaea alba, and Crataegus
monogyna, successfully obtained the average classification rate at
a level of 83% (France et al., 2000). The three above-mentioned
species produce pollen grains that clearly differ from one another, in
particular in terms of their exine and aperture structure.

A high pollen recognition rate, as much as 96%, was also
achieved in the case of automated analysis of pollen of 12 plants
typical for Mexico (Tello-Mijares et al., 2016). Most of the
investigated pollen grains strongly differ both in shape and in size,

Fig. 3. Histograms of (A) the number of
pores and (B) the number of lateral pores
for the studied taxa. The sample size is
equal to 75 observations for each taxa.

Fig. 4. Plot of the mean value and the min.-max.
range of the selected features for the studied taxa.
The square represents the mean value, whereas the
length of the whisker determines the feature interval.
The sample size is equal to 75 observations for each
taxa.
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but among them there are also grains that are similar to one another
in terms of their structure.
Pollen recognition with regard to Cupressaceae, Olea, Parietaria,

Poaceae and taxa similar to them was the subject of research related to
the creation of a pollen recognition system under the European
ASTHMA project (Bonton et al., 2001; Boucher et al., 2002). Pollen
seasons of these taxa partially overlap and therefore their pollen grains
can occur in the air at the same time. These are strongly allergenic
plants and hence it is important to monitor them. In microscopic
analysis, it is possible to confuse the pollen of grasses and that of
Cupressace, because in the latter ones the star-shaped outline of the
cytoplasm cannot be seen (as is the case in young grains), while in
grasses the pore is poorly visible. In microscope slides, three pores are
sometimes poorly visible in Parietaria pollen grains and they can be
confused with monoporate grass pollen grains. Thus, the classification
result at a level of 77% achieved in this study seems to be very high.
As we mentioned above, discrimination between taxa with

similar features of grains is a very challenging task. An example of
such research is pollen recognition for three taxa of the Urticaceae
family (Rodriguez-Damian et al., 2006), where the best result of
correct pollen recognition was 89%, which is extraordinarily high.
On the other hand, the high result of 97.2% for distinguishing

between grass, birch and mugwort pollen grains using an automated
system (Chen et al., 2006) is not surprising because these grains
significantly differ from one another both in size and shape, as well
as in the presence of apertures.

In our research, the best achieved taxa classification accuracy was
almost 94%. Nevertheless, it should be remembered that a direct
comparison of the percentage values is unreliable, due to the
different levels of similarity between the taxa investigated in these
studies as well as different classifiers or feature vectors.

The common practice in the above-mentioned studies is to
automatically acquire pollen grain attributes from the transform of
an original image. In our work, we present a classification based on
a small number of features directly measured by the palynologist. It
seems that the system based on such features is more intuitive and
easier to control. Even though we have chosen a small number of
features, the obtained classification accuracy is at a similar level as
in the above-mentioned studies.

Despite that classification of pollen grain taxa is not a new
subject, our approach to this topic essentially differs from the
procedures presented in the literature in this area. In determining
the discriminative features, we directly link them to the specific
taxa and at the same time obtain a high percentage of correct
classification. One of the latest works describing a feature selection
before pollen classification is the paper where dimensionality
reduction is made using Linear Discriminant Analysis (del Pozo-
Baños et al., 2015). However, the attribute selection method, given
by the above-mentioned authors, differs from ours, since it
generates a space of new synthetic variables with a different
interpretation, whereas in our case we leave the subset of the most
strongly discriminating original features.

Table 2. Results of fivefold cross-validation of the J4.8 algorithm for the groups of the chosen features

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Average

Best6 88.89% 95.56% 88.89% 100% 97.78% 94.22%
Best6+3 84.44% 95.56% 88.89% 100% 93.33% 92.44%
Easiest4 86.67% 97.78% 86.67% 86.67% 93.33% 90.22%

Fig. 5. Structures of Tree 1 for the (A) Best6 and (B) Best6+3 groups. Best6 consists of the following features: number of pores, max. axis, min. axis,
axes diff., max. oncus width, number of lateral pores. Best6+3 consists of Best6 + number of top pores, number of oblique pores and min. oncus width. The
sample size for building these trees was equal to 180 observations (60 for each taxon) while the verification set consisted of 45 instances (15 per class
indicated by the studied taxa). Cases in the training and test sets did not overlap. The chosen attributes are in elliptical shape, whereas the classes are
represented by a rectangle shape. The numbers between the tree branches represent the limit value of the attribute for instance classification. The
classification results on the testing set are shown in brackets. The first number in the bracket in the leaf node is the total number of observations (or their
weighted number) reaching the leaf. The second number is the measure of misclassification. If the data have missing attribute values and this feature is
chosen as the splitting criterion at some level above the leaf node, then these numbers are weighted.
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In summary, the approach used here allowed us to present, that
among the 13 attributes analyzed, the most strongly discriminating
features were the following: number of pores, maximum axis,
minimum axis, axes difference, maximum oncus width, and number
of lateral pores, and the classification based on this subset was better
than that based on the full set. We can therefore conclude that in
building classification trees a good practice is earlier selection of
attributes due to the possibility of tree overfitting, and the proposed
method may lead to better discrimination results in any
classification task.
The essential rules resulting from the structure of the

classification tree allow us to conclude that the feature that most
distinguishes Alnus from the other taxa is the number of pores
higher than three, whereas Corylus grains can be automatically
distinguished from the other grains by using the features that

determine grain size (greater than 24.39 µm for the maximum axis
and 22.24 µm for the minimum axis). Among the small size grains,
birch grains are characterized by the maximum oncus width not
greater than 10.19 µm and smaller, compared to the other pollen
grains, differences between the axes (<2.92 µm).

The classification based on the features easiest to obtain from the
image: maximum axis, minimum axis, axes difference, number of
lateral pores, allows us to obtain a classification worse by only
2.09 p.p. than that done on the full set of features and by 3.23 p.p. in
relation to the selected most discriminative attributes. It is worth
indicating that such a small number of features already provides
discrimination between these three taxa at a level of more than 90%.
Therefore, in our opinion an automated recognition system based on
automated identification of these four features can be useful for an
expert in pollen monitoring.

Fig. 6. The J4.8 tree based on the four features easiest for automatic recognition. These attributes are as follows: number of lateral pores, min. axis,
max. axis, and axes diff. The sample size is equal to 225 observations (75 per class indicated by the studied taxa). The training and test sets are the same.
The chosen attributes are in elliptical shape, whereas the classes are represented by a rectangle shape. The numbers between the tree branches represent
the limit value of the attribute for instance classification. The classification results on the testing set are shown in brackets. The first number in the bracket in
the leaf node is the total number of observations (or their weighted number) reaching the leaf. The second number is the measure of misclassification. If the
data has missing attribute values and this feature is chosen as the splitting criterion at some level above the leaf node, then these numbers are weighted.
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These rules may form the basis for discrimination between the
studied taxa. Moreover, the proposed attribute selection procedure
can be applied to other sets of taxa in pollen recognition systems.

MATERIALS AND METHODS
Biological data
In Poland the most frequently occurring species of the studied taxa are
Corylus avellana L., Alnus glutinosa (L.) Gaertn. and Betula verrucosa
Ehrh (syn. B. pendula Roth) (Zaja ̨c and Zając, 2001).

This study was conducted based on reference slides of pollen grains of the
above-mentioned species. The microscope images were analyzed using a
Nikon Eclipse E400 biological microscope at a magnification of 600×. A
HDCE microscope camera - ×5 - was used for pollen grain measurements.

For the needs of this paper, a base of morphological features was created
manually by one of the authors. Values of these features were read under the
microscope for 225 pollen grains (75 grains for each of the taxa analyzed).
The following attributes were measured and calculated:

(1-2) Equatorial and polar length. The minimum and maximum values
were adopted as features: minimum axis, maximum axis;
(3) The difference between the maximum and minimum axis: axes
difference;
(4) Exine thickness: wall;
(5-8) Number of visible pores, with distinction between pores visible
from above (the position characteristic for pollen grains in equatorial
view), laterally situated pores (visible for the grain in polar view), and
obliquely situated pores (that is, an intermediate position between the two
above-mentioned ones), and also the total number of visible pores:
number of top pores, number of lateral pores, number of oblique pores,
number of pores;
(9-10) Oncus height. The minimum and maximum height based on
measured heights: minimum oncus height, maximum oncus height. In the
set, there were observations for which it was not possible to determine
any oncus height and then a given observation had missing values for
these attributes;
(11-12) Oncus width. The minimum and maximum width based on
measured widths: minimum oncus width, maximum oncus width.
Similarly as above, there were missing values in the set;
(13) Pollen grain position. The following positions were included: polar:
(P), equatorial (E), and three types of intermediate position: intermediate,
nearly equatorial and nearly polar: position.

Decision tree
The decision tree is defined as a graph representing the process of dividing a
set of objects into homogeneous classes. This division is based on a set of
attributes.

A tree consists of (1) the root, where the full set of instances is taken into
consideration, (2) nodes where a decision is made by checking the condition
(test) and the current set is divided into subsets, (3) the branch leading to the
next level of nodes, and (4) the leaf – a class to which the observation is
assigned (Maimon and Rokach, 2010). Thus, instances are classified by
navigating them from the root of the tree down to a leaf, according to the
outcome of the tests along the path.

The recursive algorithm building a tree which is running on each node is
based on the attribute selection criterion for choosing the most appropriate
attribute for dividing observations into classes. This procedure gives us
information whether the node should be a leaf or a node-branching.

The obtained model can be verified by (a) using the test sample; (b) v-fold
cross-validation when a test sample is not available.

The advantages of the decision tree method:
• as a non-parametric method, it does not require information about data

distribution;
• it can classify both categorical and numerical data;
• the class of functions describing the effect of independent variables on

the dependent variable can be unknown;
• it is resistant to outliers.
Where the dependent variable is a nominal variable, the decision tree

becomes a classification tree.

In this study, to discriminate between the analyzed taxa, the J4.8 tree was
used due to the previous comparative studies concerning the discrimination of
taxa based on the characteristics of seasons, in which the application of this
algorithm produced the best results (Kubik-Komar et al., 2015). It uses the
gain ratio as measure of the diversity of k classes (Ci, i=1,…,k), which is
defined as:

GraðSÞ ¼ GaðSÞ
EaðSÞ ð1Þ

where Ea(S) is the entropy (impurity function) of the training set S split by the
a attribute (feature) and Ga(S) is the information gain calculated according to
the following formulas:

EaðSÞ ¼
Xt

j¼1

nSj
n
EðSjÞ; ð2Þ

GaðSÞ ¼ EðSÞ � EaðSÞ with EðSÞ ¼ �
Xk

i¼1

pilog2pi ð3Þ

In the Eqns 2 and 3 Sj ( j=1,…,t) are subsets of the training set split by a,
pi denotes the probability that the observation is from class Ci estimated as a
proportion of the number of observations inCi to the number of observations
in the training set S � ni=n; nSj is the number of observations in Sj, and nij is
the number of observations from class Ci that appeared in the Sj subset.

For each attribute a, the gain ratio is calculated and the one with the
maximum value is chosen.

All the classification results and tree diagrams were obtained using the
WEKA open source tool for data mining tasks (Hall et al., 2009). Statistical
charts were drawn in STATISTICA software (StatSoft, 2011).

Model verification should be done on the testing set whose elements have
not participated in building the tree. However, due to the limited number of
observations, the models were built and verified using two methods. The first
method involved the use of all 225 observations to build the tree. The same
observations were used to verify the model, with full awareness that the
percentage of correctly classified observations, which is a measure of model
classification accuracy, was overstated. The other verification method was
fivefold cross-validation (P. Ozer, Data Mining Algorithms for Classification,
BSc thesis, Radboud University Nijmegen, 2008). In this case, the
observations were assigned to five folds with equal numbers of the
individual taxa. Four of these folds were used to build the tree (180
observations, 60 for each taxon), whereas the fifth fold was used to verify it (45
observations, 15 for each taxon). In this way, with each random selection of
folds, five trees were built and each of themwas created and verified based on a
different dataset. This operation was repeated 1000 times in order to make the
classification outcome independent of the influence of the random selection.
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