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Chemoimmunotherapy with fludarabine, cyclophosphamide and 
rituximab (FCR) can induce long-term remissions in patients with 
chronic lymphocytic leukemia. Treatment efficacy with Bruton's 

tyrosine kinase inhibitors was found similar to FCR in untreated chronic 
lymphocytic leukemia patients with a mutated immunoglobulin heavy 
chain variable (IGHV) gene. In order to identify patients who specifically 
benefit from FCR, we developed integrative models including established 
prognostic parameters and gene expression profiling (GEP). GEP was con-
ducted on n=337 CLL8 trial samples, “core” probe sets were summarized 
on gene levels and RMA normalized. Prognostic models were built using 
penalized Cox proportional hazards models with the smoothly clipped 
absolute deviation penalty. We identified a prognostic signature of less 
than a dozen genes, which substituted for established prognostic factors, 
including TP53 and IGHV gene mutation status. Independent prognostic 
impact was confirmed for treatment, β2-microglobulin and del(17p) 
regarding overall survival and for treatment, del(11q), del(17p) and SF3B1 
mutation for progression-free survival. The combination of independent 
prognostic and GEP variables performed equal to models including only 
established non-GEP variables. GEP variables showed higher prognostic 
accuracy for patients with long progression-free survival compared to cat-
egorical variables like the IGHV gene mutation status and reliably predict-
ed overall survival in CLL8 and an independent cohort. GEP-based prog-
nostic models can help to identify patients who specifically benefit from 
FCR treatment. The CLL8 trial is registered under EUDRACT-2004-
004938-14 and clinicaltrials gov. Identifier:  NCT00281918.
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ABSTRACT

Introduction 

Chemoimmunotherapy with fludarabine, cyclophosphamide and rituximab (FCR) 
was defined as the standard first-line therapy for patients with chronic lymphocytic 
leukemia (CLL) who are eligible for intensive treatment.1,2  

There is prognostic impact of recurrent genetic alterations and NOTCH1 mutations 
were identified as a predictive marker for reduced benefit of FCR over FC.3,4,5,6,7 While 
substantial treatment benefit has been established for FCR in distinct patient popula-
tions,1 high efficacy of novel targeted compounds such as the Bruton's tyrosine kinase 
(BTK) inhibitor ibrutinib was recently reported in previously untreated patients,8,9 and 
for cohorts with genetic high-risk subgroups or refractory populations.10,11,12,13,14 
However, progression-free survival (PFS) in previously untreated patients ≤70 years 
old with a mutated immunoglobulin heavy chain variable (IGHV) gene was similar 



for the treatment with BTK inhibition or FCR.14 Therefore, 
identification of young and fit patients who specifically 
benefit from the treatment with FCR is needed to optimize 
long-term outcomes, in particular in the light of toxicity and 
cost associated with lifelong ibrutinib treatment. Additional 
biological characterization, such as gene expression profil-
ing (GEP), may be helpful for further refinement of prog-
nostic models leading to an increased prognostic accuracy 
and precise segregation of patients with a high treatment 
efficacy of FCR. Established markers mostly constitute cat-
egorical variables or consensus cut-offs, in the case of IGHV 
mutation status, and therefore may not fully reflect the 
underlying biology. In addition, established prognostic 
markers may loose some of their impact with novel treat-
ments.  

Since such large-scale studies on randomized trials are 
scarce, we performed GEP on 337 baseline patient samples 
from the CLL8 trial and modeled different scenarios for the 
combined use with established prognostic factors. We iden-
tified less than a dozen genes substituting for the prognostic 
impact of distinct recurrent alterations for PFS and overall 
survival (OS). Our results provide the basis for refined prog-
nostic models and rational treatment selection. 

 
 

Methods 

Patients and samples 
The study was conducted on peripheral blood samples from 

337 previously untreated CLL patients (Table1) collected at enrol-
ment on the CLL8 trial, a prospective, international, multi-center 
trial comparing first-line treatment with FC or FCR in a 1:1 ran-
domized fashion. Further details for the study are provided online 
at the ClinicalTrials.gov (CTG) homepage (www.clinicaltrials.gov 
#NCT00281918).1 Ficoll density gradient centrifugation for isola-
tion of mononuclear cells followed by an immunomagnetic tumor 
cell enrichment via CD19 (Midi MACS, Miltenyi Biotec®, 
Bergisch Gladbach, Germany) was performed on all samples. Data 
on genomic aberrations del(13q), trisomy 12, del(11q), del(17p) 
and mutation status for IGHV, TP53, SF3B1 and NOTCH1 was 
assessed as previously described.5 Informed consent and ethics 
committee approval was obtained in accordance with the 
Declaration of Helsinki for all patients.  

RNA isolation, quality assessment and gene expression 
profiling on Exon ST 1.0 arrays 

Total RNA was extracted from whole cell lysate according to 
the Allprep DNA/RNA mini kit (Qiagen). Quality control was per-
formed using the Agilent 2100 Bioanalyzer with the RNA 6000 
Nano LabChip (Agilent Technologies). In order to ensure accuracy 
and reproducibility, samples with an RNA integrity number (RIN) 
less than 7.0 were excluded from further analysis. 

Samples were analyzed for mRNA expression using the 
Affymetrix GeneChip® Human Exon 1.0 ST Array (Affymetrix, 
Santa Clara, CA, USA). Further details are provided in the Online 
Supplementary Appendix.  

Normalization of expression data 
Raw Affymetrix data files were preprocessed by the robust 

multichip average (RMA) algorithm using the aroma.affymetrix R 
package (2008).15 Within RMA normalization, background correc-
tion and quantile normalization was conducted. 
Aroma.affymetrix was applied to generate GEP values summa-
rized on the exon/probe set level and on the transcript level using 
the ‘core’ probe set definition according to Affymetrix. ‘Core’ 

refers to probe sets that are supported by the most reliable evi-
dence from RefSeq and full-length mRNA GenBank records con-
taining complete coding sequences information. We further 
assessed and excluded the presence of potential batch effects 
induced by external factors such as time point and location of 
sampling as well as time point of labeling and hybridization. 
Quality control was further conducted with "Relative Log 
Expression” (RLE) and "Normalized Unscaled Standard Errors” 
(NUSE), where we also did not find any abnormalities indicating 
potential batch effects. 

Statistical analyses 
Data was analyzed to evaluate improvement of prognostication 

for PFS and OS by using GEP in addition to prognostic factors 
del(17p), del(11q), trisomy 12, del(13q), IGHV mutation status, 
SF3B1, NOTCH1, TP53 mutations, β2-microglobulin (β2-m), 
thymidine kinase (TK), white blood cell count (WBC), Eastern 
Cooperative Oncology Group (ECOG) performance status, study 
medication (FC or FCR), sex and age. For the following analyses, 
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Table 1. Patient characteristics of the CLL8 gene expression profiling cohort. 
 Baseline characteristics                                       FC                       FCR                    Total 
     Target analysis population, N                          169                       168                      337 
     Age (years), median (range)                   62 (36-81)          60 (35-77)          61 (35-81) 
     Female sex, N (%)                                       41 (24.3)             40 (23.8)            81 (24.0) 
     ECOG performance status,                         1 (0-1)                 0 (0-2)                0 (0-2) 
     median (range) 
     Total CIRS score, median (range)             2 (0-7)               1.5 (0-7)              2 (0-7) 
 Stage                                                                                                                                        
     Binet stage, N (%)                                            169                       168                      337 
     A                                                                        10 (5.9)               11 (6.5)              21 (6.2) 
     B                                                                       107 (63.3)            99 (58.9)           206 (61.1) 
     C                                                                        52 (30.8)             58 (34.5)           110 (32.6) 
 Genetic variable                                                                                                                    
     Type according to hierarchical                       168                       167                      335 
     model, N (%) 
        17p deletion                                                 15 (8.9)               13 (7.8)              28 (8.4) 
        11q deletion                                                39 (23.2)             51 (30.5)            90 (26.9) 
        Trisomy 12                                                   21 (12.5)               9 (5.4)               30 (9.0) 
        No abnormalities                                       30 (17.9)             31 (18.6)            61 (18.2) 
        13q deletion (single)                               63 (37.5)             63 (37.7)           126 (37.6) 
     IGHV mutational status, N (%)                      163                       164                      327 
        IGHV unmutated                                       106 (65.0)           109 (66.5)          215 (65.7) 
        IGHV mutated                                            57 (35.0)             55 (33.5)           112 (34.3) 
     TP53 mutational status, N (%)                       167                       164                      331 
        TP53 unmutated                                        140 (83.8)           148 (90.2)          288 (87.0) 
        TP53 mutated                                             27 (16.2)              16 (9.8)             43 (13.0) 
        TP53 mutation and/or deletion              29 (17.4)             17 (10.4)            46 (13.9) 
     NOTCH1 mutational status, N (%)                163                       166                      329 
        NOTCH1 unmutated                                 152 (93.3)           149 (89.8)          301 (91.5) 
        NOTCH1 mutated                                       11 (6.7)              17 (10.2)             28 (8.5) 
     SF3B1 mutational status, N (%)                     163                       165                      328 
        SF3B1 unmutated                                     126 (77.3)           130 (78.8)          256 (78.0) 
        SF3B1 mutated                                           37 (22.7)             35 (21.2)            72 (22.0) 
 Biologic variable                                                                                                                   
     Telomere length (kb), median                       4.2                        4.1                        4.2 
     (range)                                                           (2.6-11.5)            (2.6-15.3)           (2.6-15.3) 
     Serum thymidine kinase (U/L), median      23.4                      17.1                     20.1 
     (range)                                                         (3.5-855.0)          (2.7-970.0)        (2.7-970.0) 
     Serum β2-microglobulin (mg/L), median   2.9                        2.7                        2.8  
     (range)                                                            (1.1-9.2)              (0.9-8.0)            (0.9-9.2) 
     Leukocyte count (G/L), median                    94.0                      95.6                     94.9  
     (range)                                                          (6.7-867.0)        (12.6-363.0)        (6.7-867.0) 
ECOG: Eastern Cooperative Oncology Group; CIRS: cumulative illness rating scale; FC: fludara-
bine and cyclophosphamide FCR: fludarabine, cyclophosphamide and rituximab. 



missing values in the clinical data were imputed using chained 
equations.16 The algorithm imputes the missing values using a 
model with all other clinical variables as predictors, thus generat-
ing ’plausible’ synthetic values. As the percentage of missingness 
for each variable was low (maximum of 16 missing values in 337 
patients), a single imputation method was adequate. Furthermore, 
a non-specific filtering was performed selecting the 500 genes 
with highest variability over all samples. The final model was built 
by sparsed Cox proportional hazards model using the smoothly 
clipped absolute deviation (SCAD) penalty.17 The “reference 
model” for our analysis is a Cox proportional hazards model 
including variables with confirmed prognostic impact: age (contin-
uous), sex (male or female), study medication (FC or FCR), ECOG 
performance status (1 or 2 vs. 0), WBC, TK and β2-m (all continu-
ous), IGHV/ NOTCH1/ SF3B1 mutation status (all unmutated vs. 
mutated), del(11q), del(13q), del(17p), trisomy 12 and TP53 muta-
tion (all present or absent). The analysis is based on updated 
results from the CLL8 trial.1  

Models investigated for possible improvement of prognostica-
tion using GEP included, first: the combination of all above-men-
tioned confirmed prognostic variables without penalization and a 
subset of the GEP data selected by SCAD penalization (referred to 
as “fixed model”), and secondly: the combination of confirmed 
prognostic variables and GEP data in which all variables were 
equally penalized (“equally penalized model”) allowing for substi-
tution of the confirmed prognostic variables with equally strong 
prognostic GEP variables. For internal validation bootstrap sub-
sampling with 1.000 subsamples equal to 63.2% of the original 
sample size was used.18 The prognostic value of the final model 
was evaluated on the basis of the time-dependent Brier score (as 
implemented in the R-package pec).19 The Brier score was used to 
estimate the prediction error at a given time point. Resulting pre-
diction error curves show the time-dependent Brier score over 60 
months of follow-up and the integrated Brier score (IBS) was used 
to summarize prediction accuracy. For external validation the 
apparent error was calculated. For visualization purposes, survival 
curves were calculated by means of the Stone-Beran estimator20 
using symmetrical nearest neighborhoods around the lowest, the 
median, and the highest observed values of the prognostic variable 
combinations using the R-package prodlim,21 both for OS and PFS. 
Statistical analysis was performed with the R environment for sta-
tistical computing, version 3.3.1, using the R packages survival, 
version 2.39-5, prodlim, version 1.5.7, mice, version 2.25, ncvreg, 
version 3.6-0, pec, version 2.4.9 and bootstrap, version 2015.2. For 
validation, the prognostic gene signature established on the CLL8 
cohort was tested in an array-based GEP training set of an inde-
pendent cohort (n=149 unsorted CLL samples from treatment-
naive [83%] and pretreated [17%] patients).22 Unmutated IGHV 
was reported in 49.3% and del(17p) in 8.6% of tested samples. 
Further details on cohort characteristics are provided in a previous 
publication.22   

 
 

Results   

Gene expression profiling variables substitute  
established prognostic markers in multivariate models  

We first established multivariate models for variables for 
which the prognostic impact was confirmed in previous 
studies and is herein referred to as the “reference model”. 
Results are shown in the Online Supplementary Table S1A for 
OS and in Online Supplementary Table S1B for PFS, respec-
tively.  

In order to evaluate the impact for OS including a signa-
ture consisting of GEP variables selected in the penalized 

Cox model (Online Supplementary Table S2A), we tested var-
ious combinations of confirmed prognostic variables and 
GEP. Only model combinations including genetic markers 
with prognostic impact achieved prediction error estimates 
similar to the confirmed prognostic variables used in the 
“reference model” (Figure 1A). Using the “fixed model”, 
penalization of GEP resulted in selection of only one GEP 
variable (PITPNC1, phosphatidylinositol transfer protein 
cytoplasmic 1) and no further improvement as compared to 
the reference model (IBS: reference model 0.092; fixed 
model 0.092) (Figure 1A).   

In contrast, using the “equally penalized model” on all 
variables from the reference model and GEP data resulted in 
selection of only three confirmed prognostic markers (FCR, 
β2-m, del(17p)) along with ten GEP variables comprising 
the genes CLEC2B, RGS1, LDOC1, L3MBTL4, PRKCA, 
FHL1, SGCE, DCLK2, VSIG1, CD72 (Online Supplementary 
Table S3A). When assessing the prediction accuracy, this 
model performed similarly as the reference model (IBS: ref-
erence model 0.092; equally penalized model 0.096) (Figure 
1A). When analyzing PFS by prediction models including a 
signature of selected GEP variables for PFS (Online 
Supplementary Table S2B) with the same approach, the 
“fixed model” did not lead to selection of GEP variables 
besides the confirmed prognostic variables. Conversely, 
only four confirmed prognostic markers (FCR, del(11q), 
del(17p), SF3B1 mutation) were selected in the “equally 
penalized model”, together with 11 GEP variables including 
the genes RGS1, EIF1AY, LDOC1, L3MBTL4, DCAF12, 
PLD5, GTSF1L, NIPAL2, CYBRD1, ANXA1 (Online 
Supplementary Table S3B). Again, variables selected in the 
“equally penalized model” performed similar to the “refer-
ence model” as demonstrated by prediction error estimates 
(IBS: reference model 0.160; equally penalized model 0.166; 
fixed model 0.160) (Figure 1B). Of note, strong prognostic 
markers like TP53 and IGHV mutation status (Online 
Supplementary Table S1) were substituted in both models by 
prognostic GEP variables (Online Supplementary Table S3).  

For the prognostication of PFS, inclusion of GEP data 
alone or in addition to non-genetic variables (β2-m, TK, 
WBC, ECOG, study medication, sex and age) compensated 
for missing genetic information in patients with late disease 
progression (Figure 1B). In such models, GEP reliably 
increased prediction accuracy for patients over time as pre-
diction error curves converged with those of the reference 
model. Prediction accuracy was comparable with the refer-
ence model at 60 months.  

The overall number of prognostic variables remained 
similar for either model (“reference model”: OS/PFS 15 vari-
ables vs. “equally penalized”: OS 13 and PFS 15 variables) 
and although chromosomal gains or losses covered multiple 
genes, these variables were substituted by the expression of 
a few genes only. Furthermore, expression variables select-
ed along with clinical variables in the penalized models for 
OS and PFS were not derived from genes localized in the 
recurrently deleted or amplified chromosomal regions 
(Online Supplementary Table S3A and B).  

Gene expression profiling signatures refine prognostic 
estimation and retain strong prognostic value  
in an independent cohort of unselected patients  

In order to illustrate the distribution for OS and PFS with-
in the different prediction models, conditional Kaplan-
Meier estimates were generated and survival curve esti-
mates are shown for lowest, median, and highest values of 
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the prognostic variable combinations (Figure 2A to F).  
GEP variables are especially suitable to predict cases with 

late progression, while established prognostic factors com-
pensate in the remaining cases with early progression 
(Figure 1A and B). Specifically, patients with long-term PFS 
were more accurately identified with models using prog-
nostic GEP signatures (Figure 2D and F) when compared 
with models using established prognostic variables only 
(Figure 2B) or single genetic characteristics. This aspect was 
further exemplified in a subgroup analysis for patients <60 
years and those receiving FCR (Online Supplementary Figure 
S1A and B).  

In order to validate the results we tested our prognostic 
gene signature in an independent cohort.22 This cohort was 
selected to be most heterogeneous from CLL8 to confirm 
the strength and independence of our prognostic score for 
OS (Online Supplementary Table S2A; Figure 2E and F). While 
the CLL8 cohort consisted of treatment-naive patients 

receiving FC/FCR and GEP was derived from CD19+ puri-
fied tumor cells, the validation cohort contained samples 
with heterogeneous tumor cell purity from both treatment-
naive and pretreated patients. The CLL8-based signature 
was estimated on the validation cohort and evaluated for 
individual performance. For comparison, we used the gene 
signature established for the validation cohort with respec-
tive weights as provided.22 Notably, the CLL8-derived gene 
signature performed highly similar to the gene signature 
originally established for this dataset (Online Supplementary 
Figure S2).22   

Gene expression profiling variables balance prognostic 
inaccuracy of established markers  

GEP variables selected both for OS and PFS contained the 
genes RGS1 (regulator of G protein signaling 1), LDOC1 
(LDOC1 regulator of NF-κB signaling) and L3MBTL4 
(L3MBTL histone methyl-lysine binding protein 4). While 
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Figure 1. Prediction error estimates for prog-
nostic model combinations. Prediction error 
curves for combinations of prognostic variables 
in models are shown for overall survival (OS) (A) 
and progression-free survival (PFS) (B). 
Combinations of prognostic variables contain 
the confirmed prognostic variables, as used in 
the reference model (age, sex, study medication, 
Eastern Cooperative Oncology Group [ECOG], log 
white blood cells [WBC], β2-microglobulin [β2-
m], log thymidine kinase [TK], IGHV mutation 
status, del(11q), del(13q), del(17p), trisomy 12, 
TP53 mutation, NOTCH1 mutation, SF3B1 
mutation) and gene expression profiling (GEP) 
variables. Prognostic GEP variables were select-
ed in addition to (fixed model) or instead of 
(equally penalized model) the confirmed prog-
nostic variables. In a separate approach prog-
nostic GEP variables were selected in addition to 
(fixed model) or instead of (equally penalized 
model) non-genetic prognostic variables (only 
age, sex, study medication, ECOG, log WBC, log 
TK, β2-m). GEP variables selected in the fixed or 
equally penalized model largely overlap with the 
full prognostic gene signature (Online 
Supplementary Table S2), which is separately 
used in the “GEP data only” prediction error 
curve. Combination of prognostic variables 
selected in the equally penalized model per-
formed highly similar to the model containing 
only confirmed prognostic variables. Strong over-
lap was found for prediction error curves repre-
sented by the red and blue solid lines.

A

B
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Figure 2. Conditional Kaplan-Meier survival estimates illustrate the distribution for overall survival and progression-free survival within the different prediction 
models. Kaplan-Meier estimates were generated for the lowest, the median, and the highest observed values of the prognostic variable combinations. Kaplan-Meier 
estimates illustrate overall survival (OS) (A, C and E) and progression-free survival (PFS) (B, D and F) with regard to the “reference model” (confirmed prognostic vari-
ables only, A and B), the “equally penalized model” (confirmed prognostic variables and GEP equally penalized, C and D) and prognostic GEP signatures only (as rep-
resented in the Online Supplementary Table S2A and B) (E and F).

A B

C D

E F



RGS1 was homogeneously distributed across the expres-
sion range, LDOC1 and L3MBTL4 expression showed a 
bimodal distribution (Online Supplementary Figure S3). When 
evaluating expression level distributions of RGS1, LDOC1 
and L3MBTL4 in relation to genetic variables, we could not 
identify an exclusive association with known prognostic 
factors (Figure 3; Online Supplementary Table S4A to D). 

In order to elucidate the biologic context from which 
the prognostic impact of these three genes may derive, we 
dichotomized patient samples regarding the upper and 
lower quartile of RGS1, LDOC1 and L3MBTL4 expression 
and assessed the differential expression of associated 
genes. Differentially expressed genes with a false discov-
ery rate (FDR) of <0.01 and a fold-change (FC) of >1.5 
were assessed for overlaps of the respective expression 
signatures (Figure 4A). Only 12 genes were overlapping 
between all three gene-specific comparisons (Figure 4A). 
Expression signatures associated with RGS1 were highly 
distinct from the other profiles and showed only nine of 
341 genes exclusively overlapping with the LDOC1 spe-
cific signature. Conversely, 51 of 69 genes contained in the 
L3MBTL4 signature exclusively overlapped with the 
LDOC1 signature and therefore support a similar biologic 
context. Genes contained in different signatures showed 
highly correlated expression profiles (Figure 4B). LDOC123 
and other genes overlapping for the L3MBTL4 and 
LDOC1 signature, such as LPL or CRY1, were previously 
reported as surrogate markers for the IGHV mutation sta-
tus.24,25 We specifically investigated ZAP70 in this context, 
since it has also been identified as a surrogate marker for 
the IGHV mutation status.25,26,27 While ZAP70 had a fold-
change lower than the previously set cut-off (FC>1.5), we 
found a highly significant (q<1x10-7) association with 
LDOC1 and L3MBTL4 (Figure 4C). Provided that LDOC1 
and L3MBTL4 expression levels did not show an exclusive 
association with the IGHV mutation status (Figure 3; 
Online Supplementary Table S4A to D), we wondered if the 
combined status of these two genes may explain the 
observed similarities. Notably, expression of LDOC1 and 
L3MBTL4 was highly correlated with each other and the 
combination of both variables reliably identified the 
majority of cases with IGHV homology <98% (Figure 5). 
However, we observed several “discordant” cases with 
mutated IGHV and high expression levels of LDOC1 and 
L3MBTL4 or IGHV unmutated cases with low expression 
levels (Figure 3; Figure 5). Provided the fact that these con-
tinuous variables were selected due to the higher prognos-
tic accuracy instead of the categorical IGHV mutation sta-
tus, these markers therefore better mirror prognostic 
effects and the related biology of a variable sequence 
homology, especially in “discordant” cases.  

 
 

Discussion 

In the presented study, we evaluated the significance of 
GEP as a means for prognostic modeling in CLL. The CLL8 
study cohort provides a valid basis for this as it was 
designed as a large international, multi-center phase III 
study defining current standard treatment, with full genetic 
characterization and long follow-up. Importantly, CD19+ 
purified tumor cells were procured at enrollment allowing 
valid GEP analysis. 

While GEP was unable to improve prediction when used 
in addition to confirmed prognostic variables, GEP substi-

tuted for many of these variables when tested in direct 
comparison in the equally penalized model and reliably 
predicted OS and PFS, similar to models integrating only 
confirmed prognostic variables. Furthermore, for the prog-
nostication of PFS, GEP was able to compensate for missing 
genetic information in the subgroup with late progression 
events. 

High prediction accuracy for late progression and confir-
mation of the independent prognostic value for previously 
reported high-risk markers,4,5,28 which were selected in the 
equally penalized model, implies that GEP-based prognos-
tication can primarily substitute for intermediate and low-
risk prognostic variables. However, GEP-based prognostic 
modeling was also able to substitute for “unmutated 
IGHV”, one of the most important variables with negative 
prognostic impact on OS and PFS.1,6,7,28 

GEP variables selected for PFS and OS in the equally 
penalized models were largely heterogeneous, a finding 
that may reflect both methodological and biological differ-
ences when modeling these endpoints. Conversely, we 
identified RGS1, LDOC1 and L3MBTL4 to have prognostic 
value both for PFS and OS. While the combined expression 
of LDOC1 and L3MBTL4 was highly associated with IGHV 
homology and therefore may be viewed as surrogate mark-
er of the IGHV mutation status at first, one has to consider 
that both genes were selected in the prognostic model 
instead of the IGHV mutation status. This indicates that 
these genes and the associated biology have a considerable 
impact on the prognosis and not merely substitute for the 
IGHV mutation status.   

This study further demonstrates the potential of GEP to 
reduce biologic dimensionality. As such, chromosomal 
aberrations affecting a multitude of genes, also if minimally 
deleted regions only are considered, can be replaced by less 
than a dozen genes. The fact that the genes contained in the 
prognostic GEP scores were not located on recurrently 
affected chromosomal regions indicates that the deregulat-
ed expression does not derive from a mere gene dosage 
effect but represents a convergence of various biologic 
traits. Genes of the identified signatures likely constitute 
important elements in overactive signaling cascades impact-
ing on the clinical course. In addition, GEP variables repre-
sent continuous variables and therefore may hold more 
potential to fine-tune prognostic modeling in contrast to 
categorical variables such as aberrations and mutations.   

The efficacy resulting from the addition of rituximab to 
FC treatment and substantial benefit for patients with dis-
tinct genetic features leading to long-term disease control 
and OS has been confirmed recently in a long-term follow-
up analysis.1 Notably, prognostic variables selected in the 
equally penalized model or the GEP signature estimated the 
clinical course of long-term PFS within this cohort better 
compared to the model using only genetic factors or param-
eters previously identified to characterize such patients.1  

Future studies will provide insight, if prognostic models 
including GEP also hold advantage over recently reported 
prognostic models using epigenetic subgrouping.29,30,31 
Patients with DNA methylation profiles reflecting memory 
B-cell-like CLL were reported to strongly benefit from treat-
ment with chemoimmunotherapy on two phase II trials.31 
A major strength of our study was the possibility to exclu-
sively use CD19+ sorted patient samples from a random-
ized phase III trial and extensive characterization for estab-
lished prognostic variables, including availability of the 
TP53, SF3B1 and NOTCH1 mutation status in >95% of 
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Figure 3. Association of RGS1, 
LDOC1 and L3MBTL4 with genet-
ic variables. Boxplots showing 
distribution for log2 expression of 
genes selected for both overall 
survival (OS) and progression-
free survival (PFS), namely RGS1, 
LDOC1 and L3MBTL4. LDOC1 
and L3MBTL4 show a bimodal 
distribution. Distribution of the 
three genes was not exclusively 
associated with distinct genetic 
variables.
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Figure 4. Assessment of genes showing concor-
dant or discordant expression with RGS1, 
LDOC1 and L3MBTL4. (A) Venn diagram illustrat-
ing overlaps for differentially expressed genes 
(fold-change [FC] >1.5; false discovery rate 
[FDR] <0.01) between patient samples with 
either high or low expression (upper vs. lower 
quartile) for RGS1, LDOC1 and L3MBTL4. (B) 
Heatmap showing clustered expression pattern 
(Pearson correlation and average linkage) of 12 
genes found in all three gene specific signatures 
and heatmap showing expression pattern of 51 
genes found in gene specific signatures of 
LDOC1 and L3MBTL4. (C) Scatter plots for 
ZAP70 expression with regard to groups showing 
high and low LDOC1 and L3MBTL4 expression 
(upper vs. lower quartile). 

A

B

C



cases. Future comparative studies assessing the prognostic 
impact of methylation markers need to include a compre-
hensive genetic characterization since SF3B1 and NOTCH1 
mutations were found to have independent prognostic and 
predictive impact for chemoimmunotherapy5 and show a 
heterogeneous distribution within epigenetic subgroups.29,31 
In addition, the CLL8 trial design provided an ideal basis to 
differentiate between the prognostic and predictive value of 
markers and therefore to specifically assess for the prognos-
tic strength of established and GEP variables. Notably, GEP 
variables selected in our model also reliably substituted for 
IGHV mutation status and showed strong prognostic 
impact irrespective of treatment for both PFS and OS in 
contrast to the epigenetic subgrouping.31  

While storage and workup conditions were found to 
change expression levels of multiple transcripts in an RNA 
sequencing-based study on healthy donor samples, prog-
nostic GEP variables selected in our study largely repre-
sented transcripts with low reported variability.32 Stable 
expression of our prognostic GEP variables selected for the 
respective clinical endpoints is further supported since 
prognostic markers unaffected by surrounding conditions 
(e.g., chromosomal aberrations, gene mutation status) 
were reliably substituted in the multivariate analysis. 
Validation of the prognostic impact of selected GEP vari-
ables was achieved in an independent data set differing 
with regard to storage conditions, workup and sorting of 
samples from a patient cohort with heterogeneous treat-
ment,22 further demonstrating the prognostic robustness of 
selected GEP variables.  

While novel compounds have revolutionized the land-
scape of CLL treatment in particular for high-risk 
patients,10,11,12,13 the long-term benefit and treatment related 
toxicities still remain to be evaluated. Further, the signifi-
cant economic burden may limit the access in some health-
care systems.33 In this study, we were able to confirm that 
GEP variables can achieve a higher prognostic accuracy, bet-
ter reflect IGHV sequence homology and reliably identify 
“discordant” patients with mutated IGHV but poor clinical 

course and vice versa. This is especially promising since 
treatment with BTK inhibitors and FCR was reported with 
similar PFS in patients with mutated IGHV.14  

Although the depth of biological characterization has 
reached a new dimension with the use of RNA sequencing, 
both array and RNA sequencing-based prognostic modeling 
were found to perform equally well for the prediction of 
major clinical endpoints.34 Studies evaluating FCR and BTK 
inhibitor treatment in a randomized fashion14 would pro-
vide an ideal basis for marker validation using RNA 
sequencing and easy to apply quantitative real-time poly-
merase chain reaction based approaches in parallel. 
Prognostic models used here may therefore hold promise 
for future selection, substitution and harmonization of 
prognostic markers, which show variable prognostic value 
within the respective treatment context.   

 
Disclosures 
The authors declare that there are no conflicts of interest to dis-

close that interfered with the experiments and presentation of data. 
 
Contributions 
JB, AB and SS conceptualized study; JB performed expression 

profiling; JB, JK and AB analyzed data. Data were gathered by all 
authors. JB wrote the paper with input from JK, AB and SS and 
all authors reviewed the manuscript.   

 
Acknowledgements 
The authors thank all patients and their physicians for trial par-

ticipation and donation of samples; the DCLLSG; Sabrina Schrell 
and Christina Galler for their excellent technical assistance; and 
Myriam Mendila, Nancy Valente, Stephan Zurfluh, and Jamie 
Wingate for their support in conception and conduct of the trial. 

 
Funding 
This work was supported by grants from BMBF (PRECISE), 

European Commission / BMBF (“FIRE CLL”, 01KT160), 
Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 1074 
project B1 and B2), DJCLS R 11/01, and F. Hoffmann-La Roche.

GEP for high dimensional prognostic models in CLL

haematologica | 2022; 107(3) 623

Figure 5. Combined status of LDOC1 and 
L3MBTL4 is correlated with IGHV sequence 
homology and identifies cases with “discor-
dant” clinical course. The figure highlights the 
correlation between expression levels of LDOC1 
(x-axis), L3MBTL4 (y-axis) and the immunoglob-
ulin heavy chain variable (IGHV) gene sequence 
homology (color coded). Cases with IGHV 
sequence homology <98% are indicated in blue, 
cases with IGHV sequence homology ≥98% are 
indicated in red. LDOC1 and L3MBTL4 expres-
sion identifies “discordant” cases with mutated 
IGHV but poor clinical course (high expression of 
LDOC1 and/or L3MBTL4) and vice versa. 
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