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A B S T R A C T   

Aiming at clinical translation, we developed an automatic 3D imaging system combining the emerging photo
acoustic imaging with conventional Doppler ultrasound for detecting inflammatory arthritis. This system was 
built with a GE HealthCare (GEHC) Vivid™ E95 ultrasound system and a Universal Robot UR3 robotic arm. In 
this work, the performance of this system was examined with a longitudinal study utilizing a clinically relevant 
adjuvant induced arthritis (AIA) murine model. After adjuvant injection, daily imaging of the rat ankle joints was 
conducted until joint inflammation was obvious based on visual inspection. Processed imaging results and sta
tistical analyses indicated that both the hyperemia (enhanced blood volume) detected by photoacoustic imaging 
and the enhanced blood flow detected by Doppler ultrasound reflected the progress of joint inflammation. 
However, photoacoustic imaging, by leveraging the highly sensitive optical contrast, detected inflammation 
earlier than Doppler ultrasound, and also showed changes that are more statistically significant. This side-by-side 
comparison between photoacoustic imaging and Doppler ultrasound using the same commercial grade GEHC 
ultrasound machine demonstrates the advantage and potential value of the emerging photoacoustic imaging for 
rheumatology clinical care of arthritis.   

1. Introduction 

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease 
that often leads to bone erosion, articular cartilage damage, and tendon 
tears [1–4]. RA affects approximately 1 % of the world’s population and 
can cause disability and consequential inability to work [5]. The met
acarpophalangeal (MCP) and proximal interphalangeal (PIP) joints are 
the most affected joints in RA [6]. Early diagnosis of RA is of great 
clinical importance as it enables clinicians to execute the treatment plan 
before substantial irreversible joint damage occurs [7]. 

Magnetic resonance imaging (MRI) and ultrasound (US) imaging can 
both be used in the early detection of inflammation [8]. In current clinic, 
rheumatologists use gadolinium-enhanced MRI or Doppler sonography 
to confirm the presence of joint inflammation [5]. MRI is often used as 

the reference standard for assessing the accuracy of US detection of RA 
[9] due to the high-level agreement with pathologic findings [10–12]. 
However, the disadvantages of MRI include limited accessibility, long 
imaging time, financial constraints, and potential contraindications [6]. 
US imaging is more often used in clinical assessment of RA due to its 
advantages in terms of availability, accuracy, image resolution, and cost 
[13–15]. However, US imaging has a significant learning curve for 
inexperienced operators, and its assessment is also highly dependent on 
the operator [6]. 

Recently, photoacoustic (PA) imaging, with intrinsically high sensi
tivity to hemoglobin in blood vessels, emerged as a potential tool for 
detecting and grading soft-tissue inflammation associated with arthritis 
[16–20]. Experiments on RA patients confirmed that PA imaging can 
map spatially distributed hyperemia (increased blood volume) and 
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hypoxia (decreased blood oxygenation) as two imaging biomarkers 
reflecting soft-tissue inflammation [16]. In another study involving a 
larger cohort of 118 RA patients, Yang et al. validated that the hypoxia 
detected by PA imaging in thickened synovium correlates with less 
vascularization and higher disease activity [20]. In a study involving 
both an LED-based PA imaging system and a commercial US system, the 
sensitivity of PA imaging vs Doppler US in detecting joint inflammation 
were compared, and PA imaging showed higher sensitivity in detecting 
mild inflammation in patients with sub-clinically active arthritis [21]. 
The findings from these pioneering clinical studies are encouraging and 
suggest that PA imaging holds potential as a new tool for clinical care of 
arthritis in rheumatology. 

Besides clinical studies in RA patients, the feasibility of PA imaging 
for evaluating joint inflammation has also been explored in animal 

models of arthritis [22–28]. Compared to human patients, animal 
models, especially murine models, develop arthritis much faster and 
hence, can facilitate studies of longitudinal imaging of these patholog
ical conditions and their responses to treatment within shorter time 
periods. Studies using large numbers of these murine models for statis
tical significance also benefit from the low costs of these models. In 
addition, studies that use animal models allow validation of findings 
from imaging with histopathology as the gold standard which is typi
cally not practical in large numbers with human patients. With these 
advantages, animal models of arthritis offer well-controlled platforms 
for objectively and comprehensively assessing the performance and 
understanding the limitations of the emerging PA imaging technique. 

Aiming at clinical translation, we recently developed an automatic 
3D PA and Doppler US multi-modal imaging system for detecting in
flammatory arthritis. This system was built on a commercial-grade GE 
HealthCare (GEHC) Vivid™ E95 (VE95) US system and a Universal 
Robot UR3 robotic arm. In this work, the performance of this system was 
examined in a longitudinal study utilizing a clinically relevant adjuvant 
induced arthritis (AIA) murine model. Among all the models that we 
have investigated for human inflammatory diseases, the AIA rat model is 
one of the best, not only because it is similar clinically and histo- 
pathologically to human RA but also due to its good consistency [22, 
23,29–31]. In the AIA model, 90–100 % of rats develop arthritis within 
20 days after adjuvant injection, showing joint histological changes 
including leukocyte invasion preceding joint swelling [32]. In this study, 
the rat ankle joints were imaged daily after adjuvant injection by using 
our automatic 3D multi-modal imaging system. Longitudinal progress of 
inflammation in rat ankle joints were quantitatively evaluated by both 
PA imaging and power Doppler US imaging. This side-by-side compar
ison between the two modalities, realized by the same commercial grade 
US system, allowed us to objectively assess the advantages and limita
tions of the emerging PA imaging technique and benchmark it against 
conventional Doppler US. 

Fig. 1. (a) Automatic 3D PA and Doppler US multi-modality imaging system configuration. (b) Photo of the imaging probe holder with a L8–18i-D probe in the 
middle and two fiber bundles at the two sides. 

Fig. 2. Daily imaging procedure.  
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2. Methods 

2.1. Imaging system 

The automatic 3D PA and Doppler US multi-modality imaging sys
tem setup is shown in Fig. 1(a). This system, based on a GEHC VE95 US 
unit and a GEHC L8–18i-D high-frequency linear probe, can simulta
neously acquire B-mode US images and PA images in real time. The 
customized probe holder, as shown in Fig. 1(b), which held an US linear 
array probe in the middle and two fiber bundles at the two sides, was 
attached to a Universal Robots UR3 robotic arm. We used an Nd:YAG 
pumped OPO (Phocus MOBILE, OPOTEK, Carlsbad, CA) with repetition 
rate of 10 Hz, wavelength tuning range of 690–950 nm, and pulse length 
of 5 ns as the light source for PA imaging. In this study, laser pulses at a 
single wavelength of 750 nm with a pulse energy of 40 mJ were applied 
to an illumination area of 2 cm2 on the target joint, leading to pulse 
energy density of 20 mJ/cm2 which was within the ANSI safety limit. 
The output end of the fiber bundle at the two sides of the probe was 
placed at a 30-degree angle to achieve the optimal light fluence and 

penetration depth. The 168-element GEHC L8–18i-D probe worked at 
12.5 MHz center frequency for both PA and US signal detection. 

The proprietary software on the GE VE95 US system was modified to 
provide the new functionality for the PA imaging mode. We configured 
the VE95 US unit to receive a trigger from the tunable laser to start the 
receive chain without a transmit event from the US unit. By modifying 
the VE95’s signal processing capability for this one-way ultrasound 
propagation, we could create an image using the received PA signals 
following a single laser pulse illumination. We also interleaved B-mode 
US imaging pulses between each PA laser firing to provide a structural 
image and facilitate the spatial registration of these two modalities. Both 
PA images and B-mode US images were acquired, stored, and displayed 
on the VE95 in real time. The VE95 US system also performed color or 
power Doppler US imaging. 

To achieve 3D imaging of a joint, the probe held by the robotic 
system automatically scanned along the determined scanning path and 
enabled volumetric reconstruction in post-processing. The robotic arm 
was controlled by the control PC with a user interface (UI) that we 
developed. In the PA acquisition mode, the probe continuously scanned 

Fig. 3. Example 3D B-mode US images from a healthy joint (first row) and an inflamed joint (second row), 9 frames each (center frame to +/- 4 frames). Manual 
segmentation of the synovial tissue and the adjacent region in the healthy joint (third row) and the inflamed joint (fourth row). The segmented areas are marked by 
red dashed lines and shadows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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from one side of the joint to the other side. In the Doppler US mode, the 
probe utilized a move-stop-scan approach which allowed it to dwell for a 
short period of time to avoid motion artifacts in the Doppler images and 
then moved to the next location, stopped, and scanned images. PA and 
power Doppler US images were formed using delay-and-sum algorithms 
and represented by normalized pseudo colors and superimposed on 3D 
B-mode US images. The resolution for both long-axis and reconstructed 
short-axis B-mode US imaging was adequate for 3D rendering of the 
whole joint. 

2.2. Adjuvant induced arthritis (AIA) rat model 

All experimental animal procedures were approved by the Institu
tional Animal Care & Use Committee (IACUC) of the University of 
Michigan (Animal protocol: PRO00009524). Seven female rats (Sprague 
Dawley, 5–6 weeks age, Envigo, Indianapolis, IN) were used for the 
study. Before inducing AIA, each animal was anesthetized with iso
flurane using an induction box and then maintained on isoflurane via a 
mask. The AIA was introduced by injecting a mixture of lyophilized 
Mycobacterium butyricum (powdered form, H37 Ra, Difco Labs, 
Detroit, MI) and mineral oil (Paraffin oil, Fisher Scientific, Hampton, 
NH) to the base of the rat’s tail. To prepare the mixture, powdered 
Mycobacterium butyricum (15 mg) was added to 2 ml of mineral oil and 
ground in a mortar and pestle for thirty minutes. For each rat, 0.4 ml of 
the mixture was injected into the base of the tail under aseptic 
conditions. 

2.3. Imaging procedure 

Right before (Day 0 as the baseline) and after adjuvant injection, 
daily imaging of the rat ankle joint was conducted until the animal was 
euthanized. The total time duration for daily imaging after adjuvant 
injection ranged from 9 days to 21 days. This was because the animals 
have individual difference in time when responding to the AIA injection. 
When the systemic inflammation became very serious, the animal’s 

joints would be extremely swollen and stiff. At this time point, the an
imal was crippled and unable to reach food, and had to be euthanized by 
following the protocol approved by the IACUC of the University of 
Michigan. 

The daily scanning procedure is shown in Fig. 2. All 14 ankle joints of 
the 7 rats were imaged. For each imaging procedure, the rat was anes
thetized with an isoflurane anesthesia system attached to a mask and 
placed on an adjustable height stage in a water tank. The target ankle 
joint for imaging was submerged in the warm water with a constant 
temperature of 37 ◦C. 

When imaging each joint, the robotic arm moved the probe to the 
target joint. The probe aligned with the joint along the sagittal view and 
stopped at the location where the ankle joint structure could be visu
alized clearly by the B-mode US. The distance between the probe and the 
ankle was approximately 1–2 cm which is the range with the best image 
quality for the GEHC L8–18i-D array. We used the designed user inter
face to adjust scanning parameters including imaging mode, scan length, 
continuous scan mode or move-stop-scan mode, step size of every 
movement and dwell time. Then, 3D B-mode US together with PA im
aging was performed by scanning the probe over a 1-cm distance across 
the joint, following the continuous scanning mode. The continuous scan 
of each 3D B-mode US image together with the PA image took 7.4 s, 
acquiring 135 frames in total. After that, 3D B-mode US together with 
power Doppler US imaging was performed on the same joint, following 
the move-stop-scan scanning mode. Covering the same 1-cm scanning 
distance with a 0.1 mm step size and 1.8 s dwell time, the scan of each 
3D B-mode US image together with the Doppler US image took 180 s, 
acquiring 99 frames in total. At the end of the longitudinal daily imaging 
study, each rat was euthanized and both legs were harvested for his
tology analysis. 

2.4. Histology examination 

To confirm joint inflammation induced by adjuvant injection as well 
as imaging findings, Hematoxylin and Eosin (H&E) staining histology of 

Fig. 4. Longitudinal imaging of inflammation in the right ankle joint of an AIA rat, including the imaging before AIA injection (Day 0) and at different time points 
after the AIA injection. PA images superimposed on the B-mode US images are compared to power Doppler US images superimposed on the B-mode US images. 
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the affected ankle joints was conducted at the University of Michigan In- 
Vivo Animal Core (IVAC). H&E staining is suitable for quantification of 
synovial inflammation and detection of cartilage and bone erosions [33, 
34]. For each animal at the end of the longitudinal imaging study, both 
legs were removed and fixed in 4 % Parafomaldehyde. One of the fixed 
legs was cut into longitudinally trimmed slices, while the other leg was 
cut into cross-sectionally trimmed slices. The slices were then scanned 
with a Polaris brightfield digital scanner and analyzed using the Aperio 
ImageScope software (Leica Biosystems, Wetzlar, Germany). 

2.5. Image segmentation and quantitative analysis 

We manually segmented the synovial tissue and the adjacent region, 
including muscle and tendon, in the center frame of the B-mode US 
images acquired from each joint. The segmentation was performed using 
the center frame because this frame presented the best image of the 
ankle joint structure. We then applied the same segmentation mask to 
the former and the latter 4 adjacent frames, with 9 frames in total, as 
shown in Fig. 3. These 9 segmented frames form the target volume for 
assessment of joint inflammation. For quantitative analysis of the hy
peremia (enhanced blood volume) in the joint, we calculated the total 
intensity of the color pixels and the total number of color pixels in the 

target volume using the PA and Doppler US images. These quantitative 
measurements were evaluated to determine if they reflect the severity of 
disease in the synovial tissue and surrounding region. 

3. Results 

A representative result from the longitudinal imaging study of a rat’s 
right ankle joint affected by AIA is shown in Fig. 4, which includes the 
images acquired before the AIA injection (Day 0) and at Day 5, 8, 9, 10, 
11, 12, 13, 14, 15, and 16 after the injection. The gray-scale B-mode US 
images with superimposed PA signals in pseudo color are compared with 
the gray-scale B-mode US images with superimposed power Doppler US 
signals. The joint morphologies presented by the B-mode US images 
acquired respectively with the PA mode and the power Doppler US mode 
are similar, demonstrating that the image acquisition driven by the 
robot is robust and stable. To benefit comparison, the pixel intensities in 
the PA images and the power Doppler US images are displayed using the 
same colormap. 

In this joint, no sign of inflammation was visible until Day 12. Then, 
the joint started appeared swollen due to the proliferation of the joint 
capsule and the swelling progressed rapidly from Day 12 to Day 16. On 
Day 16, the rat legs were very swollen and stiff, making the rat crippled. 

Fig. 5. H&E-stained histology photos taken along the long-axis of the right ankle joint and the short-axis of the left ankle joint of the same rat with the imaging 
results shown in Fig. 4. The detailed synovial tissue hyperplasia areas are marked in blue boxed and also shown with larger magnification. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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The PA signal in the joint started to increase on Day 11. The increase in 
power Doppler US signals did not start until Day 13, and became more 
obvious on Day 15 and Day 16. PA images presented enhanced blood 
volume (i.e., hyperemia) in the synovial and adjacent regions, while 
power Doppler US detected enhanced blood flow in a couple large 
vessels. This difference is because Doppler US is more sensitive to the 
fast flow in relatively large vessels. 

On Day 16, the rat was euthanized and both legs were harvested for 
histology analysis. The H&E-stained histology photos along the long- 
axis of the right ankle joint (the same orientation shown in Fig. 4) and 
along the short-axis of the left ankle joint are shown in Fig. 5. In these 
histology photos, we can see hyperplasia of the synovial tissue and 
infiltration of inflammatory cells, which confirmed the arthritis devel
opment in the ankle joints [35]. 

Fig. 6 presents the volumetric renderings of the 3D B-mode US image 
with PA signals and the 3D B-mode US image with power Doppler US 
signals. These volumetric renderings of the 3D imaging results were 
generated using the Amira-Avizo software (Thermo Fisher Scientific, 
Waltham, MA). These images were acquired on Day 13 from the rat 
ankle joint with the longitudinal results shown in Fig. 4. The spatially 
distributed hyperemia reflecting joint inflammation is clearly presented 
in the 3D PA image in Fig. 6(a). In the 3D power Doppler US image in 
Fig. 6(b), we can also see active signals reflecting inflammation, and 

most of the signals are from the large vessels right beneath the skin. 
Fig. 6(c) and Fig. 6(d) also show the PA and the power Doppler US 
imaging results along the three orthogonal planes, including coronal, 
transverse, and sagittal. With these 3D rendering and 2D views of the PA 
image fused with the high-quality B-mode US image presenting the 
morphology of the joint, we can see the spatially distributed inflam
mation in the synovium and surrounding tissues and their relative lo
cations to bones, muscles, and skin. 

With the longitudinal 3D imaging results from each joint, we 
assessed the progress of inflammation by quantifying the hyperemia in 
the joint, as reflected by both the total intensity of color pixels and the 
total number of color pixels in the segmented volume in the PA image of 
the joint. At the same time, we also assessed the progress of inflamma
tion by quantifying the enhanced flow in the joint, as reflected by both 
the total intensity of color pixels and the total number of color pixels in 
the same segmented volume in the power Doppler US image of the joint. 
As mentioned in the Methods section, the total intensity of the color 
pixels and the total number of color pixels were calculated in the target 
volume, which was formed by the segmented masks in all the 9 frames. 

Fig. 7 shows the quantified results from the 14 joints of the 7 rats. For 
each joint, the signals were normalized by the maximum value of the PA 
signals. In each panel showing the result from each joint, the PA curve 
presenting the change in hyperemia always starts to elevate from the 

Fig. 6. Volumetric rendering of (a) the 3D B-model US with PA signals and (b) the 3D B-mode US with power Doppler US signals from the arthritis ankle joint 
acquired on Day 13 after AIA injection. 2D views along three orthogonal planes (coronal, transverse, and sagittal) together with a volumetric view are shown in (c) 
and (d) for the PA and the power Doppler US results, respectively. 
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baseline earlier than the power Doppler US curve presenting the change 
in blood flow. This finding from Fig. 7 suggests that PA imaging of hy
peremia, quantified either as the total intensity of color pixels or the 
total number of color pixels in the segmented volume in the joint, is 
more sensitive in detecting early inflammation when compared to power 

Doppler US imaging of enhanced blood flow. 
With the quantitative measurements from the 14 joints, statistical 

analyses were performed to evaluate the performance of PA imaging in 
detecting early arthritis when compared to power Doppler US imaging 
realized by the same GEHC VE95 US unit. For both PA images and power 

Fig. 7. Longitudinal assessment of joint inflammation by quantifying (a) the total intensity of color pixels and (b) the total number of color pixels in both PA image 
(red) and power Doppler US image (blue). Each panel shows the measurements from an individual ankle joint, with a total of 14 joints from 7 rats. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Doppler US images, we calculated the average and the 95 % confidence 
intervals (CI) of the total intensity of color pixels and the total number of 
color pixels from the 14 joints on each day, as shown in Fig. 8. 
Considering that no joint inflammation should happen for this AIA 
model in the very early stage (within a week after AIA injection), we 
averaged the measurements from Day 0 to Day 5 to generate a baseline, 
as shown by the measurements on Day 5 in Fig. 8. After Day 5, the mean 
and the 95% CI are plotted for each day from Day 6 to Day 16. Then the 
measurement from each day was compared to the baseline value via a t- 
test, and those with statistically significant differences are marked. The 
total intensity of color pixels quantified by PA imaging starts to show 
statistically significant difference from Day 9 (p < 0.05 on Day 9 and 
becomes smaller for later days), while the total intensity of color pixels 
quantified by power Doppler US imaging exhibits significant difference 
only on Day 11 and Day 15. The total number of color pixels quantified 
by PA imaging starts to show statistically significant difference from Day 
10 (p < 0.0001); while the total number of color pixels quantified by 
power Doppler US imaging shows significant difference only on Day 11, 
Day 14, and Day 15. As demonstrated by this statistical study, the hy
peremia quantified by PA imaging not only detects joint inflammation 
earlier than the enhanced blood flow quantified by power Doppler US, 
but also shows the changes more consistent and robust, as reflected by 
higher statistical significance. 

4. Conclusion and discussion 

The performance of our automatic 3D imaging system combining the 
emerging PA imaging with the conventional Doppler US was examined 
via a longitudinal study in a clinically relevant AIA rat model. After 
adjuvant injection, daily imaging of the rat ankle joints was conducted, 
and the progress in joint inflammation was evaluated by both PA im
aging of hyperemia and power Doppler US imaging of enhanced blood 
flow. As reflected by the imaging results and statistical analyses, 
although both imaging modalities can detect the inflammation in the 
joints, PA imaging detects the inflammation earlier in the disease pro
gression and also shows the changes more robustly when compared to 
power Doppler US, which suggests that, by reflecting the highly sensi
tive optical contrast, PA imaging is more sensitive to early and mild 
inflammation associated with arthritis. 

Imaging technologies that enable earlier diagnosis and prognosis of 
arthritis are of great importance in rheumatology clinics as they could 

enable clinicians to execute the treatment plan before substantial irre
versible joint damage occurs. Also, imaging technologies that are sen
sitive in detecting early treatment response may have significant clinical 
value as they could enable early treatment modification and personal
ized medicine, ensuring optimal patient outcome. In this work, we 
examined the quantified measurements from PA imaging and their 
changes during the disease progression to understand the clinical value 
of the emerging PA imaging and benchmarked it against power Doppler 
US imaging realized by the same commercial grade US unit. This study, 
in a well-controlled animal model utilizing a well-controlled imaging 
procedure, facilitated a side-by-side comparison between PA imaging 
and Doppler US imaging with objective conclusions. As validated in this 
study, volumetric assessment of inflammation, facilitated by automatic 
3D imaging, could lead to a group of robust, reliably reproducible, and 
precise biomarkers for assessing the progress and severity of arthritis. 
With the automatic scanning feature, such an imaging device can be 
handled by any operator without complete medical knowledge (with 
minimal training), which could lead to better acceptance in rheuma
tology clinics or resource-limited environments. As a conclusion, the 
findings from this work suggest that PA imaging, when combined with 
more established and widely accepted musculoskeletal US imaging, 
holds potential to change the current procedures in rheumatology 
clinics. 

As demonstrated in previous studies [16,20], PA imaging utilizing 
multiple laser wavelengths is capable of evaluating soft-tissue hypoxia 
as another physiological hallmark of arthritis. Multi-wavelength PA 
imaging, however, was not performed in this study because the aim of 
this study was the side-by-side comparison between the hyperemia 
presented by PA imaging and the enhanced blood flow presented by 
Doppler ultrasound imaging. Currently, PA imaging depth is limited to a 
few centimeters in most soft tissues. Clinically, this imaging depth is 
adequate for detecting the inflammation in peripheral joints of human 
hands and feet. PA imaging of the larger joints in human body, such as 
knee and hip joints which are also associated with arthritis, is still 
technically challenging. As another limitation, the segmentation of the 
synovial tissue and the adjacent region for volumetric analysis of 
inflammation was achieved manually in this study. Although the manual 
segmentation with the training and confirmation from board certified 
rheumatologists and radiologists should be highly accurate, this process 
is still dependent on the operator. To realize a truly point-of-care im
aging system with minimal training requirements, the image 

Fig. 8. Statistical analyses to study the longitudinal changes in (a) the total intensity of color pixels and (b) the total number of color pixels in PA images vs. power 
Doppler US images. On each day, the mean, as shown by the solid curves, and the 95 % confidence intervals (CI), as shown by the dashed curves, are quantified for 
the measurements from the 14 joints. The data point on each day is compared to the baseline (average of the measurements from 0 to 5 days) via a t-test, and those 
with statistically significant differences are marked. * ** *: p < 0.0001; * ** : p < 0.001; * *: p < 0.01; * : p < 0.05. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

X. Peng et al.                                                                                                                                                                                                                                    



Photoacoustics 31 (2023) 100514

9

segmentation should also be completed automatically by a computer 
algorithm. We are currently developing a machine-learning based al
gorithm for segmentation of synovium in B-mode US images of human 
finger joints. Once validated, a fully automatic 3D imaging system 
integrating PA and Doppler US could be achieved, which may eliminate 
the need for a skilled operator who is experienced in musculoskeletal US. 
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