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Abstract
Epithelial–mesenchymal transition (EMT) plays a crucial role in the development of pulmonary fibrosis. This study aims to
investigate the effects of valproic acid (VPA) on EMT in vitro and in vivo. In vitro, EMT was induced by the administration
of transforming growth factor-β1 (TGF-β1) in a human alveolar epithelial cell line (A549). The dose effects of VPA (0.1–3
mM) on EMT were subsequently evaluated at different timepoints. VPA (1 mM) was applied prior to the administration of
TGF-β1 and the expression of E-cadherin, vimentin, p-Smad2/3 and p-Akt was assessed. In addition, the effects of a TGF-β
type I receptor inhibitor (A8301) and PI3K-Akt inhibitor (LY294002) on EMT were evaluated. In vivo, the effects of VPA
on bleomycin-induced lung fibrosis were evaluated by assessing variables such as survival rate, body weight and
histopathological changes, whilst the expression of E-cadherin and vimentin in lung tissue was also evaluated. A8301 and
LY294002 were used to ascertain the cellular signaling pathways involved in this model. The administration of VPA prior to
TGF-β1 in A549 cells prevented EMT in both a time- and concentration-dependent manner. Pretreatment with VPA
downregulated the expression of both p-Smad2/3 and p-Akt. A8301 administration increased the expression of E-cadherin
and reduced the expression of vimentin. LY294002 inhibited Akt phosphorylation induced by TGF-β1 but failed to prevent
EMT. Pretreatment with VPA both increased the survival rate and prevented the loss of body weight in mice with pulmonary
fibrosis. Interestingly, both VPA and A8301 prevented EMT and facilitated an improvement in lung structure. Overall,
pretreatment with VPA attenuated the development of pulmonary fibrosis by inhibiting EMT in mice, which was associated
with Smad2/3 deactivation but without Akt cellular signal involvement.

Introduction

Chemotherapy can trigger the development of lung fibrosis
in a subset of patients [1, 2]. This type of lung fibrosis is
characterized by various pathological hallmarks, including
chronic pulmonary epithelial injury and the proliferation
and activation of fibroblasts, which subsequently promote
myofibroblast formation and extracellular matrix (ECM)
accumulation [3]. For example, toxic chemical compounds
such as asbestos and bleomycin can cause the death of lung
epithelial cells and stimulate the production of reactive
oxygen species and inflammatory mediators. As a result,
repair mechanisms within the lung are activated which
attempt to restore lung function. However, dysregulation of
these processes may result in the initiation of fibrogenesis
[4]. Recent studies have demonstrated that fibroblasts ori-
ginating from bone marrow [5], endothelial [6], and epi-
thelial cells [7] can all be activated to acquire the
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myofibroblast phenotype, thus resulting in the development
of fibrosis.

Although the mechanisms underlying the development
of non-idiopathic lung fibrosis remain to be elucidated,
epithelial–mesenchymal transition (EMT) has been sug-
gested as one of the key mechanisms involved in lung
fibrosis, in general [8, 9]. EMT is defined as the process by
which epithelial cells differentiate into fibroblast/myofi-
broblast-like cells [7, 8]. This process involves a decrease in
various epithelial cell biomarkers such as E-cadherin and
occludin, as well as a concomitant increase in mesenchymal
cell biomarkers, such as vimentin and fibronectin [10].
EMT also results in a change in the polarity of epithelial
cells, which subsequently acquire a spindle-like shape.
EMT is thought to be closely linked to the development of
tissue fibrosis in various organs, including the heart, kidney,
lung and liver [11–14]. Transforming growth factor-β1
(TGF-β1), which is present at the site of fibrosis, plays an
important role in inducing EMT [15]. By binding to its
receptor, TGF-β1 classically activates Smad2/3 in the
cytoplasm leading to the formation of p-Smad2/3. The latter
binds to Smad4 and translocates to the nucleus, resulting in
changes to gene transcription. In addition, noncanonical
pathways including Notch and Wnt/β-catenin are also
responsible for mediating EMT and the subsequent devel-
opment of fibrosis [15, 16].

Valproic acid (VPA) has been used clinically as a
broad-spectrum antiepileptic for seizures and as a mood
stabilizer for bipolar disorder. Interestingly, VPA has been
shown to demonstrate anti-inflammatory and antioxidant
properties, as well as the ability to induce cancer cell
apoptosis [17–19]. A clinical study demonstrated that the
long-term use of VPA was associated with a reduced
incidence of head and neck cancer in the American veteran
population [20]. In animal studies, the administration of
VPA has been shown to protect mice against sepsis-
induced multiple organ dysfunction syndrome [21, 22], as
well as ischemia–reperfusion-associated acute lung injury
[23]. VPA has also demonstrated the ability to inhibit the
progression of fibrosis in the liver [24] and kidney [25], as
well as reduce the development of cardiac hypertrophy
[26]. In a rat lung fibrosis model, VPA and butyrate, either
on its own or in combination, inhibited cytokine release
and oxidative stress, and ameliorated fibrosis caused by
ECM deposition of fibroblasts [27]. However, the pro-
tective effects of VPA against EMT development asso-
ciated with chemotherapy, as well as its underlying
mechanisms, remain to be elucidated. In this study, we
hypothesize that pretreatment with VPA mitigates
bleomycin-induced lung fibrosis through EMT inhibition,
which was investigated in both in vitro and in vivo
settings.

Materials and methods

Cell culture

The alveolar epithelial cell line (A549), purchased from
ATCC (Manassas, VA, USA), was cultured in RPMI-1640
culture medium supplemented with 10% fetal bovine serum,
100 U/ml penicillin, and 100 μg/ml streptomycin in a
humidified atmosphere of 5% CO2 at 37 °C. A549 cells
have been widely used in in vitro models of lung epithelial
cell injury and EMT progression [28, 29].

Cell treatment

EMT in A549 cells was induced by TGF-β1 (10 ng/ml,
PeproTech, USA). The duration of A549 cell exposure to
TGF-β1, as well as the dose of TGF-β1, is based on pre-
vious studies [28, 30]. Other culture cohorts were treated
with VPA (Sigma, Munich, Germany) with or without 10
ng/ml TGF-β1 for 48 h as indicated. The following inhibi-
tors were used wherever appropriate: PI3k-Akt inhibitor
LY294002 (Cell signaling technology, Danvers, MA, USA)
and TGF-β type I receptor inhibitor A8301 (Tocris, Oxford,
UK). All cells were then fixed with paraformaldehyde for
immunofluorescent staining or were used to extract proteins
for western blot analysis.

MTT assay

Cells were cultured in 96-well plates and, once they became
90% confluent, were treated with VPA with or without
TGF-β1 for 48 h. The MTT assay was used to assess cell
viability which required the addition of tetrazolium dye
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide to the culture medium and incubation for a further
4 h at 37 °C. The medium was then carefully removed and
100 μl of dimethyl sulfoxide was added to each well and
mixed for 10 min at room temperature. The absorbance at
570 nm was determined using Multiskan FC (Thermo
Fisher Scientific, Shanghai, China).

Animal model

Male C57BL/6J mice, 8–10 weeks old weighing 22–25 g,
were purchased from Hua Fu Kang Co. (Beijing, China).
The mice were given standard laboratory chow and water
ad libitum and housed in a pathogen-free room at a tem-
perature between 22 and 24 °C with a 12 h light/dark cycle.
All animal experimentations were approved by the Ethics
Committee of Tongji Medical College of Huazhong Uni-
versity of Science and Technology. All studies have been
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reported in accordance with the ARRIVE guidelines for
reporting experiments involving animals [31].

As previously reported by Kabel et al. [27] mice ran-
domly received VPA (100 mg/kg) (n= 10) once daily for a
week via intraperitoneal injection or LY294002 (5 mg/kg)
or A8301 (1 mg/kg) (n= 10) once via intraperitoneal
injection. The mice were then anaesthetized with an injec-
tion of 2% sodium pentobarbital intraperitoneally (80 mg/
kg, Sigma, Munich, Germany). Endotracheal intubation was
performed and lung fibrosis was induced by instilling
bleomycin (2 mg/kg; once) via the endotracheal tube. Mice
that received VPA prior to bleomycin administration were
given VPA by intraperitoneal injection once daily for up to
28 days. The groups treated with LY294002 or A8301, as
well the naïve control group, all received the same volume
of normal saline for up to 28 days. The survival and body
weight of the mice were closely monitored daily. Mice were
subsequently sacrificed with a terminal overdose of sodium
pentobarbital, and their lung tissue was collected for further
analysis.

Histopathological analysis of lung slices

Lung specimens from the mice were inflated to 15 cm H2O
with 4% paraformaldehyde and subsequently embedded in
paraffin. Lung slices were prepared and stained with
hematoxylin and eosin. Masson staining was also performed
to determine the development of collagen as previously
reported [32]. The Ashcroft score [33] was then assessed by
a researcher who was blinded to the experimental protocols.

Western blot analysis

Total protein was either extracted from cultured cells 48 h
after TGF-β1 administration, or from murine lung tissue.
The protein concentration was determined using a BCA
Protein Assay Kit (Thermo Fisher Scientific, Shanghai,
China). Following this, 30 μg of protein/sample was
separated by electrophoresis on 10% polyacrylamide
sodium dodecyl sulfate gels and transferred to poly-
vinylidene difluoride membranes. The membranes were
blocked for 1 h at room temperature with 5% nonfat milk
and incubated overnight at 4 °C with the following anti-
bodies: E-cadherin (1:1000, Santa Cruz, Dallas, TX,
USA), vimentin (1:500, Santa Cruz, Dallas, TX, USA), p-
Smad2/Smad3 (1:1000, Cell Signaling Technology,
Danvers, MA, USA), Smad2/3 (1:1000, Cell Signaling
Technology, Danvers, MA, USA), p-Akt (1:1000, Cell
Signaling Technology, Danvers, MA, USA), Akt (1:1000,
Cell Signaling Technology, Danvers, MA, USA), and
GAPDH (1:1000, Millipore, Danvers, MA, USA). The
next day, the membranes were washed three times in Tris-
buffered saline with Tween 20 and incubated with goat-

anti-rabbit antibody (1:2000, Cell Signaling Technology,
Danvers, MA, USA) or goat-anti-mouse antibody
(1:2000, Cell Signaling Technology, Danvers, MA, USA)
for 1 h at room temperature. After washing, the mem-
branes were incubated with chemiluminescence reagents
(Santa Cruz, Dallas, TX, USA) and detected using a UVP
imaging system (Upland, CA, USA). The images obtained
were further analyzed by using Image J software (version
1.48 v; National Institutes of Health, USA).

Immunofluorescent staining and analysis

For the in vitro component, the cells were washed with cold
PBS three times and fixed in 4% paraformaldehyde at room
temperature for 30 min. The cells were then blocked with
3% bovine serum albumin for 1 h at room temperature. For
E-cadherin and vimentin staining, the cells were incubated
overnight at 4 °C with rabbit anti E-cadherin antibody and
rabbit anti-vimentin antibody (1:200, Santa Cruz, Dallas,
TX, USA). On the next day, the cells were washed three
times with cold PBS and incubated with Alexa Fluor 488-
conjugated goat-anti-rabbit IgG (1:200, Jackson Immu-
noResearch, West Grove, PA, USA) at 37 °C for 1 h.
Subsequently, the cells were washed three times with cold
PBS and incubated with 4′,6-diamidino-2-phenylindole
(DAPI) for nuclear staining at room temperature for 10 min.
Images were visualized using an Olympus IX71 fluores-
cence microscope (Olympus, Tokyo, Japan). For the in vivo
component, the paraffin-embedded lung sections were
deparaffinized and rehydrated before staining. The mean
intensity of fluorescence obtained from the different groups
was analyzed using Image J software.

Statistical analysis

Data are expressed as dot plot and mean ± standard error of
the mean (SEM) and were analyzed using one-way variance
analysis, followed by the post hoc Tukey test. Survival was
analyzed using the Kaplan–Meier test. All the statistical
analyses were performed using GraphPad Prism 5 (Graph-
Pad Software, San Diego, CA, USA). A P value < 0.05 was
considered to be statistically significant.

Results

VPA-mediated inhibition of TGF-β1-induced EMT in
alveolar epithelial cells is time- and concentration-
dependent

Firstly, we determined the effects of different concentra-
tions of VPA on the viability of alveolar epithelial cells.
VPA did not cause alveolar epithelial cell death at
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concentrations of 0.1, 0.3, or 1 mM. However, 3 mM VPA
and 10 mM VPA reduced alveolar epithelial cell viability to
67% (p < 0.01) and 23% (p < 0.01) of that of the control
group, respectively (Fig. 1A). In addition, A549 cells
incubated with VPA (0.1, 0.3, and 1 mM) and TGF-β1 at
10 ng/ml demonstrated no significant change in cell viabi-
lity (Fig. 1B). We also applied VPA at various timepoints to
determine whether VPA inhibited EMT in a time-dependent
manner. 1 mM VPA was administered for 0.5 h or 72 h prior
to TGF-β1, and 0.5 h post-TGF-β1 (Fig. 1C). Compared to
the TGF-β1 group, pretreatment with VPA for 72 h inhib-
ited EMT, as demonstrated by a significant increase in the
expression of E-cadherin (p < 0.05), alongside a concurrent
downregulation in the expression of vimentin (p < 0.05)
(Fig. 1D). Furthermore, we attempted to identify the
effective concentration of VPA in preventing EMT. Dif-
ferent concentrations of VPA at 0.1, 0.3, 1, or 3 mM were
administered for 72 h prior to TGF-β1 (Fig. 1E). Both 1 mM
and 3 mM VPA were able to increase E-cadherin expression
(p < 0.05) and reduce vimentin expression (p < 0.05) com-
pared to the TGF-β1 cohort (Fig. 1F). However, VPA was
not effective at concentrations <1 mM (Fig. 1F).

Having identified the time and concentration of VPA
required to prevent EMT, the effects of VPA during EMT

were subsequently validated and an assessment of its
associated signaling pathways was performed. Western blot
and immunofluorescent staining were used to analyze the
expression of E-cadherin and vimentin. TGF-β1-induced
EMT in A549 cells compared to the control group
(Fig. 2A). In comparison to the TGF-β1 cohort, pretreat-
ment with 1 mM for 72 h significantly increased the
expression of E-cadherin (p < 0.05) and downregulated
vimentin expression (p < 0.05). Immunofluorescence stain-
ing demonstrated similar results (Fig. 2B). Surprisingly,
during EMT induced by TGF-β1, the expression of p-Akt
and p-Smad2/3 increased compared to the control group,
whilst pretreatment with VPA downregulated both p-Akt (p
< 0.05) and p-Smad2/3 (p < 0.01) (Fig. 2C).

VPA-mediated inhibition of TGF-β1-induced EMT
depends on Smad2/3 deactivation

Previous studies suggest that both canonical and non-
canonical signaling pathways participate in EMT [34, 35].
We attempted to elucidate the function of both PI3K-Akt
and Smad2/3 pathways during EMT in A549 cells. In
comparison to TGF-β1-induced EMT, LY294002 was able
to reduce the expression of p-Akt (p < 0.01) but did not

Fig. 1 VPA inhibits EMT in alveolar epithelial cells (A549) in a
time- and concentration-dependent manner. A A549 cells were
treated with VPA (0–10 mM) for 48 h, and cell viability was assessed
using an MTT assay. B A549 cells were treated with different con-
centrations of VPA with or without TGF-β1 (10 ng/ml) for 48 h and
cell viability was assessed using an MTT assay. C The time-dependent
effect of VPA: 1 mM VPA was administered 0.5 or 72 h prior to TGF-
β1 and 0.5 h post TGF-β1, and cells were harvested 48 h after TGF-β1

administration and used for further analysis. D The expression of E-
cadherin and vimentin and GAPDH serves as the loading control. E
The concentration-dependent effect of VPA: VPA (0.1, 0.3, and 1
mM) was administered 72 h prior to TGF-β1 and cells were harvested
48 h after TGF-β1 administration and used for further analysis. F The
expression of E-cadherin and vimentin in various conditions. Data are
presented as dot plot and mean ± SEM (n= 3). *P < 0.05; **P < 0.01;
***P < 0.001.
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increase E-cadherin or decrease vimentin expression
(Fig. 3A, B). On the other hand, A8301 downregulated the
expression of p-Smad2/3 compared to the TGF-β1 cohort
(p < 0.05) and was also capable of inhibiting EMT, as
demonstrated by an increase in E-cadherin (p < 0.05) and
decrease in vimentin expression (p < 0.05) in cells incubated
with TGF-β1 (Fig. 3A, B).

VPA and A8301 improve survival, reduce body
weight loss, and alleviate lung fibrosis induced by
bleomycin

To determine whether VPA is able to protect against lung
fibrosis induced by bleomycin, mice were treated with VPA
(100 mg/kg) and its effects on survival and body weight was
assessed. The survival rate of mice with lung fibrosis was
30% during the 28-day follow-up. However, administration
of VPA at 100 mg/kg improved the survival rate in mice
instilled with bleomycin (p < 0.05) (Fig. 4A). We treated
mice with LY294002 and A8301 to assess their effects on
survival and body weight in mice, and subsequently com-
pared these results to mice that received VPA. In mice with
lung fibrosis, A8301 was shown to increase mice survival
during the follow-up period (p < 0.05), but LY294002 failed

to improve mice survival (Fig. 4A). Similar results were
found with body weight, as both VPA and A8301 reduced
body weight loss in mice with lung fibrosis (p < 0.05).
Interestingly, LY294002 did not demonstrate any positive
effect on body weight in mice until 22 days after bleomycin
instillation (p < 0.05) (Fig. 4B).

To further investigate the protective role of VPA against
lung fibrosis, histopathological changes in lung tissues were
examined. H&E staining (Fig. 4C) and Masson staining
(Fig. 4D) demonstrated that VPA was able to reduce
structural damage to murine lung tissue. A similar effect
was seen with A8301 administration, as Ashcroft scores
were decreased compared to lung fibrosis mice (p < 0.01),
but not LY294002 (Fig. 4E). Collectively, these data sug-
gest that VPA and A8301 protect mice against lung fibrosis
induced by bleomycin.

VPA prevents EMT in fibrotic lung tissue

In order to determine whether the protective effects of VPA
are related to the prevention of EMT development in mice
with lung fibrosis, we assessed the expression of epithelial
biomarkers by western blotting and immunofluorescent
staining. As demonstrated in Fig. 5A, B, bleomycin induced

Fig. 2 Pretreatment with VPA inhibits EMT in alveolar epithelial
cells. A549 cells were treated with VPA (1 mM) 72 h prior to TGF-β1,
and cells were collected 48 h after TGF-β1 stimulation. A The
expression of E-cadherin and vimentin in various conditions, GAPDH
serves as the loading control. B The expression of E-cadherin and

vimentin in various conditions was analyzed by immunofluorescent
staining. Mean fluorescence intensity was determined by Image J
software. C The expression of p-Akt and p-Smad2/3 in various con-
ditions. Data are presented as dot plot and mean ± SEM (n= 3). Scale
bar= 50 μm. *P < 0.05; **P < 0.01; ***P < 0.001.
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the downregulation of E-cadherin and upregulation of
vimentin compared to mice in the control group (p < 0.01).
Both VPA and A8301 improved E-cadherin and reduced
vimentin expression in fibrotic lung tissue compared to
mice with lung fibrosis (p < 0.05). These changes were not
observed in mice with lung fibrosis that received
LY294002.

Discussion

Our data demonstrate that pretreatment with VPA increases
E-cadherin and reduces vimentin expression, indicating the
suppression of EMT development in cultured human lung
epithelial cells. Furthermore, the administration of VPA
downregulates the expression of both p-Akt and p-Smad2/3,
while A8301 prevents EMT development. LY294002 fails
to demonstrate a similar outcome. The ability of VPA to
inhibit EMT was further investigated in a mice model of
bleomycin-induced lung fibrosis. VPA administration
improves survival and minimizes body weight loss in mice

with lung fibrosis. It also leads to a reversal in histopatho-
logical changes within the fibrotic lung. Furthermore, VPA
upregulates the expression of epithelial biomarkers and
downregulates the expression of mesenchymal biomarkers
in the fibrotic lung tissue. A8301 treatment demonstrates
similar results in this murine model of lung fibrosis.

VPA is widely used as a mood stabilizer to treat various
neurological and psychiatric disorders [36, 37]. A previous
study demonstrated that VPA inhibits the activity of histone
deacetylases in A549 cells following a TGF-β1 challenge
[38]. The study also indicated that VPA partially reverses
EMT, as suggested by a downregulation in collagen-I
expression in comparison to cells incubated with TGF-β1
alone [38]. Our in vitro data illustrate that VPA inhibits
EMT in alveolar epithelial cells in a time- and dose-
dependent manner. VPA (1 mM) only inhibited EMT when
it was administered 72 h prior to TGF-β1 in A549 cells.
Interestingly, Kasotakis et al. [39] suggested that VPA has a
narrow therapeutic window in the treatment of murine acute
lung injury, having demonstrated that VPA must be admi-
nistered within 3 h to confer a significant improvement in

Fig. 3 VPA prevents EMT in alveolar epithelial cells induced by
TGF-β1 and is dependent on Smad2/3 deactivation. A549 cells
were challenged with VPA (1 mM) 72 h prior to TGF-β1. Both
LY294002 (20 μM) and A8301 (10 μM) were administered 0.5 h prior
to TGF-β1, and cells were subsequently collected 48 h after TGF-β1
stimulation. A The expression of E-cadherin, vimentin, p-Akt, and p-

Smad2/3 in various conditions. B The expression of E-cadherin and
vimentin in various conditions was analyzed by immunofluorescent
staining. Mean fluorescence intensity was determined by Image J
software. Data are presented as dot plot and mean ± SEM (n= 3).
Scale bar= 50 μm. *P < 0.05; **P < 0.01; ***P < 0.001.
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survival in mice. On the other hand, Kabel et al. demon-
strated that in rat lung fibrosis, VPA significantly alleviated
lung fibrosis when administered continuously for 7 days
prior to bleomycin challenge via the downregulation of
proinflammatory cytokines and a reduction in nuclear factor
kappa-B expression [27]. The data from our in vivo study is
consistent with this. Furthermore, we also demonstrate that
VPA inhibits EMT within lung tissues. These results sug-
gest that time is a key factor to be considered in order to
determine the effects of VPA.

Several signaling pathways are reported to be associated
with the development of EMT and pulmonary fibrosis [40–
43]. As a component of the canonical pathway, Smad2/3 is
activated upon stimulation and subsequently translocates to
nucleus, resulting in EMT-related gene transcription,
involving transcription factors such as Snail, Twist, and
ZEB1/2 [15]. PI3K-Akt represents the noncanonical path-
way, which is also activated, and leads to the upregulation
of p-Akt during fibrosis [44, 45]. Similarly, our study
demonstrates that both p-Smad2/3 and p-Akt are upregu-
lated during EMT of alveolar epithelial cells. Our data also
indicate that both pathways are inhibited by VPA during
EMT induced by TGF-β1. We further evaluated the

functions of Smad2/3 and Akt during EMT and fibrosis by
applying inhibitors, and our results indicate that each pro-
tein may possess a different role. Similar to VPA, TGF-β
type I receptor inhibitor A8301 prevented EMT in alveolar
epithelial cells and mitigated lung fibrosis in mice. How-
ever, LY294002 did not reverse EMT and failed to protect
against pulmonary fibrosis in mice. Whether these key
proteins affect each other during lung fibrosis and EMT
remains to be elucidated.

Given the fact that complicated signaling pathways are
involved in the development of EMT, the interaction and
crosstalk between different pathways may contribute to
different pathological effects. PI3K-Akt is activated in
response to TGF-β1. Therefore, targeting both PI3K and
Akt results in the mitigation of TGF-β1-induced EMT and
organ fibrosis. Conte et al. reported that LY294002, an
inhibitor of PI3K-Akt, inhibits cell proliferation and reduces
the expression of α-smooth muscle actin, in addition to
collagen production in lung fibroblasts induced by TGF-β1
[46]. Furthermore, in order to avoid its potentially toxic
systemic effects, one recent study investigated the efficacy
of a PI3K-Akt inhibitor administered via the inhaled route
on lung function in fibrosis [47]. The study demonstrated

Fig. 4 VPA and A8301 improve survival, reduce body weight loss,
and mitigate lung fibrosis in mice. Lung fibrosis was induced by
endotracheal instillation of bleomycin (2 mg/kg). VPA (100 mg/kg)
was administered intraperitoneally daily for 7 days before bleomycin
instillation, followed by intraperitoneal administration daily for
28 days. LY294002 (5 mg/kg) or A8301 (1 mg/kg) were administered
intraperitoneally once prior to bleomycin instillation. A Survival was

analyzed by Kaplan–Meier test. *P < 0.05. B Change in body weight
during the follow-up period. Data are presented as mean ± SEM. n=
10. *P < 0.05 compared with bleomycin-induced lung fibrosis. C H&E
staining of lung slices. D Masson staining of lung slices. E Ashcroft
score of lung tissue. Data are presented as dot plot and mean ± SEM (n
= 5–6). Scale bar= 50 μm. *P < 0.05; **P < 0.01.
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that PI3K-Akt inhibition increased mice survival, reduced
collagen accumulation and improved lung function in
bleomycin-induced lung fibrosis. Interestingly, it also
reduced inflammation and improved lung function in asth-
matic mice. Iliopoulos et al. focused on the function of
isoforms of Akt rather than the overall activity of Akt
during EMT. The results indicate that Akt1 knockdown, but
not Akt2, is capable of promoting TGF-β1-induced EMT
[48]. Another experiment demonstrated that downregulation
of Akt1 contributes to EMT induced by insulin-like growth
factor-I or epithelial growth factor, whereas Akt2 down-
regulation counteracted this effect [49]. Whilst the function of
Akt isoforms is important to consider in the context of EMT,
the crosstalk between Akt and other signaling pathways
makes the situation significantly more complex. Silencing
Akt1 promotes EMT and is associated with enhanced extra-
cellular signal-related kinase activation [49]. The direct
interaction between Akt and Smad3 prevents Smad3 phos-
phorylation and further hinders Smad activation induced by
TGF-β [50]. Additionally, PI3K has been shown to regulate
ubiquitin-mediated proteasomal degradation of Smad2/3.
Therefore, the duration of Smad2/3 activation is significantly

increased via PI3K inhibition [51]. It may be hypothesized
that the PI3K-Akt inhibitor LY294002 failed to protect mice
from lung fibrosis and EMT in alveolar epithelial cells due to
the differential effects of Akt isoforms, as well as the inter-
action of Akt on other proteins within the complex signaling
network. The precise molecular mechanisms underlying these
processes require further investigation.

This study is not without limitations. Firstly, compared to
the A549 cell line, the use of primary human lung epithelial
cells would have been more appropriate and advantageous
for modeling lung fibrosis and to assess the effectiveness of
treatment. This should be actively considered in the future.
Secondly, the model of pretreatment may limit its clinical
use as medication can only be prescribed after diagnosis.
However, the theoretical translatability of our findings into
clinical practice remains significant due to the fact that
cancer patients usually receive chemotherapy post-
operatively, hence chemotherapy-induced lung fibrosis can
be potentially predicted. Therefore, prophylactic adminis-
tration of VPA prior to chemotherapy may be a viable
option in preventing lung fibrosis and subsequently
improving the outcomes of patients with cancer.

Fig. 5 VPA prevents EMT induced by bleomycin in fibrotic lung
tissue. A The expression of E-cadherin and vimentin in lung tissue
from mice. B The expression of E-cadherin and vimentin in lung slices
were analyzed by Immunofluorescent staining. Mean fluorescence

intensity was determined by Image J software. Data are presented as
dot plot and mean ± SEM (n= 5–6). Scale bar= 20 μm. *P < 0.05;
**P < 0.01; ***P < 0.001.
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In conclusion, our study demonstrated that VPA prevents
EMT induced by TGF-β1 in alveolar epithelial cells, which
was dependent on Smad2/3 deactivation in vitro. Similarly,
pretreatment with VPA attenuates the development of pul-
monary fibrosis via the inhibition of EMT in mice. This study
provides further evidence of the protective effects of VPA
and its potential therapeutic value in preventing and treating
human lung fibrosis caused by chemotherapy, although these
findings require clinical validation in human subjects.
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