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Plant pathogenic fungi such as Fusarium tricinctum cause various plant

diseases worldwide, especially in temperate regions. In cereals, F. tricinctum

is one of the most common species causing Fusarium head blight (FHB) and

root rot. Infection with F. tricinctum results in high yield losses and reduction

in quality, mainly due to mycotoxin contamination of grain. Mycotoxins

produced by F. tricinctum, such as enniatins (ENs) and moniliformin (MON),

which are the most studied mycotoxins, have been reported to have multiple

toxic effects on humans and animals. Although chemical control of Fusarium

infection has been applied to grains, it is not always effective in controlling

disease or reducing the level of mycotoxins in wheat grains. To the contrary,

chemical control may significantly increase infection of F. tricinctum in

fungicide-treated plots after treatment. Our studies show that the bacterium

Bacillus amyloliquefaciens, has good control effects against F. tricinctum.

Therefore, its use as a biological control agent against various plant pathogens

may be an effective strategy to control the spread of Fusarium pathogens.

Here, we conduct a review of the literature involving this plant pathogen, its

diversity, virulence, and methods to control.
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Introduction

Fusarium tricinctum is one of the most economically important plant pathogens
and toxin-producing filamentous fungi in cereals and many other crops in the world
(Marasas et al., 1967; Chelkowski et al., 1989; Andersen et al., 1996; Bottalico and
Perrone, 2002; Kosiak et al., 2003; O’Donnell et al., 2013, Wiśniewska et al., 2014;
Shi et al., 2017). Distribution of Fusarium species is dependent on climate and the
genus is frequently observed within suitable climatic conditions. Temperature is the
main climatic factor that affects the occurrence and development of Fusarium diseases
of crops, although its impact of the climatic factor is not independent of other
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environmental and host factors (Saremi et al., 1999; Doohan
et al., 2003). Among Fusarium species, F. tricinctum is thermal-
specific pathogen, and lower temperature is beneficial to its
activity and growth (Yan and Nelson, 2020). In fact, F. tricinctum
is common in temperate regions, and usually appears as
saprophyte or facultative parasite (Chelkowski et al., 1989;
Andersen et al., 1996; Kosiak et al., 2003).

F. tricinctum is related to Fusarium disease and prefer
crop hosts, which is important to agriculture (Figures 1A–D).
Studies have shown that F. tricinctum can potentially infect
and colonize undamaged wheat leaves and produce conidia
on senescent wheat leaves, resulting in wilt and “Fusarium
head blight” (Wagacha et al., 2012), which can highly reduce
crop yield. In addition, it is reported that F. tricinctum can
produce mycotoxins as secondary metabolites, and the existence
of mycotoxins in grains is a great worldwide concern. The
presence of mycotoxins in feeds and foods is often associated
with chronic or acute mycotoxin diseases in livestock and also
in humans (Bottalico and Perrone, 2002).

Research on chemical control of Fusarium infection in
grains has been reported. For example, use of tebuconazole
fungicide has been effective against these fungal pathogens
(Mesterhazy et al., 2003). However, fungicides containing
tebuconazole and azoxystrobin are not always effective in
controlling Fusarium disease, or reducing the levels of their
mycotoxins in wheat grain (Pirgozliev et al., 2002; Wegulo et al.,
2010). In addition, compared with untreated plots, Fusarium
infection significantly increased in fungicide-treated plots,
where the frequency of F. tricinctum was most often increased
(Henriksen and Elen, 2005). These shortcomings require the
search for alternative strategies, including biological control
methods, to inhibit the prevalence of Fusarium pathogens.
However, Sphingomonas and Bacillus bacteria may offer effective
biological control of Fusarium pathogens (Dunlap et al., 2011;
Wachowska et al., 2013; Shang et al., 2016).

F. tricinctum strains are saprophytes and plant pathogens of
a variety of hosts including wheat and barley, and increasingly
have been reported throughout the world (Torbati et al., 2019;
Yan and Nelson, 2020; Senatore et al., 2021). However, the
systematic synthesis of knowledge on these plant pathogens and
more practical biocontrol methods are currently lacking. In this
review, we will cover recent insights into the distribution of
F. tricinctum, examine current understanding in pathogenicity,
and discuss the strategies to control the disease caused by the
pathogenic fungi.

Taxonomy of Fusarium tricinctum

Corda first referred to F. tricinctum as Selenosporium
“tricnictum,” and Saccardo transferred it to F. tricinctum, which
are complex filamentous ascomycete fungi (Figures 1F,G),
composed of many toxin-producing plant pathogens with

important agricultural significance, then it was neotypified
by Neish (1987). Holubová-Jechová et al. (1994) assigned
epitypification for this species. F. tricinctum grow rapidly on
PDA, forming a large number of dense mycelia that are initially
white, but will become pink, red or purple with age, since
they can form red pigments in agar (Figure 1E). F. tricinctum
can be distinguished from some closely related species in
terms of the macroconidial shape and the monophialidic
conidiogenous cell. Cultures of F. tricinctum can be confused
easily with F. graminearum, F. pseudograminearum, and
F. culmorum (Leslie and Summerell, 2006). Differences in the
morphology of the macroconidia allow the differentiation of
F. tricinctum from F. graminearum, F. pseudograminearum, and
F. culmorum. More importantly, as a member of the Section
Sporotrichiella, the presence of microconidia distinguishes
isolates of F. tricinctum from isolates of which form colonies on
PDA similar to those of F. tricinctum. In addition, F. tricinctum
cannot produce polyphialides, which is different from some
close relatives (Leslie and Summerell, 2006).

F. tricinctum has a very close relationship with
F. avenaceum, which together with other Fusarium tricinctum
species complex (FTSC), are related with Fusarium head
blight (FHB) and seedling diseases (stem and root rot) of
all cereals (Bottalico and Perrone, 2002). FTSC members
include isolates of F. avenaceum, F. flocciferum, F. petersiae,
F. acuminatum, F. tricinctum, and other unclassified FTSC
(NCBI Taxonomy, Figure 2). New members belonging to FTSC
were described as F. gamsii and F. iranicum from Iran (Torbati
et al., 2019), and as FTSC 12, 13, 14, 15 from Italy (Senatore
et al., 2021). Members of the FTSC complex produce a number
of “emerging” mycotoxins, including enniatins (ENs) and
moniformin (MON) that may pose a threat to food safety and
human health (Jestoi, 2008). Phylogenetic analysis has shown
that the genetic relationship among these species is quite close
(Turner et al., 1998), and it is very difficult to distinguish them
from each other on the basis of morphological and physiological
characteristics, but they can be distinguished by means of
molecular methods. DNA sequence data from several marker
loci have been used to resolve phylogenetic relationship within
the FTSC (Figure 2), including ACL1 (ATP citrate lyase 1),
TUB-2 (β-tubulin), ITS rDNA, ESYN1 (enniatin synthetase 1),
RPB1 (RNA polymerase subunit 1, RPB2 (RNA polymerase
subunit 2), and TEF1 (translation elongation factor 1α) (Turner
et al., 1998; Kristensen et al., 2005; Kulik et al., 2007; Niessen
et al., 2012; Senatore et al., 2021).

The distribution and ecology of
Fusarium tricinctum

F. tricinctum is plant pathogen all over the world that have
the potential to infect and colonize various cereal crops, such
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FIGURE 1

Observation of root rot symptom (Angelica sinensis) resulting from infection of F. tricinctum, above ground (A: healthy plant; B: infected plant)
and below ground (C: healthy root; D: infected root); Colony of F. tricinctum on a PDA plate (E); Micrograph image of F. tricinctum
macroconidia (F, scale bar = 25 µm) and Microconidia (G, scale bar = 50 µm). (A–E) Photos taken by Dr. Liu of our group; (F,G) borrowed from
Leslie and Summerell (2006).

FIGURE 2

Maximum-likelihood (ML) phylograms obtained from the
combined partial TEF and RPB2 data set (2,487 bp) of the
Fusarium tricinctum species complex (FTSC) isolates. Sequences
were used to conduct BLASTn queries of NCBI GenBank
(https://www.ncbi.nlm.nih.gov/). Aligned sequences of 17 FTSC
reference strains were combined and analyzed via ML
bootstrapping using MEGA 11. Bootstrap values (%) are shown
on clades.

as wheat, rice, maize, and oats in temperate and also semi-
tropical cereal-growing areas, including Asia, North America,
South Africa, and all Europe (Marasas et al., 1967; Lamprecht

et al., 1988; Chelkowski et al., 1989; Andersen et al., 1996;
Golinski et al., 1996; Kosiak et al., 2003; Wiśniewska et al., 2014;
Shi et al., 2017). F. tricinctum was recently reported as plant
pathogen in Argentina, Brazil, Western Australia, and South
Australia (Castañares et al., 2010; Barkat et al., 2016; Moreira
et al., 2019; Supplementary Table 1 and Figure 3).

F. tricinctum was isolated from the diseased stem bases of
wheat and was the most frequent species of Fusarium isolated
from malted barley in Denmark (Andersen et al., 1996) and
from winter wheat in Sweden (Lindblad et al., 2013). Also,
it rarely occurred in pods and seeds of mature plants or
residue (Nyvall, 1976). F. tricinctum is usually isolated from
moldy corn, fescue, and most small grains (Marasas et al.,
1967; Bamburg et al., 1968; Burmeister and Hesseltine, 1970).
It is also the cause of postharvest rot of onion bulbs and
pumpkins (Carrieri et al., 2013), as well as dry rot of seed
tubers of potatoes in Michigan (Aktaruzzaman et al., 2018).
In addition, F. tricinctum was found as endophytic species in
healthy trees and healthy seedlings of Persian oak trees in Iran
(Alidadi et al., 2019; Supplementary Table 1). Our work proved
that F. tricinctum was the pathogen causing bulbs rotting and
spalling from the basal disc, as well as progressive yellowing
and defoliation of the leaves in lilies and Lanzhou lilies (Li
et al., 2013; Shang et al., 2014). Interestingly, we also found
that F. tricinctum was involved in root rot of Chinese herbal
medicine, e.g., Angelica sinensis and wolfberry (Liu et al., 2021;
Uwaremwe et al., 2022).
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FIGURE 3

Map showing the global distribution (orange dots) of plant hosts with reported F. tricinctum infection. The distribution is limited to the
temperate zone (covered in light yellow).

Geographic distribution of F. tricinctum appears to be
related to climatic conditions, such as temperature and
humidity. Climate is the main factor that influences the
distribution of Fusarium in soil, and the effects of temperature
on the colonization of roots and soil propagule density have
also been experimentally determined to be a factor (Saremi
et al., 1999). The Fusarium species differ in their climatic
distribution and optimum climatic conditions are required
for their persistence. Temperature and humidity are the main
climatic factors that affect the occurrence of grain Fusarium
diseases, although the influence of these climatic factors is
not independent of other environmental and host factors.
Conditions that are conductive to in vitro growth are usually
the most favorable for production of mycotoxins in cereal crops
(Doohan et al., 2003).

The incidence of the pathogenic organisms of wheat
Fusarium, barley Fusarium, and maize ear rot are often related
to different climatic conditions (temperature and rainfall) in
different geographic locations. Temperature has a significant

influence on Fusarium root rot of soybeans, and F. tricinctum
is the major pathogen of the root rot disease and show
obvious thermal-specific (Yan and Nelson, 2020). The cooler
temperatures might be conductive to the activity of F. tricinctum
(Yan and Nelson, 2020). Fusarium species are geographically
distributed soil fungi because weather has an important
influence on the abundance and activity of the species (Saremi
et al., 1999; Doohan et al., 2003). F. tricinctum usually also
appears as a saprophyte or a parasite of plants in temperate
and semi-tropical regions (Figure 3; Chelkowski et al., 1989;
Andersen et al., 1996; Kosiak et al., 2003).

Even before infecting the host, climate has the potential
to affect the incidence and severity of Fusarium disease. Once
the F. tricinctum inoculum disperses to the host, climate
factors, temperature, and humidity play a vital role in the
infection and colonization of grains by F. tricinctum (Doohan
et al., 2003). Temperature or osmotic stress may indirectly
affect the development of disease by inducing the host
antifungal defensive mechanisms before attacking of pathogen
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(Conrath et al., 2002). Although in vitro growth tests showed
that Fusarium have temperature ecotypes on the basis of
species and origin location, in vitro pathogenicity tests suggested
that species is much more important than climatic origin in
determining the pathogenicity of Fusarium, regardless of the
temperature (Brennan et al., 2003).

The pathogenicity from Fusarium
tricinctum

F. tricinctum is related to Fusarium disease, which can
reduce crop yield and cause the accumulation of mycotoxins in
grain products. The potential of Fusarium to infect and colonize
undamaged wheat leaves, and the potential to produce conidia
on senescent leaves cultured were investigated. Studies have also
shown that F. tricinctum forms sporophores and erupts through
the leaf surface to release a large number conidia, resulting in
wilt and FHB of cereal crops, such as wheat, oat, barley, and
maize (Wagacha et al., 2012).

Many of Fusarium species are well-known for their
mycotoxins produced as secondary metabolites, and the
presence of mycotoxins in feeds and foods is often associated
with chronic or acute mycotoxin diseases in livestock and
also in humans. However, there is a great variability in the
production of biologically active secondary metabolites between
species (Visconti et al., 1992). The main groups mycotoxins
commonly found in F. tricinctum are: ENs, MON, and T-2 toxin,
which are currently covered by limited literature (Langseth,
1998; D’mello et al., 1999; Thrane, 2001; Jestoi, 2008). ENs,
the most studied mycotoxins, produced by F. tricinctum are
usually considered to be less toxic than trichothecenes and
are known as a phytopathogenic compound causing necrosis
and wilt (Cuomo et al., 2013). MON has been frequently
purified from cultures of F. tricinctum, and the role of MON
(a potassium or sodium salt of a cyclobutene) is to inhibit
enzymatic systems and gluconeogenesis (Jestoi et al., 2004).
The most reported trichothecenes mycotoxin in F. tricinctum
is T-2 toxin, which is associated with acute toxicity (Prelusky
et al., 1994). In addition, some of the mycotoxins may also
have the potential to be applied as drugs or drug candidates.
These mycotoxins include fusarielins (Hemphill et al., 2017),
Visoltricin (Visconti et al., 1992), and ENs (Wätjen et al., 2009),
which are medicinally used as antibiotics for the treatment of
nasopharyngitis (Hemphill et al., 2017).

Enniatins (ENs) are a group of fungal mycotoxins with a
hexadepsipeptidic chemical structure and they possess many
potent biological activities that can contaminate a variety
of foodstuffs increasing the exposure risk for consumers
(Cuomo et al., 2013). Among FHB pathogens of cereals,
F. tricinctum are the most effective ENs producers in naturally
contaminated grain (Jestoi et al., 2004; Jestoi, 2008). The cyclic
hexadepsipeptide compounds are known as phytopathogenic

toxins from F. tricinctum causing symptoms such as necrosis
lesions, rot, and wilt (Hornbogen et al., 2002; Figure 4).
The molecule consists of three alternating residues each of
a branched chain amino acid and D-hydroxyisovaleric acid
(Supplementary Figure 1). ENs are synthesized by a 347 kDa
multienzyme (EN synthetase), and the corresponding gene esynl
has an open reading frame of 9,393 nucleotides (Hornbogen
et al., 2002). The biological activities of the ENs are largely due
to their ability to transfer cations through bilayer membranes
without forming membrane pores (Jestoi, 2008). ENs are then
integrated into cell membranes, forming passive cation-selective
channels (Cuomo et al., 2013). ENs contribute to the wilt toxic
character of F. tricinctum, and their virulence was significantly
reduced after disruption of the esynl gene (Hornbogen et al.,
2002). In addition to phytotoxicity, ENs show antimicrobial,
insecticidal, herbicidal, and anthelminthic activities (Burmeister
and Plattner, 1987; Herrmann et al., 1996; Jeschke et al., 2003;
Uhlig et al., 2007), as well as high cytotoxicity to mammalian
cells (Jestoi, 2008). ENs A1 and B1 and, to a lesser extent,
enniatin B may possess anticarcinogenic properties by induction
of apoptosis and disruption of extracellular regulated protein
kinase signaling pathway. Further analysis of ENs is necessary
to investigate their potential importance for cancer therapy
(Wätjen et al., 2009).

Beauvericin (BEA) is a cyclodepsipeptide metabolite,
closely related and co-occurred with ENs (Hornbogen et al.,
2002; Supplementary Figure 1). BEA was currently reported
to be associated with the presence of F. tricinctum (Hellin
et al., 2016), and is a very potent channel-forming molecule
as it induces pores in lipid membranes (Moretti et al., 2002).
The non-selective toxic activity of BEA could be explained
by its capacity to induce biological membrane pores, resulting
in interference with the normal gradients of physiologically
important monovalent cations on the cell membranes (Moretti
et al., 2002). This process could determine the role of BEA in
pathogenicity caused by F. tricinctum strains that produce the
toxin. However, F. tricinctum strains do not produce very high
levels of BEA (Uhlig et al., 2007). BEA is not only highly toxic
to insects (Gupta et al., 1991), but also cytotoxic to mammalian
cells and tissues, and has been reported to cause apoptosis in
mouse and human cell lines (Macchia et al., 1995).

Moniliformin (MON) was structurally characterized and
identified as the sodium salt of the semisquaric acid, and the
relatively small semisquaric anion can be assumed to chemically
behave similarly to inorganic anions (Supplementary Figure 2;
Springer et al., 1974). Severe infections of F. tricinctum, were
usually responsible for MON occurring in scabby grains,
according to the surveys from some European countries
(Kostecki et al., 1995). In Austria, MON occurred in freshly
harvested durum wheat (Adler et al., 1995). The contamination
MON in grains was closely associated with the presence of
F. tricinctum in most surveys (Kostecki et al., 1995; Bottalico
and Perrone, 2002; Figure 4). MON acts as an inhibitor of
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FIGURE 4

Diagram that F. tricinctum (crescent moon in dark green) infects a plant, releases mycotoxins and causes disease symptoms in plants.

thiamine pyrophosphate depending enzymes, such as pyruvate
dehydrogenase, ketoglutarate dehydrogenase, and pyruvate
decarboxylase (Gathercole et al., 1986; Pirrung et al., 1996). In
addition, MON was reported to inhibit glutathione peroxidase,
aldose reductase, reductase, and gluconeogenesis (Deruiter et al.,
1993; Wu and Vesonder, 1997). MON in diets was associated
with reduced performance, hematological diseases, myocardial
hypertrophy, and mortality in pigs and rodents (Harvey et al.,
1997; Bottalico and Perrone, 2002), as well as muscular weakness
and acidosis in poultry (Nagaraj et al., 1996). The major target
organs of the mycotoxin are the cardiac and skeletal muscles
(Harvey et al., 2002). Long-term exposure to MON has been
associated with reduced weight gain, heart muscle damage, and
disordered immune system in some laboratory animals (Harvey
et al., 1997, 2002; Li et al., 2000). MON has been speculated to
be associated with outbreaks of human Keshan disease in some
areas of China where ingestion of MON-contaminated maize
has caused cardiac lesions (Yu et al., 1995; Uhlig et al., 2007).

T-2 toxin belongs to type A trichothecenes, and is one of
the most toxic mycotoxins (Prelusky et al., 1994). T-2 toxin
is usually produced at low temperatures by the F. tricinctum
(Burmeister, 1971). T-2 toxin can inhibit hypocotyl elongation
of soybean (Figure 4). Although the inhibition of elongation by
cytokinin was similar to that of T-2 toxin, the two compounds
appeared to act in different ways (Stahl et al., 1973). Rats fed
the T-2 toxin diet were severely stunted with inflammations
of the skin around the mouth and nose (Burmeister, 1971),
while a large animal (steer) that received daily intramuscular

injections of T-2 toxin lost weight during the study and died after
long-term treatment (Grove et al., 1970).

Fusarielins have received little attention in the Fusarium
community as metabolite group. The ability of the Fusarium
species to produce fusarielins is largely unknown. Fusarielins
A and B were isolated from a F. tricinctum strain (Nenkep
et al., 2010). Fusarielins have been shown to interfere
with the microtubule function (Kobayashi et al., 1995).
In antibacterial assays, it was found that fusarielins A
and B were both mild antibiotics (Nguyen et al., 2007).
Fusarielins have also been shown to have toxic effect
on human epithelial carcinoma cell lines, and to be
characterized as mycoestrogens, as they stimulate growth
of MCF-7 breast cancer cells (Kobayashi et al., 1995;
Sørensen et al., 2012).

On the other hand, the pathogenicity of F. tricinctum may
be used to control the spread of invasive weeds. The annual
herb Bromus tectorum (cheatgrass) has been becoming a serious
invasive plant in semi-arid habitats of Northwestern America in
winter. F. tricinctum isolated from the local soils is the pathogen
of B. tectorum seeds, and is the main reason for the complete
death of the invasive grass (Masi et al., 2017). F. tricinctum
produce a large number of phytotoxins that participate in the
pathogenesis (O’Donnell et al., 2013). Acuminatopyrone and
blumenol A showed a significant inhibitory effect on the radicle
length of cheatgrass seedlings (Masi et al., 2017). F. tricinctum
that can cause B. tectorum infection and death show potential as
biocontrol agents against invasive weeds (Masi et al., 2017).

Frontiers in Microbiology 06 frontiersin.org

https://doi.org/10.3389/fmicb.2022.939927
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-939927 July 20, 2022 Time: 17:56 # 7

Wang et al. 10.3389/fmicb.2022.939927

Disease control to Fusarium
tricinctum

Some studies have been reported on the chemical control
of Fusarium infection in grains (Henriksen and Elen, 2005).
Treatment of F. tricinctum cultures with dilute sodium
bicarbonate can significantly reduce the production of
trichothecene mycotoxins, geraniol, and carotenoids (Roinestad
et al., 1994). Chlorine dioxide (ClO2) is a powerful disinfectant
with a wide range of high biocidal activity. The treatment
with aqueous ClO2 significantly reduced the populations of
F. tricinctum and prevented the occurrence of chestnut kernel
rot (Chen and Zhu, 2011). In addition, some natural plant
extracts have the effect of inhibiting the growth of F. tricinctum
under laboratory conditions. Curcuma longa extract is related to
the destruction of the synthesis of key proteins and enzymes of
fungal cell membrane systems, which may inhibit the synthesis
of ergosterol and the respiratory chain, ultimately inhibiting
the growth of F. tricinctum. Certain chemical components
of C. longa have the potential to be developed as a series
of environmentally sustainable bio-fungicides (Chen et al.,
2018). The best results were obtained after artificial inoculation
tests with fungicide tebuconazolein (Mesterhazy et al., 2003).
However, compared with untreated plots, a significant increase
of Fusarium infectious was detected in fungicide treated
plots. F. tricinctum was the most frequent species detected
after fungicide treating (Henriksen and Elen, 2005). The
effect of fungicides on Fusarium grain infection was studied
in the Norway field trial. Significant increase in Fusarium
infection was detected in fungicide-treated plots compared
with untreated plots. The level of the dominating species
(F. tricinctum) increased after fungicide application. Other
Fusarium species were detected only in low frequencies. In the
fungicide trials, Diamant (epoxyconazole + kresoximmetyl) and
F9215 (spiroketalamin + tebuconazole) increased F. tricinctum
significantly, while there were no significant effects on the
other Fusarium species (Henriksen and Elen, 2005). According
to some reports, fungicides containing tebuconazole and
azoxystrobin were not always effective in controlling Fusarium
disease in wheat or reducing mycotoxin levels in grain products
(Pirgozliev et al., 2002; Wegulo et al., 2010). These shortcomings
require the search for alternative strategies, including biological
methods, to control the spread of Fusarium pathogens.

Diverse microorganisms may contribute to the biological
control of plant pathogenic microbes, and most research
work has focused on isolates of some bacteria genera
(Mcspadden Gardener and Driks, 2004). The controlling effects
of Sphingomonas and Bacillus on winter wheat colonization
pathogens, were studied under laboratory conditions. The
Sphingomonas S 11 isolate has an antagonistic effect on
F. tricinctum. The infection symptoms of winter wheat seedlings
treated with a suspension of Sphingomonas S 11 bacteria and

inoculated with Fusarium pathogens were significantly lower
than those of unprotected seedlings that were inoculated with
the above mentioned pathogens (Wachowska et al., 2013).

Bacillus can produce a broad spectrum of antimicrobial
compounds, and this activity makes them candidates as
biological control agents against a variety of plant pathogens
(Mannanov and Sattarova, 2001; Mcspadden Gardener and
Driks, 2004). The biological activity of these strains is often
related to the production of secondary metabolites, such as
antimicrobial cyclic lipopeptides (Dunlap et al., 2011). Our
research shows that Bacillus amyloliquefaciens has good control
effects on root rot infested by F. tricinctum in Chinese herbal
medicine of Angelica sinensis, Lanzhou Lilies, and wolfberries
(Shang et al., 2016; Liu et al., 2021; Uwaremwe et al., 2022).
B. amyloliquefaciens strains were found to inhibit F. tricinctum
fungal mycelial growth, in vitro and in planta, as well as to
promote the growth of seedlings (Liu et al., 2021; Uwaremwe
et al., 2022).

Whether organic farming can control the activity of
F. tricinctum has not been reported. Bernhoft et al. (2010)
found that the infection rate of F. tricinctum in organically
produced wheat was lower, and the infestation and mycotoxin
levels of Fusarium found in organic grains was lower as
well (Bernhoft et al., 2010). However, it remains unclear
whether organic amendments technology is effective in
disease control and suppression, and farmers have often
neglected its role in disease management. The control
of onion pink rot by organic amendments is not easy to
predict and apply on a large scale (Carrieri et al., 2013).
In addition, organic solarization amendments cannot
completely eliminate the Fusarium population in the
soil, as evidenced by the existence of several infectious
onion bulbs in solarized treatments (Carrieri et al., 2013).
The agricultural intensity index includes the application
amount rate of pesticide and nitrogen fertilizer, which may
reflect some important differences between organic and
conventional agricultural systems. It has been reported
that agricultural intensity has an obvious impact on the
community structure of Fusarium in wheat grains. Importantly,
agricultural intensity increased the abundance of F. tricinctum
(Karlsson et al., 2017).

The agroforestry system is a multi-functional plant
production system and has attracted attention as a sustainable
method that can replace traditional monoculture agriculture.
The colonization rate of wheat grain in agroforestry combined
with the FHB pathogens F. tricinctum was lower than that in
conventional monoculture. Therefore, the biological control
of F. tricinctum in wheat grain may be enhanced due to
diversification under agroforestry practices (Beule et al.,
2019). In addition, altering the microclimate conditions may
inhibit the infection of F. tricinctum in the diversification of
agroforestry systems.
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Interactions with other Fusarium
species

A full-scale understanding of the interactions between
Fusarium species in grains gives us a better view of the ecological
role of F. tricinctum, which is greatly important for limiting
Fusarium disease and mycotoxin contamination in crops. There
may be both synergistic and competitive interactions within
Fusarium communities, F. poae and F. tricinctum, the pair of
Fusarium species co-existing in Swedish farmland (Karlsson
et al., 2017). F. tricinctum and F. langsethiae were highly
correlated in mature cereals in Belgium (Hellin et al., 2016).
Two Fusarium species prefer to share the same environmental
conditions instead of direct inter-species interactions, that is,
symbiosis mode may be reliant upon the external associations.
In addition, the co-inoculation of multiple Fusarium species led
to competition in a controlled experiment, and the competitive
interaction resulted in a decrease in fungal biomass and an
increase in the amount of mycotoxin (Xu et al., 2007).

Management of Fusarium disease is complicated, due to the
complexity of Fusarium species involved in an infection. Paired
Fusarium cultures have different interactions between different
isolates (Wagacha et al., 2012). The interaction between species
may partly rely on the type of mycotoxins produced during
the infection process (Llorens et al., 2006). Compared with
deoxynivalenol (DON), ENs is much less phytotoxic to wheat
and may has different effects on competing microorganisms.
The individual mycotoxins may cause relative competition
between species under certain circumstances. However, it is
worth noting that other factors, including host plant species,
climate factors, and other environmental conditions, may also
play an important role in the interaction between Fusarium
species (Llorens et al., 2006; Wagacha et al., 2012).

Future prospects

Fusarium disease is destructive for crops. The
quality of grains deteriorated due to contamination
by a series of mycotoxins produced by Fusarium.
Although the disease has economic significance, disease
control and prediction are still difficult due to the
variety of Fusarium species involved. Different species
may have different responses to different control
measures, and also may have different interactions
(competitive or synergistic) between species. Therefore,
a comprehensive understanding of the ecological role of
F. tricinctum at the community level is important in
agricultural practices.

Such exploratory work requires relatively large amount of
investment and may lead to the improvement of powerful

new facilities for the research and application of Bacillus-
mediated biological control. Obviously, this is an exciting
time for basic research on plant–microbe interactions and
microbiological ecology, as well as for efforts to improve
agricultural technologies. We hope that this information will
stimulate new research and will eventually lead to the wider
application of safe and effective biocontrol agents, thereby
promoting plant health.
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