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Abstract

Colletotrichum tanaceti is an emerging foliar fungal pathogen of commercially grown pyre-

thrum (Tanacetum cinerariifolium). Despite being reported consistently from field surveys in

Australia, the molecular basis of pathogenicity of C. tanaceti on pyrethrum is unknown.

Herein, the genome of C. tanaceti (isolate BRIP57314) was assembled de novo and anno-

tated using transcriptomic evidence. The inferred putative pathogenicity gene suite of C.

tanaceti comprised a large array of genes encoding secreted effectors, proteases,

CAZymes and secondary metabolites. Comparative analysis of its putative pathogenicity

gene profiles with those of closely related species suggested that C. tanaceti likely has addi-

tional hosts to pyrethrum. The genome of C. tanaceti had a high repeat content and repeti-

tive elements were located significantly closer to genes inferred to influence pathogenicity

than other genes. These repeats are likely to have accelerated mutational and transposition

rates in the genome, resulting in a rapid evolution of certain CAZyme families in this species.

The C. tanaceti genome showed strong signals of Repeat Induced Point (RIP) mutation

which likely caused its bipartite nature consisting of distinct gene-sparse, repeat and A-T

rich regions. Pathogenicity genes within these RIP affected regions were likely to have a

higher evolutionary rate than the rest of the genome. This “two-speed” genome phenome-

non in certain Colletotrichum spp. was hypothesized to have caused the clustering of spe-

cies based on the pathogenicity genes, to deviate from taxonomic relationships. The large

repertoire of pathogenicity factors that potentially evolve rapidly due to the plasticity of the

genome, indicated that C. tanaceti has a high evolutionary potential. Therefore, C. tanaceti

poses a high-risk to the pyrethrum industry. Knowledge of the evolution and diversity of the

putative pathogenicity genes will facilitate future research in disease management of C.

tanaceti and other Colletotrichum spp.
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Introduction

Plant pathogens cause diseases world-wide that have devastating economic, social and ecologi-

cal consequences [1]. Fungi are among the dominant causal agents of plant diseases [2] and

the genus Colletotrichum has been ranked among the top-ten most important fungal plant

pathogens [3]. Many Colletotrichum species are known to cause major economic losses glob-

ally, and have been extensively used in the study of the molecular and cellular bases of fungal

pathogenicity [4]. The publication of 25 whole genome sequences of Colletotrichum species

has significantly improved understanding of the biology, genetics and evolution of this genus

[5–11]. However, a large research gap still exists with this ever-expanding genus consisting of

more than 200 accepted species [12] and 14 major species complexes [13, 14]. The availability

of only one genome of a member of the destructivum complex, C. higginsianum, [5, 15] has

constrained comparative studies within and among species complexes. Insights into the geno-

mic organization and the pathogenicity gene repertoire of other Colletotrichum species in the

destructivum complex therefore, will significantly expand the knowledge base of this impor-

tant genus.

Colletotrichum tanaceti, a member of the destructivum complex [16], is an emerging foliar

fungal pathogen [17] of Dalmatian pyrethrum (Tanacetum cinerariifolium). Pyrethrum is

commercially cultivated as a source of the natural insecticide pyrethrin [18]. Colletotrichum
tanaceti has been consistently reported in Australian field surveys of the crop [19] since 2012

[17] and causes leaf anthracnose, with black, water-soaked, sunken lesions [17]. Due to its

hemibiotrophic lifestyle, characteristic symptoms of C. tanaceti are not evident on leaves until

around 120 hours after infection [17, 20], when it switches from biotrophy to necrotrophy. A

significant reduction in green leaf area occurs usually 10 days after infection [17]. This suggests

a rapid disease cycle for C. tanaceti in pyrethrum and, given its aggressiveness, the potential

for serious crop damage. The molecular basis of pathogenicity of C. tanaceti, which includes

the pathogenicity genes and their evolution, has not been studied. The genome sequence of an

emerging plant pathogen such as C. tanaceti is a good source for identifying putative genes

associated with the pathogen life cycle, pathogenicity and virulence. Effectors [21], proteases

[22], and carbohydrate active enzymes (CAZymes) [23] are such important gene categories in

fungal pathogenesis. Furthermore, secondary metabolites and transporters, P450s and tran-

scription factors [24] associated with biosynthesis of secondary metabolites are also important

pathogenicity factors. Fungal mitogen activated protein (MAP) kinase pathways regulate the

cascade of reactions that respond to various environmental stresses and are also important fac-

tors determining pathogenicity and virulence [25]. Draft genomes of many fungal pathogens

have been used to infer genes involved in pathogenicity with a high accuracy [26, 27] using

homology searches against curated databases [28, 29] and de novo inference using bioinfor-

matics tools [21, 30]. Identification of putative pathogenicity genes of C. tanaceti is fundamen-

tal for assessing the present risk of the pathogen, for future studies of functional validation and

ultimately for economic disease management.

The genome of a pathogen is also a good source for assessing evolutionary potential [31–

33] as the adaptive evolution increases with the plasticity of the genome [34, 35]. In filamen-

tous plant pathogens, repeat-rich gene-sparse genomic regions tend to harbor genes that are

involved in pathogenicity and host adaptation [35] and evolve at higher rates than the rest of

the genome giving rise to “two-speed genomes” [36]. Repeat-induced-point mutation (RIP) is

a fungal-specific mechanism for limiting transposon proliferation below destructive levels

[37]. Over time, RIP can cause the formation of A-T rich regions and is a mechanism facilitat-

ing two-speed fungal genomes [38–41]. The genome of C. tanaceti can be used to identify such
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genomic architecture and their relationship to pathogenicity genes, in order to assess the plas-

ticity and thereby the evolutionary potential.

Comparative genomics has enabled inference of patterns of speciation, pathogenesis and

host determination within Colletotrichum lineages [42]. These studies have indicated that the

gain and loss of putative pathogenicity gene families in Colletotrichum genomes are important

determinants of host specificity and pathogenic adaptation of these species [7, 9–11, 43]. Colle-
totrichum tanaceti has only been reported from pyrethrum in Australia but may have crossed

over from another host plant species. However, cross-host pathogenicity has not yet been

assessed and the potential host range of the pathogen is currently unknown. Comparison of

putative pathogenicity gene repertoires of Colletotrichum species from different species com-

plexes and species closely related to the genus Colletotrichum may provide insights into evolu-

tion of pathogenicity gene and the host range of C. tanaceti. Therefore, combined genomics

and comparative genomics analyses can provide sound means of assessing the current and

future risks posed by C. tanaceti.
In order to achieve the major goal of evaluating the potential risk to the pyrethrum industry

form C. tanaceti, the aims of this study were to: 1) infer the pathogenicity gene suite of C. tana-
ceti; 2) infer the host range of C. tanaceti; and 3) assess the evolutionary potential of pathoge-

nicity genes of C. tanaceti.

Materials and methods

Sequencing and de novo-assembly of the genome of C. tanaceti
Fungal strain. The ex-holotype of C. tanaceti strain BRIP57314 (CBS 132693 = UM01)

[17] was acquired from the culture collection of BRIP (Plant Pathology Herbarium, Depart-

ment of Primary Industries, Queensland, Australia). This isolate was propagated on potato

dextrose agar (PDA; Sigma Aldrich, St. Louis, USA) and incubated at 24˚C using a 12 h:12 h

light:dark photoperiod. Genomic DNA was isolated using a modified CTAB protocol [44].

The integrity and quantity of DNA was confirmed by 1.5% agarose gel electrophoresis and a

nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham, USA).

Genome sequencing and assembly. Genomic DNA was fragmented using a Covaris

ultrasonicator (Covaris Inc., Massachusetts, USA) to achieve an average fragment length

of 532 base pairs (bp). A genomic DNA library with an average insert size of 420 bp was

constructed using the KAPA Hyper Prep Library Preparation Kit [45] and was paired-

end sequenced (2×300 bp reads) using the Illumina Miseq platform (San Diego, USA).

The raw reads were filtered for low quality nucleotides and adapters using Trimmomatic

[46] (Phred score-33, leading-3, trailing-6, slidingwindow-4:15, minlen-36) to retain

22,871,341 sequences and were profiled using KAT [47]. Filtered reads were then assem-

bled using DISCOVAR de novo [48]. The completeness of the assembly was assessed

with the Sordaromyceta_odb9 gene set [49] using the program Benchmarking Universal

Single-Copy Orthologs (BUSCO v2) [49] in the Genomics Virtual Laboratory platform

[50].

Prediction of repetitive elements. Species-specific repeats were first inferred using the

program RepeatModeler [51], in which the programs RECON [52] and RepeatScout [53] were

used. Long terminal repeats (LTRs) were predicted using the program LTR_Finder [54]. The

program RepeatMasker v4.0.5 [55] was employed to mask resulting species-specific repeats

and LTRs; and applied the program Tandem Repeat Finder (TRF) [56] and the database

Repbase v.17.02 [57] to predict and mask interspersed and simple repeats. All repeats predicted

were combined using ProcessRepeats command in RepeatMasker.
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RNA sequencing

Inoculation of pyrethrum leaves. Pyrethrum leaves were inoculated using the leaf-sand-

wich method [58, 59] by placing a fungal ‘mat’ between two pyrethrum leaves in a petridish.

Each petri dish was sealed with parafilm and incubated at 24˚C with a 12 h-photoperiod.

Induced mycelia were harvested at 6, 24 and 48 h after inoculation, and total RNA was

extracted using the RNeasy Plant Mini kit (Qiagen, Australia) following the manufacturer’s

instructions. Total RNA was extracted from the saprobic stage (1-week-old cultures growing

on potato dextrose agar). Contaminating genomic DNA was removed from RNA samples by

Ambion DNase I (Thermo Fisher Scientific, USA) treatment; the integrity and quantity of

total RNA was confirmed by 1% agarose gel electrophoresis and the Experion automated elec-

trophoresis system (Biorad Laboratories, Australia).

RNA libaries were prepared using both E7530L and E&335L NEBNext Ultra RNA Library

Prep Kits (New England Biolabs, USA) to generate fragment sizes of 351–371 bp. The tran-

scriptome was paired-end sequenced (2 × 150 bp reads) on the Illumina Hiseq 2500 platform

(San Diego, USA). Raw reads were trimmed for quality using Trimmomatic [46] (leading-25,

trailing-25, slidingwindow-4:25, minlen-40) to retain between 17,935,938–18,761,773

sequences for each library and profiled using FastQC [60].

Gene prediction

Genes were first predicted using the MAKER3 v3.0.0-beta [61], in which both the transcrip-

tomic data from C. tanaceti and the proteomic and ab initio gene predictions from C. gramini-
cola;[43] and C. higginsianum; [43, 62] were combined into a consensus prediction. In brief,

transcriptomic RNAseq reads of C. tanaceti were assembled into transcripts in both de novo
and genome-guided modes of the program Trinity v2.2.0 [63]. In genome guided assembly,

reads were mapped onto the genome using the program TopHat2 v2.1.0 [64]. Genome guided

and de novo transcriptomic assemblies were combined, redundancy (99% similarity) was

removed using the program cd-hit-est [65, 66] and resulting transcripts were filtered for full-

length open reading frames (ORFs) using the program Transdecoder [63]. Resulting full-

length transcripts were further reduced to 80% similarity using the program cd-hit-est and

checked for splicing sites. These high quality transcripts were then used as a training set for ab
initio gene prediction programs AUGUSTUS v3.1 [67] and SNAP v6.7 [68] and GENEMARK

v4.2.9 [69]. Evidence data from assembled transcriptomes (with 99% redundancy using cd-hit-

est) and the proteomes were provided to Maker3. The predicted genes (length of conceptually

translated protein� 30 amino acids) were further clustered using the k-means clustering algo-

rithm [70] with following metrics: 1) Maker3 annotation edit distance (AED); 2) number of

exons in the mRNA; 3) length of translated protein sequence; 4) fraction of exons that overlap

transcript alignment; 5) fraction of exons that overlap transcript and protein alignment; 6)

fraction of splice sites confirmed by a SNAP prediction from Maker3; 7) percentage for repeat

overlap with gene-, exon- and CDS-sequence; 8) size of the inferred orthologous group the

gene belongs to using OrthoMclv2.0.9 [71]; and 9) presence of functional annotation (see

Functional annotation of the C. tanaceti genome section below). Resulting clusters with trans-

posons and ab initio gene predictions with no transcriptome or proteome support were

removed.

Functional annotation of the C. tanaceti genome

Putative coding regions were subjected to protein homology searches against the NCBI (nr)

and Swiss-Prot database using BLAST v 2.7.1 (E-value of� 1e-8) [72]. Conserved protein

domains and gene ontology (GO) terms were assigned to predicted proteins using
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InterProScan 5 [73]. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG)

Orthology (KO) terms were assigned to predicted proteins using the Blastkoala search engine

[74]. Assigned KO terms were used to generate C. tanaceti pathway maps using KEGG mapper

[75]. Putative genes of C. tanaceti with functional annotations were subjected to species-spe-

cific gene enrichment analysis on the DAVID functional annotation database tool [76, 77] and

using C. graminicola as the reference species.

Comparison to related taxa

The genome and proteome of C. tanaceti was compared to genomes of related taxa using

genome alignment, synteny and orthology analyses as following.

Genome alignment and synteny analysis. Colletotrichum tanaceti genome contigs were

aligned to 13 other publicly available genomes (Table 1) of Colletotrichum species using Nuc-

mer in Mummer v 4.0 [78, 79]. Contig-alignments were then filtered for a minimum 30%

nucleotide identity and 200 bp in aligned length. The global coverage of each of the genomes

from contigs of C. tanaceti was computed as a measure of pairwise sequence comparison

between the two genomes.

The program ‘Synteny Mapping and Analysis Program’, SyMAP v 4.2 [80, 81] was used to

map C. tanaceti contigs of the highest sequence length (>150 kb) to the chromosomes of C.

higginsianum IMI349063 reference genome [43] to identify the syntenic regions. PROmer was

invoked within SyMAP.

Table 1. Genomes used in the comparative genomic analyses.

Organism Identifiera Taxonomy IDb Genbank accession numberc Bio project IDd Straine Assembly version Reference

Colletotrichum chlorophyti CCh 708187 MPGH00000000.1 PRJNA350752 NTL11 ASM193710v1 [82]

Colletotrichum fioriniae CFi 1445577 JARH00000000.1 PRJNA233987 PJ7 GCA_000582985.1 [83]

Colletotrichum fructicola CFr 1213859 ANPB00000000.1 PRJNA225509 Nara gc5 GCA_000319635.1 [6]

Colletotrichum gloeosporioides CGl 1237896 AMYD00000000.1 PRJNA176412 Cg-14 GCA_00446055.1 [84]

Colletotrichum graminicola CGr 645133 ACOD00000000.1 PRJNA37879 M1.001 M1_0001_v1 [43]

Colletotrichum higginsinum CHi 759273 LTAN00000000.1 PRJNA47061 IMI 349063 GCA 001672515.1 [43]

Colletotrichum incanum CIn 1573173 LFIW00000000.1 PRJNA286717 MAFF 238704 GCA_001189835.1 [9]

Colletotrichum nymphaeae CNy 1460502 JEMN00000000.1 PRJNA237763 IMI 504889 GCA_001563115.1 [7]

Colletotrichum orchidophilum COc 1209926 MJBS00000000.1 PRJNA411788 IMI 309357 GCF_001831195.1 [85]

Colletotrichum orbiculare COr 1213857 AMCV00000000.1 PRJNA171217 MAFF 240422 Corbiculare240422v01 [6]

Colletotrichum salicis CSa 1209931 JFFI00000000.1 PRJNA238477 CBS 607.94 GCA_001563125.1 [7]

Colletotrichum simmondsii CSi 703756 JFBX00000000.1 PRJNA239224 CBS 122122 GCA_001563135 [7]

Colletotrichum sublineola CSu 1173701 JMSE00000000.1 PRJNA246670 TX430BB GCA_000696135.1 [86]

Colletotrichum tanaceti CT1 1306861 PJEX00000000 PRJNA421029 BRIP57314

Verticillium dahliae VDh 498257 ABJE00000000.1 PRJNA225532 VdLs.17 GCF_000150675.1 [87]

Botrytis cinerea BCi 332648 AAID00000000.2 PRJNA15632 B05.10 GCF_000143535.2 [88]

Sordaria macrospora SMa 771870 CABT00000000.2 PRJNA51569 k-hell GCF_000182805.2 [89]

Fusarium oxysporum FOx 426428 AAXH00000000.1 PRJNA18813 CBS 123668 GCF_00149955.1 [90]

a Short identifier used in pace of the species name in supplementary information
b Taxonomy ID of each species according to the NCBI taxonomy database
c Genbank accession number for the deposited nucleotide sequence
d NCBI bioproject ID
e version of the genome assembly

https://doi.org/10.1371/journal.pone.0212248.t001
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Orthology search and phylogenomics analysis. The proteomes of C. tanaceti and the

publicly available 17 other species were subjected to ortholog searching using OrthoMCL

v2.0.9 [71] and MCL [91] with an inflation value of 1.5. The orthoMCL output was used to

determine the percent orthology among the species and to determine the core gene set for Col-
letotrichum. The ortho-groups with pathogenicity genes (inferred as below) of C. tanaceti were

extracted and used to determine the percent conservation of those gene categories within the

genus. Furthermore the single copy orthologs were extracted from the orthoMCL output and

aligned using MAFFT v.7 [92]. These alignments were then trimmed using trimAl v.1.3 [93] to

remove all positions in the alignment with gaps in 20% or more of the sequences, unless this

leaves less than 60% of the sequence remaining. The trimmed reads were concatenated using

FASconCAT-G [94]. The concatenated alignment was partitioned and amino acid substitution

models were predicted for each partition using ProtTest 3 [95] in FASconCAT-G. The parti-

tioned, concatenated alignment was subjected to maximum likelihood phylogenetic analysis

using RAxML v8.2.10 [96] to find the best tree from 20 maximum likelihood searches and

using 100 bootstrap replicates. Evolutionary distance in number of substitutions per site was

computed using the ape package [97] in the R statistical language framework v 3.5.1. [98] from

the maximum likelihood tree.

Estimation of divergence dates. The phylogram developed from above was utilized to

estimate the divergence dates of the species considered as following. The final RAxML phylo-

genetic tree was used to generate an ultrametric tree in r8s v1.81 [99] applying the penalized

likelihood method [100] and the truncated Newton (TN) algorithm [101]. Divergence times

were estimated using previously derived estimates [8, 11, 102] of 267–430 million years (Myr)

for the Leotiomycetes-Sordariomycetes crown, 207–339 Myr for the Sordariomycete crown

and 45–75 Myr for the Colletotrichum crown as calibrations. An optimal smoothing factor

which was deduced using the cross validation process [99] among 50 values across 1 to 6.3e

+09 was used in the divergence time estimation.

Prediction of secretome and database searches for identifying other

virulence factors

Predicted proteins of C. tanaceti were used in downstream prediction of the secretome [103].

A union of three software tools: SignalPv4.1 [104], Phobius [105] and WoLFPSORT [106] was

used to predict the candidate proteins to be used downstream of the pipeline. Proteins with

either signal peptides predicted using SignalP or Phobious or proteins predicted as ‘extracellu-

lar’ in WoLFPSORT were retained as candidates for secreted proteins. Proteins with trans-

membrane domains were identified using TMHMM v.2.0 [107] and were excluded as secreted

proteins. Proteins with signals targeting the endoplasmic reticulum and GPI anchors were

identified and excluded using Ps-SCAN [108] and Pred-GPI [109] respectively. NLStradamus

[110] was used to identify proteins with nuclear localization signals. Curated secretome was

subjected to homology search against the CDD database to identify the conserved domains (E-

value� 1e-10). The candidate secreted effector proteins were identified by passing the secre-

tome through the program EffectorP v1.0 [21]. Predicted effector candidates were manually

inspected and candidates with known plant cell wall degrading catalytic domains, such as cuti-

nases (PF01083.21), short-chain dehydrogenases (PF00106.24), glycosyl hydrolases (PF00457),

peptidases (PF04117.11) and lipases (PF13472.5) were excluded. Candidates with no detectable

conserved domains and no homology (E-value� 1e-3) to any other proteins in NCBI–non-

redundant protein sequence database were defined as species-specific. Putative secreted pepti-

dases and inhibitors were predicted by stand-alone blastp (E-value� 1e-10) homology

searches of the MEROPS-MPEP database (consisting only the sequences of peptidase and
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inhibitor units) of MEROPS release 12.0 [111]. Furthermore, potential virulence factors of C.

tanaceti were identified by blastp searches (E-value� 1e-10) against PHI-base v 4.4 [28]. The

online analysis tools, Antibiotics and Secondary Metabolite Analysis Shell (antiSMASHV.4)

[30] with default parameters and SMURF [112] were used to predict potential secondary

metabolite backbone genes and clusters using the default parameters. Cytochrome P450s and

transporters were described based on blastp (E-value� 1e-10) homology searches against the

Fungal Cytochrome P450 database [113] and the Transported Classification Database [114].

The functional annotations for C. tanaceti were compared across 17 other closely related taxa

(Table1). The family specific Hidden Markov Model profiles of dbCan database v6 [115] were

employed using the program HMMScan in HMMER v31.b2 [116] in order to identify the car-

bohydrate active enzymes (CAZymes) and the CAZyme families in the proteome of C. tana-
ceti. Fungi-optimal cut-off E-value of 1e-17 and a coverage cut-off of 0.45 [115] were used in

the analysis which was repeated for seventeen related species (Table 1). The identified

CAZymes were run though InterProScan 5 [73] (E-value� 1e-10) to check for false positives.

The member counts of each CAZyme family for each taxon were corrected accordingly.

Evolution of CAZyme gene families

CAFE v4.0 [117, 118] was used to estimate the number of CAZyme gene family expansions,

contractions and the number of rapidly evolving gene families upon divergence of different

lineages. Error-models [118] were estimated to account for the genome assembly errors and

were incorporated into computations. A universal lambda value (maximum likelihood value

of the birth-death parameter) was assumed and gene families with significant size variance

were identified using a probability value cut-off of 0.01. The branches responsible for signifi-

cant evolution, were further identified using the Viterbi algorithm [117] with a probability

value cutoff of 0.05. Sizes of plant pathogenicity-related gene families from CAZomes of each

of the species; the ‘CAZyme pathogenicity profiles’ were retrieved and compared using the

online tool ClustVis [119]. The ‘CAZyme pathogenicity profile’ of a particular species included

the gene families that have activities in binding to or degradation of plant cell wall components

such as cellulose, hemicelluloses, lignin, pectin, cutin and chitin.

Testing for the bipartite nature of the C. tanaceti genome

The GC-bias of the genome was detected using OcculterCut version 1.1 with default settings

[37]. The genome wide dinucleotide frequency and the two RIP indices, TpA/ApT and (CpA

+ TpG)/(ApC + GpT) were computed and the RIP affected genomic regions were identified

using the RIPCAL V.2 [120]. Significant enrichment of A-T rich regions of the C. tanaceti
genome with interspersed repeats and RIP were tested using permutation tests implemented

in the package regioneR in the R statistical language framework v3.5.1 [98] with the evaluation

function for number of overlaps [121]. Ten thousand random iterations were conducted, from

which a Z-statistic estimate, and its associated probability, were computed.

Relationship of pathogenicity related genes with repeat elements and RIP

The mean distances between putative pathogenicity genes and 1) repeats, 2) RIP affected

regions were analyzed using permutation tests implemented in the package regioneR [121] R

statistical language framework v3.5.1 [98]. Repetitive element categories incorporated in this

analysis included: 1) tandem and interspersed repeats combined; 2) tandem repeats; and 3)

interspersed repeats. These were compared to the pathogenicity related gene classes: 1)

CAZymes; 2) peptidases; 3) secondary metabolite biosynthetic gene clusters; and 4) effectors.

The mean distance between each gene in above categories and the nearest repetitive element/
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RIP affected region was compared against a distribution of distances of random samples from

the whole genome. Ten thousand random iterations were conducted, from which a Z-statistic

estimate, and its associated probability, were computed for each gene category.

Results

Colletotrichum tanaceti genome and gene content

The genome of isolate BRIP57314 was assembled into 5,242 contigs with an N50 value of

103,135 bp and assembly size of 57.91Mb. The average GC content was 49.3% (Table 2). The

genome size and GC content of C. tanaceti was within the range previously reported for other

Colletotrichum spp. (S1 Fig). Draft genome assembly and the raw unassembled sequences are

available under the accession no PJEX00000000 in Genbank. The genome contained 12,172

coding genes with an average gene length of 2,575bp. Mean exon count per gene was 3, and

54.1% of the genome sequence contained protein-encoding genes. In the BUSCO analysis, out

of the 3,725 benchmarking genes in the Sordariomycetes group, the genome was reported to

contain 3,656 complete BUSCOs (98.2%), of which two were duplicated and the rest were sin-

gle copy genes (98.1%). A total of 30 (0.8%) BUSCOs were fragmented and 39 were missing

(1.0%). The repeat content of C. tanaceti was 24.6% of the total genome of which 85.2% was

interspersed repeats (Table 3).

Of the 12,172 predicted proteins, 11,352 had an annotation edit distance (AED) value of

less than 1.0, and 2962 genes had an AED value of zero. The number of genes without putative

annotation from the public database searches was only 958. A total of 8,945 proteins (73.5% of

proteome) had InterProScan annotations of which 6,911 contained 9,647 Pfam domain anno-

tations and 5,452 had GO term ontology annotation. The most abundant (n = 129) Pfam

domain was the cytochrome P450 family (PF00067) followed by the protein kinase domain

Table 2. Features of the Colletotrichum tanaceti BRIP57314 genome.

Feature Statistics

GC content (%) 49.3

N50 (bp) 103,135

Maximum sequence length (bp) 945,015

Mean length (bp) 11,047

Number of base pairs 57,912,474

Number of contigs 5,242

Number of genes 12,172

Number of exons 35,792

Number of introns 23,620

Number of CDS 12,172

Overlapping genes 3,983

Contained genes 1,586

Mean gene length (bp) 2,575

Mean exon length (bp) 787

Mean intron length (bp) 137

Mean CDS length (bp) 1,440

% of genome covered by genes 54.1

% of genome covered by CDS 30.3

Mean mRNAs per gene 1

Mean exons per mRNA 3

Mean introns per mRNA 2

https://doi.org/10.1371/journal.pone.0212248.t002
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(n = 127; PF00069). Gene enrichment analysis suggested enrichment of many GO terms

including those associated with translation and chromosome telomeric region (S1 Table).

Putative proteins of C. tanaceti were subjected to KEGG pathway analysis which returned

assignment of 5,883 proteins to known pathways (S2 Table). The highest number of KO identi-

fiers was among the metabolic pathway assignments (n = 693) of which the majority (n = 363)

were for amino acid metabolism followed by carbohydrate metabolism (n = 290) (S3 Table).

Among the environmental information processing pathways, 81 C. tanaceti genes were

assigned into 47 KO identifiers belonging to MAPK pathway (S4 Table). Furthermore, 24 C.

tanaceti proteins were annotated with 10 aflatoxin biosynthesis pathway KO assignments (S5

Table) and 56 proteins were assigned KOs for ABC transporters (S6 Table).

Genome alignment and synteny

The global alignment coverage of 13 other Colletotrichum genomes from C. tanaceti contigs

was proportionate to the evolutionary proximity to C. tanaceti (Fig 1A). The highest coverage

was in C. higginsianum (63.8%) and the least was in C. orbiculare 4.26%. Among the C. tanaceti
contigs aligned to the chromosomes of C. higginsianum, the best alignment coverage was to

chromosome NC_030961.1 (chromosome 9) (S7 Table). Colletotrichum tanaceti contigs

(n = 155 of size�10 kb) were mapped in SyMAP synteny analysis to form 142 synteny blocks

which covered 44.0% of the C. higginsianum and 80.0% of the C. tanaceti sequences that were

used (S2 Fig). Genes were present in 92.0% of the syntenic regions in C. tanaceti and in 77.0%

of C. higginsianum. No inverted synteny blocks were reported. Despite the highest coverage in

C. higginsianum chromosome 9, the largest synteny block was identified between the complete

C. tanaceti contig 4 (945.01 kb of length) and C. higginsianum chromosome NC_030954

Table 3. Repetitive elements of the C. tanaceti genome.

Repetitive element Number of elements Length occupied (bp) Percentage of sequence

SINEs: 49 4,123 0.01

ALUs 0 0 0

MIRs 11 869 0

LINEs: 612 251,619 0.43

LINE1 207 48,554 0.08

LINE2 35 2,588 0

L3/CR1 82 5,928 0.01

LTR elements: 7,299 4,825,086 8.33

ERVL 2 120 0

ERVL-MaLRs 1 39 0

ERV_classI 3 209 0

ERV_classII 1 32 0

DNA elements: 1,436 905,846 1.56

hAT-Charlie 3 140 0

TcMar-Tigger 6 529 0

Unclassified: 8,863 6,153,241 10.62

Total interspersed repeats 12,139,915 20.96

Small RNA: 754 210,370 0.36

Satellites: 0 0 0

Simple repeats: 9,941 1,757,918 3.04

Low complexity: 3,064 147,883 0.26

Total repeat content 24 .62%

https://doi.org/10.1371/journal.pone.0212248.t003
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(Chromosome 1). A total of 38 effector candidates of C. tanaceti were within these syntenic

regions between C. tanaceti and C. higginsianum. No synteny blocks were detected to the two

mini chromosomes (NC_030963.1 and NC_030964.1) of C. higginsianum.

Orthology search

Of 221,456 total genes from 18 genomes, the number of core genes reported for all ascomy-

cetes in the orthology analysis was 3,944. A total of 10,695 putative proteins from C. tanaceti
were assigned to 10,074 groups containing orthologs and/or recent paralogs and/or co-ortho-

logs across all species tested. A total of 6,002 genes were conserved in all tested members of the

genus Colletotrichum. Colletotrichum tanaceti had 9,679 orthologs with C. higginsianum which

was the highest ortholog count among Colletotrichum spp. followed by 8,855 orthologs with C.

nymphaea (Fig 1B). Twenty of these groups, with 48 genes among them were exclusive to C.

tanaceti and were defined as recent paralogs (in-paralogs) of C. tanaceti with no homology to

the 16 other species tested.

Divergence time in Colletotrichum lineages

A total of 2,214 single copy ortholog (SCO) genes identified among the C. tanaceti and 17

closely related genomes (Table 1) were used to generate a maximum likelihood (ML) evolu-

tionary tree in which all branches achieved bootstrap support of 100%. Colletotrichum tanaceti
formed a clade with C. higginsianum, a member of the destructivum complex and the two

destructivum complex members formed a sister clade with the graminicola complex members

and C. incanum. A smoothing factor value of 1 was reported as the optimal value for diver-

gence time predictions in r8s. Colletotrichum tanaceti and C. higginsianum were reported to

have diverged ~9.97 million years ago (mya). The most recent common ancestor (MRCA) of

gloeosporioides, acutatum, and graminicola clades were reported to be 6.12, 10.98 and 15.78

mya, respectively (Fig 2).

Identification of pathogenicity related genes in C. tanaceti
Secretome of C. tanaceti. Of the 12,172 putative proteins, 1,024 (8.41%) were predicted to

be secreted. A total of 2,702 Conserved Domain Database (CDD) domains were found in the

secretome. Of these, 287 were specific features with NCBI curated models, 124 were generic

features with only the superfamily annotations [122]. Only 433 queries had no known domain

hits. The secretome was rich in alpha beta hydrolase superfamily (cl21494) containing

enzymes, glycosyl hydrolases and proteolytic enzymes and cytochrome P450 monoxygenases

(P450) (S8 Table). A total of 100 secreted proteins had nuclear-localization signals (S8 Table).

A total of 233 putative effector candidates were predicted by EffectorP. Following manual

inspection and filtering out candidates with known plant cell wall degrading catalytic domains,

a total of 170 candidates were selected as putative effectors of C. tanaceti (S9 Table). The puta-

tive secreted candidate effector repertoire of C. tanaceti contained homologs of known effec-

tors, such as the Ecp6 of Cladosporium fulvum [123], MC69 of Magnoporthe oryzae and

Colletotrichum orbiculare [124], EP1 of Colletotrichum graminicola [125], NLP1 of Colletotri-
chum higginsianum [126] ToxB of Pyrenophora tritici repentis [127] and Magnoporthe oryzae

Fig 1. Comparison of the C. tanaceti genome to previously published Colletotrichum spp. genomes. (a) Percentage global alignment (y axis) of 13

Colletotrichum draft genomes to contigs representing the C. tanaceti draft genome, plotted against evolutionary distance with reference to C. tanaceti (x

axis), (b) Number of orthologs shared by 13 Colletotrichum draft genomes and C. tanaceti (y axis) plotted against the evolutionary distance with reference

to C. tanaceti (x axis); evolutionary distance given in number of substitutions per site, computed using the ape package [98] in R from a maximum

likelihood tree.

https://doi.org/10.1371/journal.pone.0212248.g001
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Bas3 [128]. Furthermore, among the putative effector candidates, there were proteins with

conserved domains of known virulence factors. Most effector candidates were small (average

length of 157 amino acids) and rich in cysteine (average cysteine composition was 3.3%)

which are the hallmarks of effectors. A total of 78 conserved motifs of fungal effectors [129]

were present in 62 effector candidates which had at least one motif each. Twenty-two effector

candidates that did not cluster in ortholog search among the 14 Colletotrichum and three

related species, and also did not show detectable homology to the NCBI-nr and swissprot data-

bases were defined as C. tanaceti-specific. Only 25% of the putative effectors of C. tanaceti
were conserved among all 14 Colletotrichum spp.

A total of 98 putative secreted peptidases were predicted with the majority (n = 64) being

serine peptidases largely comprising the S08 and S09 subfamilies. The second most abundant

class was the metallo peptidases (n = 19) (S10 Table). All six putative aspartic peptidases

belonged to subfamily A01. A total of 20 putative secreted peptidase inhibitors were reported

in C. tanaceti comprising two carboxypeptide-y inhibitors, five family-19 inhibitors and 13

family-14 inhibitors (S11 Table). Forty nine percent of the putative proteases of C. tanaceti
were among the “core” set of proteases of Colletotrichum spp. tested.

Secondary metabolite-related genes and clusters. Forty-one putative secondary metabo-

lite backbone genes were predicted in C. tanaceti using SMURF and the majority were polyke-

tide synthases (PKS, n = 13) with four PKS-like proteins. Furthermore, nine non-ribosomal

peptide synthases (NRPS), eight NRPS–like proteins, two hybrid PKS-NRPS enzymes and five

dimethylallytryptophan synthases (DMATS) were also predicted as backbone genes (S12

Table). A total of 52% of these putative backbone genes were within the core set of genes in

Colletotrichum. A total of 33 putative secondary metabolite gene-clusters were predicted

Fig 2. Chronogram showing divergence time estimations (in million years) for Colletotrichum spp. and related taxa.

https://doi.org/10.1371/journal.pone.0212248.g002
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surrounding the backbone genes. However, the program antiSMASH predicted a total of 50

clusters. Among the clusters, there were twelve typeІPKS, two typeІІІPKS, thirteen terpenes,

eleven NRPS, four indoles, three typeІPKSs-NRPS, one typeІPKS-indole and four other pro-

teins. Cluster 10 of typeІPKS showed 100% similarity to the genes in LL-Z1272 beta biosyn-

thetic gene cluster (BGC0001390_cl). Furthermore, a homolog to the melanin biosynthetic

gene SCD1 was also reported in C. tanaceti (CTA1_6632). When predictions from the two

tools were compared, putative SMB clusters on 31 contigs of C. tanaceti were predicted by

both tools and 19 of the backbone genes from SMURF were also predicted in antiSMASH (S12

Table). A total of 37 putative SM clusters were within the syntenic blocks of C. higginsianum.

The conserved SM domains identified in each cluster were reported (S13 Table). Predictions

from antiSMASH were compared across taxa and majority of the clusters were typeІPKS like

followed by NRPS in all ascomycetes compared (Fig 3A). The highest number of clusters were

reported from C. fructicola (n = 84) followed by C. higginsianum (n = 74) and C. gloeospor-
ioides (n = 73). The composition of the SMB gene cluster composition of C. tanaceti was most

similar to C. orchidophilum, the acutatum complex members and C. orbiculare (S3 Fig).

Cytochrome P450 monoxygenases (P450s) and transporters. In the C. tanaceti genome,

1,457 putative genes had homologs in the fungal cytochrome P450 database (S14 Table) and

911 out of that had>30% identity. There were 1,824 homologs (S15 Table) in the transport

classification database for C. tanaceti with 1,276 genes with >30% identity. The majority

(n = 430) of the homologs were genes of the major facilitator superfamily (MFS, 2.A.1) fol-

lowed by 129 genes of the ABC transporter family (3.A.1) and 123 of N.P.C 1.I.1. Within

Colletotrichum genus, members of the gloeosporioides complex had the highest number of

homologs for both P450s and transporters (Fig 3B).

Homologs in PHI-base. A total of 3,497 homologs were recorded in C. tanaceti from the

pathogen-host interaction database (PHI), of which 1,592 represented homologs of genes that

result in reduced virulence in loss of function mutants (S16 Table). The second most common

(n = 1,514) were the unaffected pathogenicity category, 382 homologs were for loss of pathoge-

nicity and 42 were in the effector category. Notably, 141 homologs were reported to genes of

which the loss of function mutants were lethal to the pathogen and 103 homologs were

reported to genes in which virulence increased after loss of function mutation (Fig 3C). The

two gloeosporioides complex members had the highest number of homologs in the database

among the Colletotrichum spp., followed by the acutatum complex species, C. simmondsii, C.

fioriniae and C. nymphaea. Despite C. higginsianum having a large number of homologs, C.

tanaceti had a below average number for all the categories among the Colletotrichum spp., with

a profile similar to C. orchidophilum, C. chlorophyti and C. graminicola (S4 Fig).

CAZymes. A total of 608 C. tanaceti proteins were assigned to 121 CAZyme families of

which 43% was putative glycosyl hydrolases followed by 18% of putative redox enzymes (auxil-

iary activities) and 14% putative carbohydrate esterases (S17 Table). Putative carbohydrate

binding molecules and polysaccharide lyases both formed 7% each of the C. tanaceti CAZome

whereas 11% was glycosyltransferases. A total of 179 CAzymes were secreted (S17 Table).

Members of the gloeosporioides and acutatum complexes had the largest CAZomes among

Colletotrichum spp. The CAZyme repertoires of the graminicola complex members were rela-

tively small (Fig 3D).

Evolution of CAZyme families upon divergence of Colletotrichum lineages

A total of 152 CAZyme families, predicted at the node of MRCA for S. macrospora and B.

cinerea, were used in gene family evolution analyses in CAFÉ. A uniform birth-death parame-

ter (λ) of 0.0023 was computed. Thirty gene families were reported to be significantly evolving
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(family-wide p value� 0.05), of which 21 were rapidly evolving (family-wide p� 0.01 and

Viterbi p� 0.01 in any lineage) (S18 Table).

At the divergence of Colletotrichum spp., 39 expansions and 12 contractions were predicted

with respect to its MRCA with Verticillium species (S19 Table). Expansions included the lignin

hydrolase family AA2, pectin degrading polysaccharide lyase families (PL1, 3, 4, 9 and GH78),

lignocellulose degrading families (AA3, AA9, GH131, GH5, GH6, GH7), hemicelluloses

degrading families (CE1, CE4, CE5, CE12, GH3, GH16, GH30, GH43, GH51, GH67, and

GH10), Lys M domain containing family CBM50 and cutinase family CE5. The cellulose

degrading family GH131 was the only rapidly evolving CAZyme family (family-wide p� 0.01

and Viterbi p� 0.01) which expanded upon the divergence of Colletotrichum spp. Within the

genus, the highest number of expansions (n = 38) was reported at the divergence of the gloeos-

porioides-complex clade with only 4 contractions. Notably, the CBM18 and GH10 families

were contracted and many families with plant cell wall degrading enzyme activity were

expanded. The rapidly and significantly expanded families, (family-wide p� 0.01 and Viterbi

Fig 3. Composition of different pathogenicity gene categories predicted for Colletotrichum tanaceti and related species. The number of genes in each gene

category (x axis) plotted for each species (y axis). (a) secondary metabolite biosynthetic gene clusters-(gene clusters producing polyketides, terpenes, non-

ribosomal peptides (NRPS), indoles and the hybrids of above); (b) number of homologs in the fungal cytochrome P450 database and the transporter

classification database (TCDB); (c) homologs in the pathogen-host interaction database; homologs to entries in the “unaffected pathogenicity” database were

excluded; (d) CAZyme classes; glycoside hydrolases (GH), polysaccharide lyases (PL), glycosyltransferases (GT), carbohydrate esterases (CE), molecules with

auxiliary activities (AA), and carbohydrate binding molecules (CBM).

https://doi.org/10.1371/journal.pone.0212248.g003
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p� 0.01) upon the divergence of the gloeosporioides-complex clade include GH43, GH106,

CBM50 and AA7. At the divergence of the acutatum-complex clade, there were 22 expansions,

of which expansions in GH78, GH43 families were rapid and significant and there was only

one contraction. The divergence event of the graminicola-complex clade involved contractions

in many CAZyme families with pectin degradation activity showing significant, rapid contrac-

tions (family-wide p� 0.01 and Viterbi p� 0.01)in families AA7, CBM50, CE8, GH28, GH78,

PL1, and PL3. Divergence of the destructivum complex-clade was associated with 11 expan-

sions and 21 contractions, of which expansion in AA7, GH74 and CE10 was significant and

rapid.

Among the other species considered, Fusarium oxysporum had the highest number of genes

(n = 344) that were gained, with 75 expanded CAZyme with respect to its MRCA (S20 Table).

Colletotrichum incanum had the second highest number of gene family expansions (n = 35)

and genes gained (n = 69) followed by C. higginsianum (31 and 68 respectively). Forty

CAZyme families contracted and only nine expanded in C. tanaceti with respect to the MRCA

with C. higginsianum. The AA2 family with lignin peroxidase activity and the hemicellulose

degrading GH12, GH74 families were among the expanded families, but many families with

pathogenicity and plant cell wall degrading activity had contracted in C. tanaceti. However,

the highest number of significant, rapidly evolving gene families was reported from C. tanaceti
(n = 9) followed by F. oxysporum and C. higginsianum, both which had seven rapidly evolving

gene families each. In C. tanaceti, rapidly evolving CAZyme families included AA9, GH131

with lignocellulose degrading activity, chitin binding molecule families CBM18 and CBM50,

GH18 with chitinase activity, GH3 and GH74 with hemicelluloses degrading activity, GH78

with pectinase activity and GT1 with glucuronosyltransferase activity. However, CBM18 and

GH74 were the only families that expanded among those above with the rest contracting in C.

tanaceti with respective to their MRCA. Gloeosporioides complex species had the largest

‘CAZyme pathogenicity profiles’ among all Colletotrichum species considered. The CAZyme

pathogenicity profile of C. tanaceti was most similar to those of Colletotrichum species known

to have an intermediate host range, infecting many hosts within a single plant family or few

hosts across several plant families (Fig 4). When compared the overall pathogenicity gene pro-

files of all Colletotrichum spp., which included the numbers of the SMB clusters, transporters,

P450s, CAZymes and the homologs to the PHI database, the profile of C. tanaceti was most

similar to C. orchidophilum and C. chlorophyti (Fig 5).

RIP affected regions of the C. tanaceti genome

The RIP indices computed for the genome of C. tanaceti using the dinucleotide frequencies

(S21 Table) indicated strong RIP signals in the genome. The TpA/ApT index of C. tanaceti
(1.2) was higher than the cutoff 0.89 and the (CpA + TpG)/(ApC + GpT) index (0.96) was

lower than the cutoff 1.03 indicating a strong RIP signal. Homologs to two genes involved in

RIP of Neurospora crassa RID [130] and Dim-2 [131] were identified from the genome of C.

tanaceti (CTA1_356s and CTA1_4791s respectively).

Bipartite nature of C. tanaceti genome

Distinct A-T rich regions and G-C equilibrated regions were identified in the genome of C.

tanaceti (Fig 6). A total of 24.3% of the genome which had an average length of 3.77 kb was

rich in A-T and had a maximum G-C of 29%. The Z-score and the P value of the permutation

tests for the random association of transposable elements with the A-T rich regions were

799.354 and�0.001 respectively. The Z-score and the P value of the permutation tests for the

enrichment of RIP with the A-T rich regions were 165.001 and�0.001 respectively. For the
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A-T rich regions of the genome, the TpA/ApT index was 1.86 and (CpA + TpG)/(ApC + GpT)

index was 0.32 indicating a strong RIP signal. A total of 85 genes were reported in these

regions which had a gene density of 6.04 genes per Mb but the majority (68.25%) of these

genes was hypothetical. Two secondary metabolite biosynthetic genes, 3 CAZymes, 2 cyto-

chrome P450s, 2 lipases, 4 transporters, one transcription factor and one DNA polymerase

were putative pathogenicity genes among the genes in the A-T rich regions (S22 Table). The

Fig 4. Comparison of CAZyme pathogenicity profiles predicted for Colletotrichum species. Number of genes in each CAZyme family is normalized

using unit variance scaling. Hierarchical clustering performed with Euclidean distance and Ward linkage. Overrepresented and underrepresented CAZyme

families are represented in red to orange and blue respectively as fold standard deviations above and below the mean.

https://doi.org/10.1371/journal.pone.0212248.g004
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G-C equilibrated regions accounted for 75.7% of the genome and the average length was 14.6

Kb. The maximum G-C percentage in these regions was 55.6 and 12,087 genes were reported

with a gene density of 276 genes per Mb.

Relationship of putative pathogenicity genes with repeat elements and RIP

The permutation tests confirmed that genes in all the tested pathogenicity-related gene catego-

ries are located significantly closer to tandem repeats than expected in a random sample

(Table 4). The negative Z-scores confirmed the mean distance between those genes and the

nearest repetitive element was less than mean of a random sample of the genome. Further-

more, all gene categories except the CAZymes were located significantly closer to the inter-

spersed repeats. However, the expanded and the contracted subgroups of the total CAZome

were significantly associated with interspersed repeats (Table 4). All pathogenicity gene catego-

ries except contracted CAZymes and effectors were also located closer to the RIP affected

regions of the genome than expected.

Fig 5. Comparison of the overall pathogenicity profiles predicted for Colletotrichum species. The numbers of

CAZymes, secondary metabolite biosynthetic gene clusters (SMB), homologs in the transporter classification database

(transporters), homologs in the fungal cytochrome P450 database (P450) and the number of homologs in the PHI

database, excluding the homologs to entries in the “unaffected pathogenicity” database were used in the analysis.

Hierarchical clustering was performed using Euclidean distance and Ward linkage methods. The number of genes in

each pathogenicity gene category is normalized using unit variance scaling. Overrepresented and underrepresented

pathogenicity gene categories are represented in red to orange and blue respectively as fold standard deviations above

and below the mean.

https://doi.org/10.1371/journal.pone.0212248.g005
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Discussion

Genome and the repeat content of Colletotrichum tanaceti
This study reports the first draft genome sequence and annotations of the emerging plant path-

ogen, C. tanaceti. The high N50 value and BUSCO completeness indicates the high quality of

the assembly and AED scores of less than one for the majority of predicted genes (93.3%) sug-

gested that these genes had at least partial congruence with the transcriptomic evidence [132].

These good quality gene predictions and annotations will provide a solid foundation for down-

stream genetic, population genomic and evolutionary studies.

Fig 6. Plot of GC-content in the draft genome of Colletotrichum tanaceti against proportion of the genome.

Genome segments were classified into A-T rich (24.3%) and G-C equilibrated (75.7%) using a GC content threshold of

40% (vertical blue line).

https://doi.org/10.1371/journal.pone.0212248.g006

Table 4. Permutation tests for association of repetitive elements with pathogenicity gene categories.

Gene categories of interest All repeats a Tandem repeats Interspersed repeats RIP affected regions

Z score b P value c Z score b P value c Z score b P value c Z score b P value c

CAZymes -5.97 �0.001 -3.914 �0.001 -0.443 0.334 -4.674 <0.001

Expanded CAZymes -3.514 �0.001 -4.553 �0.001 -3.050 �0.001 -3.878 <0.001

Contracted CAZymes -4.413 �0.001 -3.237 �0.001 -5.883 �0.001 -1.534 0.06

Effectors -5.631 �0.001 -4.725 �0.001 -3.861 �0.001 1.3957 0.087

Peptidases -5.787 �0.001 -4.679 �0.001 -3.895 �0.001 -4.302 <0.001

SMB clusters -7.901 �0.001 -8.490 �0.001 -2.610 0.003 -4.334 <0.001

a tandem and interspersed repeats
b Z-statistic estimate and its
c associated probability computed based on 10,000 random iterations.

https://doi.org/10.1371/journal.pone.0212248.t004
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The genome of C. tanaceti had a larger repeat content (25%) than the typical 3–10% in

fungi [133]. Simple sequence repeats comprised 3.03% of the genome of C. tanaceti which itself

was unusually high for fungi (generally 0.08–0.67%) [134]. However, the majority of repeats

were interspersed transposable elements (TE) (21%). TE content of C. tanaceti was higher than

in six previously studied Colletotrichum species, including C. higginsianum which is in the

same species complex, but lower than in C. orbiculare (44.8%). The majority of TE were retro-

transposons, similar to other Colletotrichum spp. [41]. Proliferation of repetitive elements

especially transposons, is known to be a major mechanism driving expansion of eukaryote

genomes [135, 136]. Furthermore, TE activity favors chromosomal rearrangements, gene dele-

tions, gene duplications and greater sequence diversity and is a mechanism of genome plastic-

ity [35].

Colletotrichum tanaceti’s genome consists of distinct A-T rich, gene sparse regions. These

regions are also enriched in putative TE and RIP. Strong genome-wide RIP signals were

observed on C. tanaceti. RIP is a method of controlling TE proliferation in fungi and facilitates

genome plasticity, via high mutational rates and inactivating genes [35]. Homologs of two

genes involved in RIP were present in C. tanaceti similar to C. higginsianum [15]. Therefore,

TE proliferation in C. tanaceti may have caused accumulation of RIP as a control mechanism.

These RIP mutations may have caused the bipartite nature of the C. tanaceti genome giving

rise to A-T rich blocks [38–41] similar to the observations in C. orbiculare and C. graminicola
[6, 41]. Similar to C. orbiculare and C. graminicola [6, 41], C. tanaceti has a known sexual stage

[17] which could have activated the RIP in the genome [137]. Although genome-wide RIP was

not prominent, the TEs in the genomes of C. fructicola [42], C. higginsianum [15], C. trunca-
tum [41] and the C. cereale [138] has shown signals of RIP.

Pathogenicity genes of C. tanaceti
A large array of putative genes related to pathogenicity was inferred from the sequenced

genome of C. tanaceti. Apart from many plant cell wall-degrading enzymes, effectors, P450s

and the proteolytic enzymes, there were proteins with CFEM domain (pfam05730) [139] with

roles in conidial production and stress tolerance [140] among the secreted proteins. The aver-

age cysteine composition, length and proportion of specificity of the candidate secreted effec-

tors of C. tanaceti were similar to those hemibiotrophic pathogens [141]. However, a minority

of effector candidates was neither small (<300bp) nor rich in cysteine (>3%), similar to previ-

ous reports of atypical effectors [142]. Effector candidates with a nuclear localization signal

might translocate to the host nucleus and reprogram the transcription of genes related to host

immune responses. Homologs to known effectors, and effectors with conserved domains of

virulence factors may have similar functions in C. tanaceti, for example, in penetration peg for-

mation (cyclophilin) [143], phytotoxity induction (cerato-platanin) [144] and adherence of the

fungal structures to other organisms (hydrophobin) [145].

Most secreted proteases of C. tanaceti were serine proteases predicted to evade plant

immune responses by degrading plant chitinases [22]. Subtilisins (S08) were the most abun-

dant of these in C. tanaceti, similar to reports in other fungi [22]. Subtilisins, with their alkaline

optima, and the proteases in other subfamilies with acidic optima, such as A01, C13, G01, M20

and S10 [146], might enable C. tanaceti to degrade plant proteins across a wide pH range.

Also, the protease inhibitors of C. tanaceti might have effector-like roles via inhibition of plant

defense proteases [147].

The SMB gene clusters and the candidate proteins of MAPKs pathways identified in the

genome of C. tanaceti are also believed to play an important role in pathogenesis. The majority

of the secondary metabolite clusters of C. tanaceti were typeІ PKs-like which are usually
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associated with synthesizing fungal toxins [148]. Melanin, another important secondary

metabolite aids penetration via increasing turgor pressure [149]. Even though the gene cluster

associated with melanin biosynthesis was not identified, the homolog of the melanin biosyn-

thetic gene SCD1 encoding Scytalone dehydratase [150] in C. tanaceti is worth investigating

further since SCD1 has been successfully used as a target for fungicides to control other patho-

gens [151]. Apart from their function in SM biosynthesis, the candidate P450s of C. tanaceti
could be involved in housekeeping roles and therefore, could be good targets for fungicide

development, as in the case of azoles targeting CYP51 [152]. Furthermore, the candidate pro-

teins of MAPKs pathway in C. tanaceti could play a crucial role in appressorium formation

[25, 153], penetration [154], conidiation [155] and pathogenesis-related morphogenesis [156],

as reported for C. higginsianum and C. lagenaria.

Of the CAZyme families identified to be expanded in C. tanaceti, the chitin binding family

CBM18 could play a role in protecting the C. tanaceti cell wall from exogenous chitinases, as is

the case in Trichoderma reesei [157]. The expansion of the hemicellulose-degrading GH74

family could promote rapid degradation of host tissues by C. tanaceti during the necrotrophic

phase. The expansion of the lignin-degrading AA2 family in C. tanaceti has the potential to

assist infection of xylem vessels and thereby aid translocation of propagules to different parts

of the plant and establishing secondary infections.

The conserved nature of certain pathogenicity genes, such as the secondary metabolite clus-

ters within the destructivum complex, was evident with their presence within the syntenic

blocks with C. higginsianum. However, only a minority of the effectors, proteases and SM

backbone genes of C. tanaceti were among the core gene set for Colletotrichum spp. tested,

therefore emphasizing their role in adaptation to new hosts. The species-specific effectors, sin-

gletons from the orthology analysis and the genes exclusive to C. tanaceti might have been hor-

izontally transferred or be related to the host affiliation and niche specialization of C. tanaceti.
Taken together, this inferred pathogenicity gene suite of C. tanaceti could be targeted in future

resistance breeding and other disease management strategies for C. tanaceti.

Host range of Colletotrichum tanaceti
The proposed pathogenicity gene repertoire of C. tanaceti was most similar to that of patho-

gens with intermediate host ranges. The number of pathogenicity genes inferred from C. tana-
ceti was either similar to or less than the average for all Colletotrichum spp. investigated, but

the overall composition was similar to Colletotrichum spp. which either were able to infect

many species within a plant family or few species across families.

The putative pathogenicity profile of C. tanaceti was very distinct from that of the other

destructivum complex member, C. higginsianum, despite the two species sharing the highest

number of orthologs and having the shortest evolutionary distance. Contractions in many

pathogenicity gene families in C. tanaceti compared to C. higgginsianum indicated more

restricted pathogenicity in C. tanaceti. The most similar CAZyme pathogenicity profile to that

of C. tanaceti was from C. chlorophyti which has been reported to infect herbaceous hosts such

as tomato (plant family Solanaceae) and soybean (plant family Fabaceae) [82]. The similarity

to C. chlorophyti was consistent for other gene categories such as the P450s, transporters and

the overall pathogenicity profile. A homolog to the demethylase (PDA), which provides toler-

ance to the phytoalexin pisatin synthesised by Pisum sativum [158], was predicted in C. tana-
ceti (CTA1_6324s) which could be an indicator of the ability of C. tanaceti to infect Fabaceae.

The composition of the SMB cluster was however, more similar to C. orchidophilum, another

pathogen reported to infect the herbaceous, monocot plant family of Orchidaceae [159]. The

similarity of the putative pathogenicity profile of C. tanaceti to two pathogens infecting
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multiple herbaceous plant species was notable as the only known host of C. tanaceti is also her-

baceous. Both C. chlorophyti and C. orchidophilum have been reported from multiple host spe-

cies. Therefore, the putative pathogenicity gene suite of C. tanaceti suggests that C. tanaceti has

the genetic ability to infect more hosts than currently recognized. If C. tanaceti can infect other

hosts, such crops could also provide an external gene pool of inoculum for infection of pyre-

thrum crops increasing the evolutionary potential of the pathogen populations. Based on

results of comparative analysis of pathogenicity profiles, a further hypothesis is that these alter-

native hosts are likely to be herbaceous plants. Future studies investigating the cross-host

infectivity and pathogenicity of C. tanaceti are recommended.

Evolution of pathogenicity genes

Pathogenicity genes of C. tanaceti appear to be capable of evolving relatively rapidly. Tandem

repeats such as simple sequence repeats have high mutation rates [160] and could promote

frameshift mutations in adjacent genes by slipped misalignment during replication. Therefore,

the significant overlap between the tandem repeats and the pathogenicity genes suggested high

potential to mutate and create different pathotypes. Transposons promote insertional muta-

tions that can either cause disruption or modification of gene expression or generate new pro-

teins and also are major drivers of gene duplication [161]. Transposons were in close

proximity to putative pathogenicity in C. tanaceti, such as the SMB clusters, expanded and

contracted CAZymes, peptidases and effectors. The significant association of TE with pathoge-

nicity genes were previously reported in C. truncatum [41] and C. higginsianum [15]. The RIP

affected regions of the genome were also in close proximity to certain putative pathogenicity

genes of C. tanaceti. RIP mutations can leak into nearby flanking regions causing mutations in

those genes, further diversifying the pathogenicity gene repertoire of C. tanaceti [35]. How-

ever, unlike in Leptosphaeria maculans [162] RIP was not associated with the putative effectors

of C. tanaceti. Therefore, TEs could be facilitating effector diversification in this species [41].

Although gene sparse, the A-T rich regions of the C. tanaceti genome contained several

(n = 18) putative pathogenicity and virulence factors and many hypothetical proteins which

could be functioning as effectors facilitating adaptive evolution. Small secretory proteins were

identified in the A-T rich regions of C. orbiculare [6]. The genes in these A-T and repeat rich,

gene sparse regions can evolve faster than the rest of the genome according to the “two-speed

genomes” hypothesis [36].

Colletotrichum tanaceti had the highest number of rapidly evolving CAZyme families

among the 17 species studied which also was indicative of the high evolutionary potential in

these pathogenicity genes. Interspersed repeats were not in close proximity to the total

CAZome. They were however, located significantly closer to the expanded or contracted fami-

lies indicating that interspersed repeats were a major contributor to CAZyme family expan-

sions/contractions in C. tanaceti by causing gene duplication (in expansions) or gene

disruptions (in contractions) [135, 163]. Diversification of pathogenicity and virulence genes

through repeats and RIP mutation in C. tanaceti result a high evolutionary potential for patho-

genicity genes of this pathogen. The high evolutionary potential of pathogenicity genes may

cause rapid evolution of resistance to host immune responses in existing hosts or even adapta-

tion to new host species in C. tanaceti.

Genus Colletotrichum
Phylogenetic relationship throughout the genus was consistent with previous observations,

with gloeosporioides complex members and C. orbiculare forming a clade separately from the

destructivum, graminicola and acutatum clades [9–11]. One notable difference was in the
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divergence time estimates for the divergence of Colletotrichum species complexes which were

more ancient than reported by Liang et al [11], despite using the same calibration times. This

could have been due to this study using cross-validation across 50 smoothing factors in CAFÉ

as opposed to using 12 different constraints and smoothing factor combinations differences, as

well as the use of the use of the different data sets.

Comparative genomic analyses emphasized the rapid evolutionary rate and the high diver-

sity within the genus. The short time for speciation within the acutatum complex, and the

fourteen Colletotrichum species in general, was suggestive of the high evolutionary rate within

the genus with respective to the typical evolutionary rate of the fungal kingdom (0.0085 species

units per Myr) [164]. The sequence similarity between C. tanaceti and other species of Colleto-
trichum varied widely and dropped drastically with evolutionary distance, suggesting high

diversity within the genus. However, the drop in orthology was less dramatic, emphasizing the

contribution of non-coding regions in generating diversity within the genus. The extent of

synteny between C. tanaceti and C. higginsianum was high and very similar to the percentage

synteny previously reported for the two graminicola complex species, C. sublineola and C. gra-
minicola [165]. This suggested that even though there was high diversity within the genus, the

species in the same species complex tend to share more synteny and orthology than the species

between species complexes.

Evolutionary analysis of CAZyme families of different Colletotrichum lineages revealed an

association between CAZyme families and host range. The GH131 with cellulose degrading

activity was the only rapidly evolving gene family at the MRCA of Colletotrichum spp. suggest-

ing a possible association of this family with speciation and host determination within the

genus. Families GH43, with hemicellulose degrading activity and AA7, with gluco-oligosac-

charide activity significantly expanded upon divergence of both the gloeosporioides and acuta-

tum-complex clades, which could have broadened the host ranges of members of these two

complexes, consistent with previous reports [7, 9–11].The significant expansions in pectin

degrading enzyme families GH106 in gloeosporioides and GH78 in the acutatum clades could

also have enabled degradation of pectin rich cell walls of young fruits [166] of these fruit-rot-

ting species.

The most significant contractions were reported in pectin degrading families upon the

divergence of the graminicola complex clade. This could have been the reason for species in

this complex exclusively infecting monocot plant species considering that the pectin content of

monocot cell walls is generally less than in dicots [167]. Even though this was a similar result

to previous studies [6, 7, 9–11, 43], C. orchidophilum which is known to infect plants from

monocot family Orchidaceae [168], deviated from this pattern. Gene family AA7 was rapidly

evolving in many Colletotrichum species and could have been involved in biotransformation

or detoxification of the lignocellulosic compounds [169].

In general, the overall CAZyme pathogenicity profiles of Colletotrichum spp. followed host

range of those species rather than the taxonomy in consistence with the previous studies, [6, 7,

9–11, 43, 170]. The gloeoporioides and acutatum complex members which have broad host

ranges, but are evolutionary distant, were clustered together. This could be a byproduct of the

“two-speed” genome scenario in certain Colletotrichum spp. such as C. orbiculare, C. fructicola
and C. graminicola [6, 11, 41] and as suggested by this study, also in C. tanaceti. In this sce-

nario, the pathogenicity genes are located in repeat-rich regions, allowing them to evolve at a

higher rate than the rest of the genome. This was also evident by the significant association of

TE with pathogenicity genes in C. tanaceti, C. truncatum, C. higginsianum and C. graminicola
[10, 15, 43]. Furthermore, in C. fructicola, two gene clusters that were horizontally transferred

were within the rapidly evolving lineage specific regions [11]. This scenario would cause the
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species with similar pathogenicity gene profiles to cluster together, despite their evolutionary

distance.

Conclusion

In conclusion, a draft genome of C. tanaceti was used to characterize the molecular basis of

pathogenicity of the species and to improve the knowledge of the evolution of the fungal genus

Colletotrichum. Colletotrichum tanaceti is likely to have alternative hosts to pyrethrum. The

genome of Colletotrichum tanaceti contains a large component of repetitive elements that may

result in genome expansion and rapid generation of novel genotypes. The tendency of the

pathogenicity genes to evolve rapidly was evident in genomic signals of the RIP and association

of repeats and RIPs with the putative pathogenicity genes. Therefore, due to the large array of

pathogenicity genes with a high evolutionary potential, C. tanaceti is likely to become a high-

risk pathogen. Complexity of the Colletotrichum genus was evident with its high diversity and

evolutionary rate. The significant expansions and contractions of gene families upon diver-

gence of different lineages within the genus could be important determinants in species and

species complex diversification in Colletotrichum. The reason for pathogenicity genes to have

different clustering than the phylogeny in Colletotrichum could be the occurrence of “two-

speed” genomes in certain species. These findings will facilitate future research in genomics

and disease management of Colletotrichum.
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S4 Fig. Comparison of composition of pathogen host interaction database (PHIbase)

homolog profiles (number homologs to entries in “reduced virulence”, “unaffected patho-

genicity”, loss of pathogenicity”, “effector”, “lethal” and “increased virulence” categories

in the PHIbase) in Colletotrichum and related species; hierarchical clustering performed

with Euclidean distance and Ward linkage. The number of genes in each PHI category is

normalized using unit variance scaling. Overrepresented and underrepresented gene catego-

ries are represented in red to orange and blue respectively as fold standard deviations above

and below the mean.

(TIF)
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2. Doehlemann G, Ökmen B, Zhu W, Sharon A. Plant Pathogenic Fungi. Microbiology Spectrum. 2017; 5

(1). https://doi.org/10.1128/microbiolspec.FUNK-0023-2016 PMID: 28155813

High evolutionary potential of pathogenicity genes in Colletotrichum tanaceti

PLOS ONE | https://doi.org/10.1371/journal.pone.0212248 May 31, 2019 25 / 34

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212248.s026
https://doi.org/10.1016/j.cub.2018.03.054
http://www.ncbi.nlm.nih.gov/pubmed/29787730
https://doi.org/10.1128/microbiolspec.FUNK-0023-2016
http://www.ncbi.nlm.nih.gov/pubmed/28155813
https://doi.org/10.1371/journal.pone.0212248


3. Dean R, Van K A L, Pretorius Z A, Hammond-Kosack K E, Di P A, Spanu P D, et al. The Top 10 fungal

pathogens in molecular plant pathology. Mol Plant Pathol. 2012; 13(4):414–30. https://doi.org/10.

1111/j.1364-3703.2011.00783.x PMID: 22471698

4. Cannon PF, Damm U, Johnston PR, Weir BS. Colletotrichum–current status and future directions.

Studies in Mycology. 2012; 73(1):181–213. https://doi.org/10.3114/sim0014 PMC3458418. PMID:

23136460

5. O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, et al. Lifestyle transitions

in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat

Genet. 2012; 44(9):1060–5. http://www.nature.com/ng/journal/v44/n9/abs/ng.2372.

html#supplementary-information. https://doi.org/10.1038/ng.2372 PMID: 22885923

6. Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, et al. Comparative genomic and

transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol.

2013; 197(4):1236–49. https://doi.org/10.1111/nph.12085 PMID: 23252678.

7. Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G, Le Floch G, et al. Gene family expan-

sions and contractions are associated with host range in plant pathogens of the genus Colletotrichum.

BMC Genomics. 2016; 17(1):555. https://doi.org/10.1186/s12864-016-2917-6 PMID: 27496087

8. Hacquard S, Kracher B, Hiruma K, Münch PC, Garrido-Oter R, Thon MR, et al. Survival trade-offs in

plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communica-

tions. 2016; 7:11362. https://doi.org/10.1038/ncomms11362 https://www.nature.com/articles/

ncomms11362#supplementary-information. PMID: 27150427

9. Gan P, Narusaka M, Kumakura N, Tsushima A, Takano Y, Narusaka Y, et al. Genus-Wide Compara-

tive Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains dur-

ing Adaptation to Specific Infection Lifestyles. Genome Biology and Evolution. 2016; 8(5):1467–81.

https://doi.org/10.1093/gbe/evw089 PMID: 27189990

10. Rao S, Nandineni MR. Genome sequencing and comparative genomics reveal a repertoire of putative

pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum. PLOS ONE. 2017; 12(8):

e0183567. https://doi.org/10.1371/journal.pone.0183567 PMID: 28846714

11. Liang X, Wang B, Dong Q, Li L, Rollins JA, Zhang R, et al. Pathogenic adaptations of Colletotrichum

fungi revealed by genome wide gene family evolutionary analyses. PLOS ONE. 2018; 13(4):

e0196303. https://doi.org/10.1371/journal.pone.0196303 PMID: 29689067

12. Mongkolporn O, Taylor PWJ. Chili anthracnose: Colletotrichum taxonomy and pathogenicity. Plant

Pathol. 2018; 67(6):1255–63. https://doi.org/10.1111/ppa.12850

13. Marin-Felix Y, Hernández-Restrepo M, Wingfield MJ, Akulov A, Carnegie AJ, Cheewangkoon R, et al.

Genera of phytopathogenic fungi: GOPHY 2. Studies in Mycology. 2019; 92:47–133. https://doi.org/

10.1016/j.simyco.2018.04.002 PMID: 29997401

14. Damm U, Sato T, Alizadeh A, Groenewald JZ, Crous PW. The Colletotrichum dracaenophilum, C.

magnum and C. orchidearum species complexes. Studies in Mycology. 2019; 92:1–46. https://doi.org/

10.1016/j.simyco.2018.04.001 PMID: 29997400
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